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Abstract

Recently, deep neural networks (DNNs) have achieved ex-
cellent performance on time series classification. However,
DNNs require large amounts of labeled data for supervised
training. Although data augmentation can alleviate this prob-
lem, the standard approach assigns the same label to all aug-
mented samples from the same source. This leads to the ex-
pansion of the data distribution such that the classification
boundaries may be even harder to determine. In this paper, we
propose Joint-label learning by Dual Augmentation (JobDA),
which can enrich the training samples without expanding the
distribution of the original data. Instead, we apply simple
transformations to the time series and give these modified
time series new labels, so that the model has to distinguish
between these and the original data, as well as separating
the original classes. This approach sharpens the boundaries
around the original time series, and results in superior clas-
sification performance. We use Time Series Warping for our
transformations: We shrink and stretch different regions of
the original time series, like a fun-house mirror. Experiments
conducted on extensive time-series datasets show that JobDA
can improve the model performance on small datasets. More-
over, we verify that JobDA has better generalization ability
compared with conventional data augmentation, and the visu-
alization analysis further demonstrates that JobDA can learn
more compact clusters.

Introduction
Time series classification (TSC) is a task that learns to rec-
ognize unlabeled time series given a set of time series from
different categories. Such tasks are ubiquitous in daily life,
such as auxiliary medical diagnosis (Dai et al. 2018; Per-
slev et al. 2019), speech analysis (Trentin, Scherer, and
Schwenker 2015), action recognition (Yang et al. 2015; Tan-
fous, Drira, and Amor 2019; Ma et al. 2019), and so on.

In recent years, deep neural networks (DNNs) have been
applied to a wide variety of tasks and achieved great suc-
cess. Naturally, they have also been applied to TSC. Wang
et al. (Wang, Yan, and Oates 2017) tested three different
DNN architectures, multilayer perceptrons (MLP), resid-
ual networks (ResNet), and fully convolutional networks
(FCN), and verified the effectiveness of these three mod-
els. Further, Karim et al. (Karim et al. 2018) proposed long
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Figure 1: Schematic diagram of data distribution (a) w/o data
augmentation (b) w/ data augmentation.

short term memory (LSTM) fully convolutional networks
(LSTM-FCN) that augment an FCN with either an LSTM
network, or an LSTM network with attention. Although the
DNN-based methods have reached the state-of-the-art per-
formance in TSC, it is still a challenge to apply them to
datasets with only a small amount of labeled data, since large
amounts of labeled data are required for supervised training.

One simple yet effective solution to tackle this problem is
the use of data augmentation. Data augmentation increases
the size of the training set by using synthesized samples.
Some data augmentation methods have been proposed for
TSC tasks to improve the generalization performance of the
classifier. For example, simple transformations in the time
domain (Le Guennec, Malinowski, and Tavenard 2016; Um
et al. 2017) such as window slicing and warping, rotation,
permutation, scaling, and jittering (adding noise), have been
used for time-series data augmentation. Fawaz et al. (Fawaz
et al. 2018) proposed a pattern mixing method that uses a
weighted version of the DTW Barycentric Averaging algo-
rithm to generate the new time-series samples. In pattern
mixing, the new time-series samples are synthesized from
multiple original samples from the same category instead of
using transformations.

However, the common practice in data augmentation is
to assign the same label to all augmented samples from the
same source, which may cause some adverse effects on the
learning of the model. We use a schematic diagram to il-
lustrate what we mean. Figure 1(a) is the original data dis-
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tribution. Figure 1(b) is the data distribution that uses data
augmentation to increase the size of the training set, assign-
ing the same label to all augmented samples from the same
source. We can see that the original data distribution is ex-
panded, since it is affected by the augmented samples with
the same labels. Therefore, the data distribution of different
categories can lead to category overlap, so that the classifi-
cation boundary may not be well determined.

Recently, in the visual domain, Lee et al. (Lee, Hwang,
and Shin 2020) proposed augmenting the data by rotation
and color, and learning the joint distribution of the orig-
inal labels and the self-generated labels (e.g., (dog, 90◦)
is a label). Inspired by this work, we propose Joint-label
learning by Dual Augmentation (JobDA) for TSC, which
augments original data using self-supervision from two as-
pects: sample augmentation and label augmentation. Specif-
ically, we first propose a novel time-series sample augmen-
tation method called time-series warping (TSW) that can
simulate time-shifting or deformations of the local patterns
while keeping the length of the time series unchanged. Then
we assign the self-supervised label to each sample accord-
ing to the particular TSW transform applied, performing la-
bel augmentation. Finally, combining the original and self-
supervised labels, a novel joint-label learning method is uti-
lized to learn multiple compact clusters using the original
time series and augmented ones. In this way, JobDA can in-
crease the size of the training set while learning multiple
compact clusters of time series data instead of expanding
the original data distribution. Our contributions can be sum-
marized as follows:

• We propose a dual-augmentation mechanism that aug-
ments the original time series from two aspects: sample
augmentation and label augmentation. We use time-series
warping (TSW) which simulates deformations of the lo-
cal patterns. All data transformed the same way receives
a new label.

• Combining original labels and self-supervised ones, we
propose a novel joint-label learning method to learn multi-
ple compact clusters for time series classification. This en-
hances generalization by avoiding expansion of the origi-
nal data distribution.

• Experiments conducted on extensive time-series datasets
show that JobDA can improve the model performance on
small datasets. Moreover, we verify that JobDA has bet-
ter generalization ability than conventional data augmen-
tation, and the visualization analysis further demonstrates
that JobDA can learn more compact clusters.

Related Work
Time-Series Data Augmentation
In recent years, deep neural networks (DNNs) have achieved
excellent performance on TSC. The superior performance of
deep learning methods relies heavily on a large amount of
labeled data to avoid overfitting. As a simple yet effective
method to increase the size of the training set, data augmen-
tation plays a crucial role in the application of DNNs in TSC.

Time-series data augmentation (TSDA) in the time do-
main is the most common method, manipulating the origi-
nal time series directly. Guennec et al. (Le Guennec, Mali-
nowski, and Tavenard 2016) proposed window slicing and
window warping for TSDA. Similar to the cropping of the
image, window slicing randomly selects continuous slices
of a given time series and assigns them the same label. Win-
dow warping warps a randomly selected slice of time se-
ries by upsampling or downsampling, changing the length
of time series. Um et al. (Um et al. 2017) used a variety of
augmentations such as rotation, permutation, scaling, mag-
nitude warping, jittering (adding noise), and cropping for
CNN-based classification. Fawaz et al. (Fawaz et al. 2018)
used a weighted version of the DTW Barycentric Averag-
ing algorithm to generate the new time series. In addition to
TSDA in the time domain, some studies investigate data aug-
mentation from the perspective of the frequency domain. For
example, Eyobu et al. (Steven Eyobu and Han 2018) con-
ducted two data augmentations (local averaging and shuf-
fling of feature vectors) on the time-frequency features that
are generated by the short Fourier transform (STFT). In ad-
dition, generative adversarial networks (GANs) (Nikolaidis
et al. 2019; Yoon, Jarrett, and Der Schaar 2019) can be used
to generate time-series samples from the same domain.

However, common practice in data augmentation is to as-
sign the same label to all augmented samples from the same
source, which may bring some adverse effects on model
learning. The original data distribution may be expanded,
since it is affected by the augmented samples with the same
labels. Therefore, the data distribution of different categories
can lead to overlapping distributions so that the classification
boundary may not be well determined.

Self-Supervised Auxiliary Learning
Self-supervised learning (Doersch, Gupta, and Efros 2015;
Dosovitskiy et al. 2016; Gidaris, Singh, and Komodakis
2018) was proposed for unsupervised learning originally.
Some recent studies used self-supervised learning as an aux-
iliary task to help the primary task learn better by training
the auxiliary task alongside the primary task. In the auxiliary
task, the model predicts which transformation is applied to
the input given the transformed samples. For example, Gi-
daris et al. (Gidaris et al. 2019) used self-supervision as an
auxiliary task that predicted the rotations of images to boost
few-shot visual learning. Lee et al. (Lee, Hwang, and Shin
2020) learned the joint distribution of the original labels and
self-supervised labels that are generated based on the rota-
tions of images to improve image classification. Inspired by
this work, we introduce the idea of self-supervision to learn
multiple compact clusters for time series classification.

Proposed Method
In Figure 2(a), we make a comparison between the pro-
posed Joint-label learning by Dual Augmentation (JobDA)
and previous approaches (w/o data augmentation and w/ data
augmentation) at the training phase. We show the proposed
method at test time in Figure 2(b). JobDA consists of two
modules: dual augmentation and joint-label learning. The
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Figure 2: (a) Comparison of our Joint-label learning by Dual Augmentation (JobDA) and previous approaches (w/o data aug-
mentation and w/ data augmentation) in the training phase. (b) Our inference method in the testing phase.

dual augmentation is first used to perform sample augmen-
tation and label augmentation on the training set, which in-
creases the size of the training set and helps the classifier
learn more compact clusters. The joint classifier with soft-
max output is performed on the time series of the training
set and augmented set to predict the joint-labels consisting
of original labels and self-supervised labels. In the testing
phase, we use joint classifier to obtain the final distribution
for each joint-label. We only need to consider the original
category in the testing phase. Hence, we predict an origi-
nal label by summing the probabilities of all joint-labels that
come from this original category.

Dual Augmentation
Sample Augmentation with Time-Series Warping. The
purpose of sample augmentation is to improve the gener-
alization performance of model by increasing the size of
training set. Namely, given a training set with n time series
T = {t1, · · · , ti, · · · , tn}, each time series ti contains m
ordered real values. yi ∈ {1, 2, · · · , C} denotes the label of
the i-th sample, and C is the number of categories. The goal
is to create augmented set T

′
by applying transformations to

the original time series such that the classifier is trained on
T aug = T ∪ T

′
to improve its generalization performance.

To improve the generalization performance of the time-
series classifier, we propose a novel time-series sample aug-
mentation called time-series warping (TSW). TSW alter-
nately compresses and expands different subsequences of
the time series by using downsampling and upsampling
operation while keeping the length of the time series un-
changed.

For each time series ti ∈ Rm×1, we first divide it into N
continuous subsequences with equal length L = bmN c. Then
we perform downsampling or upsampling on each subse-

quence of the time series. Average pooling with a stride of 2
is used for downsampling. For upsampling, we insert the av-
erage value between every two values with a stride of 2. We
perform downsampling and upsampling operations on theN
subsequences of the time series alternately, and concatenate
them together, an approach that could be fancifully called
the “fun-house mirror” transformation. To produce different
transformations, we varyN . TSW is a simple transformation
on the original time series, which is an efficient operation.
Obviously, many other transformations are possible, and we
use this one for convenience. It is worth investigating what
other transformations can be used, as some will undoubtedly
work better than others. We discuss this question further in
section B of the supplementary material.

Label Augmentation. The common practice of data aug-
mentation is assigning the same label to all augmented time
series from the same source, and so the number of categories
is unchanged. In this case, the patterns of the augmented
time series should be similar to the ones in the original time
series so as not to introduce too much noise. However, this
is not always possible. Consider a binary classification task,
if the augmented samples of class 1 are close to the samples
of class 2, assigning these augmented samples to class 1 is
clearly inappropriate, as they may now overlap with class 2.
In this case, the classifier will still try to make these aug-
mented and original samples of class 1 close to each other in
the feature space, even though the examples are in class 2.
This process is likely to expand the distribution of the origi-
nal data, and the classification boundary may not be well de-
termined. Inspired by recent work in self-supervised learn-
ing, we assign a self-supervised label to each time series ac-
cording to the different transformations. Hence, if there are
M transformations (including the identity transformation for
the original categories), there will now be MC categories.
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As an example, in Figure 2(a), there are two categories
(Blue and Red) in the original training set. After data and
label augmentation, each time series has two joint labels.
One is the original label (Blue and Red), and the other is the
self-supervised label (Normal (original time series), Dark,
and Light). Using the cross-product of these labels gives rise
to six categories.

Joint-Label Learning
After augmentation, we train the classifier on the new train-
ing set T aug. Again, our approach differs from previous ones
because we learn a separate category for each transforma-
tion. This approach is introduced to learn multiple compact
clusters instead of expanding the distribution of the original
time series.

For the original training set T with n time series and C
original categories, we perform M transformations on each
time series, so the number of self-supervised categories is
M . The key of the joint-label learning method is learning
the joint-label composed of the original and self-supervised
label of each time series so that the original data distribution
will not be affected by the augmented samples with the same
original labels. Therefore, the joint classifier is trained on
the new training set T aug with Mn time series and MC
categories. Let g(·;ω) denotes the joint classifier, where ω
is the weights of joint classifier. For a training time series
t on T aug, the conditional distribution over each joint-label
can be defined by

z = g(t;ω), (1)
P (MC|t) = softmax(z), (2)

where z ∈ RMC×1 denotes output vector generated by the
joint classifier. P (MC|t) denotes the conditional label dis-
tribution of the input time series t.

A potential limitation of our approach is if C is large, and
the categories are close to one another, we may proliferate
categories and end up with overlap between the new set. In
the supplementary material, we indeed do perform worse on
a 14-way classification on the FacesUCR dataset. This is
a set of “time series” generated by converting the outline
of the profiles of different graduate student’s heads, using
multiple profile views of each person, into one-d time se-
ries. This dataset is likely to have similar sequences across
people.

Inference
During the testing phase, we only need to consider how to
classify the original time series into the original C cate-
gories, given that the classifier is trained to classify time se-
ries into MC categories. We predict original label by sum-
ming the probabilities of all joint-labels that come from the
same original category. Given a testing time series x, we can
obtain the conditional distribution of x on C×M categories
as follows

p = softmax(g(x;ω)), (3)
where p = {p1,1, · · · , p1,M , · · · , pi,1, · · · , pi,M , · · · , pC,1,
· · · , pC,M} denotes the probability distribution of the MC
joint labels and g(x;ω) is the classifier parameterized by

ω. The conditional distribution over each original category
label can be defined by

P (C|x) = {p1, · · · , pi, · · · , pC} where pi =
M∑
k=1

pi,k.

(4)

Experiments
Experimental Setup
We describe the settings of our experiments in this section.

Datasets. We conduct experiments on the UCR time se-
ries classification archive1 (Chen et al. 2015) to compare
the proposed method with other methods. The UCR time
series classification archive contains 85 publicly available
time-series datasets, and each dataset was split into training
and testing set using the standard split. To maintain the in-
tegrity of the experiments, we conducted experiments on 85
UCR datasets. The statistics of these 85 datasets are shown
in section A of the supplementary material.

Baselines. The proposed method is compared with three
SOTA deep learning-based time series classification meth-
ods (Wang, Yan, and Oates 2017): Multilayer Perceptron
(MLP), Fully Convolutional Network (FCN), and Residual
Network (ResNet). The introduction to these three base-
lines are shown in section A of the supplementary mate-
rial. In addition, we compare the proposed method with
1-Nearest Neighbor with Dynamic Time Warping (1NN-
DTW) (Berndt and Clifford 1994), which achieved very
good performance on small UCR time series datasets.

Implementation Details. Keras 2.2.42 is used to imple-
ment all our experiments, which run on an Intel Core i7-
6850K 3.60GHz CPU, 64GB RAM, and a GeForce GTX
1080-Ti 11G GPU. We perform four TSW-based transfor-
mations (including the original time series) on each time
series of the training set for sample augmentation. In addi-
tion to the original time series, the number of subsequences
N used in the other three transformations are 2, 4, and 8,
respectively. The loss function is categorical cross-entropy.
We choose the model architecture that achieves the lowest
training loss and report its performance on the test set (the
UCR time series archive does not have holdout set splits).
The classification accuracy is used to evaluate the perfor-
mance of the model, and the macro-F1 score (Yang 1999) is
used for class-imbalanced classification. To reduce the im-
pact of random initialization, we run each experiment five
times and report the mean and standard deviation.

Comparison with State-of-the-art Methods
The proposed method is compared with three SOTA deep
learning-based time series classification methods: MLP,
FCN, and ResNet. For a fair comparison, we also construct
three methods using the same augmented dataset without
the joint labels (i.e., the traditional approach to data aug-
mentation). We call these: MLP with single-label learning
(MLP SL), FCN with single-label learning (FCN SL), and

1https://www.cs.ucr.edu/˜eamonn/time series data/
2https://github.com/fchollet/keras
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MLP FCN ResNet MLP SL FCN SL ResNet SL ResNet JL

#Best 4 14 21 5 13 17 37
Avg rank 5.853 4.000 3.053 5.494 3.771 3.176 2.653

Table 1: Statistical results of ResNet JL and 6 classifiers on 85 UCR datasets. The best result is indicated as bold.

Dataset Class Nmax/Nmin Nspc before DA Nspc after DA ResNet ResNet SL ResNet JL

Earthquakes 2 2.97 [104,35] [104,140] 0.506 0.537 0.542
DistPhaxAgeGrp 3 4.33 [15, 59, 65] [60, 59, 65] 0.697 0.719 0.711

ProxPhaxTW 6 36.00 [2,67,40,10,14,72] [8,67,40,40,64,72] 0.486 0.523 0.542
ECG5000 5 146.00 [292,177,10,19,2] [292,177,40,76,8] 0.592 0.582 0.598

Table 2: Macro-F1 score on four imbalance datasets. Nmax/Nmin is the ratio between the numbers of samples of most and
least frequent classes. Nspc is the number of samples for each category. The best result is indicated as bold.

ResNet with single-label learning (ResNet SL). Their train-
ing set is identical to ours, using the same four TSW-based
transformations, so they only perform sample augmenta-
tion on the training set without label augmentation. We use
ResNet with joint-label learning (ResNet JL) to evaluate the
performance of our proposed method since ResNet performs
better than the other two models (Ismail Fawaz et al. 2019).
ResNet JL is trained on the training set after dual augmen-
tation. The results of MLP, FCN, and ResNet are collected
from (Ismail Fawaz et al. 2019). The full results of these
methods on 85 UCR datasets are shown in section D of the
supplementary material.

As shown in Table 1, ResNet JL achieves the best results
on 37 of the 85 datasets and also the best average rank of
2.653. We see that single-label learning with the dataset aug-
mented by TSW can improve model performance. For exam-
ple, MLP SL and FCN SL are numerically superior to MLP
and FCN in average rank, respectively. However, the im-
provement of single-label learning is relatively small, and it
may even reduce model performance. For example, ResNet
is slightly better numerically than ResNet SL in average
rank. In addition, ResNet JL and ResNet SL achieve higher
accuracy than ResNet on 45 and 36 datasets, respectively,
which shows that our method can be adapted to a wider
range of tasks. To further analyze the performance, we also
conduct the Nemenyi non-parametric statistical test (Demšar
2006) and plot the critical difference diagram in Figure 8 of
the supplementary material. The Nemenyi test shows that
ResNet JL is significantly superior to MLP-based and FCN-
based methods at p < 0.05 level, and slightly superior
to ResNet-based methods. Therefore, JobDA can improve
model performance effectively.

For smaller UCR time series datasets, 1NN-DTW (Berndt
and Clifford 1994) achieved very good performance. To fur-
ther verify the effectiveness of the proposed method, we
compare our method with 1NN-DTW on 44 datasets with
training set sizes of 200 or less. The results are shown in Ta-
ble 9 of the supplementary material. We see that our method
achieves higher classification accuracy in the vast majority
of datasets than 1NN-DTW.

Class-imbalanced Classification
In classification tasks, class imbalance usually reduces the
performance of the classifier since the classifier cannot iden-
tify data from minority classes easily. One way to solve the
problem of class imbalance is oversampling the minority
classes in the training set so that the number of samples
in each category is closer. To explore whether our method
can improve model performance on imbalanced classifica-
tion similarly to conventional data augmentation, we use
single-label learning and joint-label learning to oversam-
ple four UCR datasets with different imbalance ratios and
test their performance. Here we use the Macro-F1 score as
the evaluation metric of model performance on imbalanced
datasets. As shown in Table 2, both single-label learning,
and joint label-learning can improve the model performance,
and ResNet JL achieves the best performance on 3 of the 4
datasets, which shows that joint-label learning can further
improve the model performance on imbalanced datasets.

Generalization Ability Analysis
In this section, we explore the generalization ability of
our proposed method. Recent research has explored the is-
sue of why deep networks generalize despite being over-
parameterized. They provide the insight that although many
solutions can achieve zero training error, some can gener-
alize better since they are converging to flat minima rather
than deep, sharp minima (Chaudhari et al. 2017; Keskar
et al. 2017). A flat minima is a large connected region in
weight space where the error remains approximately con-
stant. In contrast, a sharp minima is a connected region in
weight space where the error changes rapidly (Hochreiter
and Schmidhuber 1997). Therefore, the small perturbations
do not cause significant performance degradation for flat
minima.

To investigate whether our method has converged to a
flat minimum, we need to qualitatively analyze the objec-
tive function. However, the objective function of DNNs is
complicated and high-dimensional. It is difficult to analyze
the objective function in a two-dimensional visualization.
Goodfellow et al. (Goodfellow, Vinyals, and Saxe 2015) pro-
vided a simple technique to qualitatively analyze the objec-
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sOutlinesCorrect dataset.

tive function, which makes the cross-section of the object
function observable. Specifically, let Φinit and Φbest denote
the initial solution and the final solution that achieves the
lowest training loss. The training loss and testing accuracy
are evaluated at a series of points Φ = (1−α)Φinit+αΦbest

for varying values of α. We set α ∈ [0.5, 1.5], where
α = 1.0 denotes the results that achieve the lowest training
loss. As shown in Figure 3, we present the linear parametric
plots of ResNet JL and ResNet SL on three datasets. The
solid and dashed line are used to indicate ResNet JL and
ResNet SL, respectively, while red lines correspond to ac-
curacy, and blue lines correspond to the cross-section of the
error surface. We can see that the final solution of ResNet JL
falls in a wide valley, while the final solution of ResNet SL
falls in a narrow crevice. In addition, the final solution of
ResNet JL has better robustness since the model has a higher
and smoother testing accuracy near the final solution. There-
fore, our method has found a flat minimum, which leads to
higher generalization performance.
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Figure 5: The accuracy vs training set size (only a few train-
ing samples per category) on four UCR datasets.

Analysis of Training Set Size
To verify that the proposed method can effectively solve the
problem of the scarcity of labeled training data, we con-
ducted experiments on the PhalCorr (1800 trainging sam-
ples) dataset. We only use part of the training samples (scale
from 0.1 to 1.0) to train the model. Specifically, given a ratio
r, we sample r × Nc samples from each category of sam-
ples to form the training set, where Nc denotes the number
of samples in the c-th category of original training set.

The experimental results of training set size vs accuracy
on the PhalCorr dataset are shown in Figure 4. Regardless of
ResNet or ResNet JL, the classification accuracy increases
with the increase of training data. In addition, we see that
ResNet JL can improve the model performance better when
the training set size is small. To further explore the capability
of the proposed method to solve the problem of scarcity of
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Figure 6: The visualizations with t-SNE on the Wine dataset.
The subfigures on each row from left to right are the origi-
nal time series data, the feature maps of ResNet SL and the
feature maps of ResNet JL, respectively.

ResNet M=2 M=3 M=4 M=5

#Better - 32 32 35 31
p-value - 0.030 0.006 0.016 0.005

Table 3: Statistical results of ResNet and ResNet JL with
different M on 44 UCR datasets.

labeled training data, we use extremely few original training
samples, reducing the training sample size of each category
to 2, 4, and 8, and conduct experiments on 4 UCR datasets.
As shown in Figure 5, we see that ResNet JL can improve
the model performance overall. This shows that ResNet JL
can improve the model performance on small datasets. More
examples can be found in the supplementary material.

Analysis of Transformation Number M
To explore the effect of the transformation number M on
the model performance, we evaluate the performance of
ResNet JL with different transformation number M (M =
2, 3, 4, 5, including the original time series) on 44 UCR time
series datasets. The full results are shown in section E of the
supplementary material.

As shown in Table 3, we see that ResNet JL with M=2,
3, 4, and 5 achieved the better (or equal) results (p-value) of
32(0.030), 32(0.006), 35(0.016), and 31(0.005) than ResNet
in 44 small UCR datasets, respectively. This shows that no
matter which value M takes, ResNet JL can achieve better
performance than ResNet.

Visualization Analysis
To explore the effectiveness of joint-label learning, we take
the feature maps of ResNet SL and ResNet JL on the Wine
dataset and CinCECGtorso dataset, respectively, and use t-
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Figure 7: The visualizations with t-SNE on the
CinC ECG torso dataset.

SNE (Maaten and Hinton 2008) to map the features into a
2-D space. The features of the Wine dataset after dimen-
sionality reduction are shown in Figure 6. Comparing the
feature maps of ResNet SL (Figure 6(b)) and ResNet JL
(Figure 6(c)) on the training set, we find that ResNet JL
learns the more compact clusters, while ResNet SL expands
the original data distribution. In addition, comparing the
feature maps of ResNet SL (Figure 6(e)) and ResNet JL
(Figure 6(f)) on testing set, the classification boundary of
ResNet JL is well determined compared to ResNet SL. Sim-
ilarly, the same phenomenon also appears in the CinCECG-
torso dataset (Figure 7). Therefore, joint-label learning
doesn’t just increase the size of the training set, but also
doesn’t expand the distribution of the original data, making
the classification boundary better determined.

Conclusion

In this paper, we propose a novel time-series data augmen-
tation method called Joint-label learning by Dual Augmen-
tation (JobDA), which can enrich the training samples and
learn multiple compact clusters instead of expanding the
distribution of the original data. Unlike conventional data
augmentation, JobDA assigns a new label that combines
original and self-supervised label for each sample. Exper-
iments conducted on extensive time-series datasets show
that JobDA can improve the model performance on small
datasets. Moreover, we verify that JobDA has better general-
ization ability than conventional data augmentation, and the
visualization analysis further demonstrates that JobDA can
learn the more compact clusters. JobDA is a fully supervised
method because the class and transformation of augmented
samples are both known during training. In future work, we
will consider extending it to the unsupervised learning.
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