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Abstract
Hierarchical abstractions are a methodology for solving
large-scale graph problems in various disciplines. Coarsen-
ing is one such approach: it generates a pyramid of graphs
whereby the one in the next level is a structural summary
of the prior one. With a long history in scientific comput-
ing, many coarsening strategies were developed based on
mathematically driven heuristics. Recently, resurgent inter-
ests exist in deep learning to design hierarchical methods
learnable through differentiable parameterization. These ap-
proaches are paired with downstream tasks for supervised
learning. In practice, however, supervised signals (e.g., la-
bels) are scarce and are often laborious to obtain. In this work,
we propose an unsupervised approach, coined OTCOARSEN-
ING, with the use of optimal transport. Both the coarsening
matrix and the transport cost matrix are parameterized, so that
an optimal coarsening strategy can be learned and tailored
for a given set of graphs without use of labels. We demon-
strate that the proposed approach produces meaningful coarse
graphs and yields competitive performance compared with
supervised methods for graph classification and regression.

Introduction
A proliferation of graph neural networks (Bruna et al. 2014;
Henaff, Bruna, and LeCun 2015; Duvenaud et al. 2015; Def-
ferrard, Bresson, and Vandergheynst 2016; Kipf and Welling
2017; Hamilton, Ying, and Leskovec 2017; Chen, Ma, and
Xiao 2018; Velic̆ković et al. 2018; Ying et al. 2018a; Liao
et al. 2019; Xu et al. 2019b; Scarselli et al. 2009; Li et al.
2016; Gilmer et al. 2017; Jin et al. 2017) emerged recently
with wide spread applications ranging from theorem prov-
ing (Wang et al. 2017), chemoinformatics (Jin et al. 2017;
Fout et al. 2017; Schütt et al. 2017), to planning (Ma et al.
2020). These models learn sophisticated feature representa-
tions of a graph and its constituents (i.e., nodes and edges)
through layers of feature transformation. Several architec-
tures (Xu et al. 2019b; Morris et al. 2019; Maron et al. 2019)
are connected to the Weisfeiler–Lehman (WL) graph iso-
morphism test (Shervashidze et al. 2011) because of the re-
semblance in iterative node (re)labeling.

An image analog of graph neural networks is convolu-
tional neural networks, whose key components are convolu-
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tion and pooling. The pooling operation reduces the spatial
dimensions of an image and forms a hierarchical abstraction
through successive downsampling. For graphs, a similar hi-
erarchical abstraction is particularly important for maintain-
ing the structural information and deriving a faithful feature
representation. A challenge, however, is that unlike image
pixels that are spatially regular, graph nodes are irregularly
connected and hence pooling is less straightforward.

Several graph neural networks perform pooling in a hi-
erarchical manner. The work of Bruna et al. (2014) builds
a multiresolution hierarchy of the graph with agglomera-
tive clustering, based on ε-covering. The work of Deffer-
rard, Bresson, and Vandergheynst (2016) and Fey et al.
(2018) employ Graclus that successively coarsens a graph
based on the heavy-edge matching heuristic. The work of Si-
monovsky and Komodakis (2017) constructs the hierarchy
through a combined use of spectral polarity and Kron re-
duction. These neural networks build the graph hierarchy as
preprocessing, which defines in advance how pooling is per-
formed given a graph. No learnable parameters are attached.

Recently, hierarchical abstractions as a learnable neural
network module surfaced in graph representation learning.
Representative approaches include DIFFPOOL (Ying et al.
2018b), GRAPH U-NET (Gao and Ji 2019), and SAG-
POOL (Lee, Lee, and Kang 2019). All approaches treat the
learnable hierarchy as part of the neural network (in con-
junction with a predictive model), which is trained with a
downstream task in a (semi-)supervised manner.

In practice, however, supervised signals (e.g., labels)
are scarce and are often laborious and expensive to ob-
tain. Hence, in this work, we propose an unsupervised ap-
proach, called OTCOARSENING, that produces a hierarchi-
cal abstraction of a graph independent of downstream tasks.
Therein, node features for the graphs in the hierarchy are
derived simultaneously, so that they can be used for differ-
ent tasks through training separate downstream predictive
models. OTCOARSENING consists of two ingredients: a pa-
rameterized graph coarsening strategy in the algebraic multi-
grid (AMG) style; and an optimal transport that minimizes
the structural transportation between two consecutive graphs
in the hierarchy, thus replacing the cross-entropy or other
losses that rely on labeling information. The “OT” part of
the name comes from Optimal Transport. We show that this
unsupervised approach produces meaningful coarse graphs
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that are structure preserving; and that the learned represen-
tations perform competitively with supervised approaches.

The contribution of this work is threefold. First, for un-
supervised learning we introduce a new technique based
on hierarchical abstraction through minimizing discrepancy
along the hierarchy. Second, key to a successful hierarchi-
cal abstraction is the coarsening strategy. We develop one
motivated by AMG and empirically show that the result-
ing coarse graphs qualitatively preserve the graph structure.
Third, we demonstrate that the proposed technique, combin-
ing coarsening and unsupervised learning, performs com-
parably with supervised approaches but is advantageous in
practice facing label scarcity.

Related Work
Hierarchical (a.k.a. multilevel or multiscale) methods are be-
hind the solutions of a variety of problems, particularly for
graphs. Therein, coarsening approaches are being constantly
developed and applied. Two active areas are graph partition-
ing and clustering. The former is often used in parallel pro-
cessing, circuit design, and solutions of linear systems. The
latter appears in descriptive data analysis.

Many of the graph hierarchical approaches consist of
a coarsening and an uncoarsening phase. The coarsening
phase successively reduces the size of a given graph, so
that an easy solution can be obtained for the smallest one.
Then, the small solution is lifted back to the original graph
through successive refinement in the reverse coarsening or-
der. For coarsening, a class of approaches applies heave-
edge matching heuristics (Hendrickson and Leland 1995;
Karypis and Kumar 1998; Dhillon, Guan, and Kulis 2007).
Loukas and coauthors show that for certain graphs, the
principal eigenvalues and eigenspaces of the coarsened and
the original graph Laplacians are close under randomized
matching (Loukas and Vandergheynst 2018; Loukas 2019).
Bravo-Hermsdorff and Gunderson (2019) show that con-
tracting two nodes into one may be interpreted as perturb-
ing the Laplacian pseudoinverse with an infinitely weighted
edge. On the other hand, in the uncoarsening phase, refine-
ment can be done in several ways, including Kernighan-
Lin refinement (Kernighan and Lin 1970; Shi and Malik
2000; Luxburg 2007) and kernel k-means (Dhillon, Guan,
and Kulis 2007).

Another class of coarsening approaches selects a subset
of nodes from the original graph. Call them coarse nodes;
they form the node set of the coarse graph. Other nodes
are aggregated with weights to the coarse nodes in certain
ways, which, simultaneously define the edges in the coarse
graph. Many of these methods were developed akin to alge-
braic multigrid (AMG) (Ruge and Stüben 1987), wherein the
coarse nodes, the aggregation rule, and edge weights may be
defined based on original edge weights (Kushnir, Galun, and
Brandt 2006), diffusion distances (Livne and Brandt 2012),
or algebraic distances (Ron, Safro, and Brandt 2011; Chen
and Safro 2011; Safro, Sanders, and Schulz 2014). In this
work, the selection of the coarse nodes and the aggregation
weights are parameterized and learned instead.

Hierarchical graph representation is emerging in
deep learning. Representative approaches include DIFF-

POOL (Ying et al. 2018b), GRAPH U-NET (Gao and Ji
2019), and SAGPOOL (Lee, Lee, and Kang 2019). Cast
in the above setting, DIFFPOOL is similar to the first class
of coarsening approaches, whereas GRAPH U-NET and
SAGPOOL similar to the latter. All methods are supervised,
as opposed to ours.

Our work is additionally drawn upon optimal transport, a
tool recently used for defining similarity of graphs (Vayer
et al. 2019; Xu et al. 2019a). In the referenced work,
Gromov–Wasserstein distances are developed that incorpo-
rate both node features and graph structures. Moreover, a
transportation distance from the graph to its subgraph is de-
veloped by Garg and Jaakkola (2019). Our approach is based
on a relatively simpler Wasserstein distance, whose calcula-
tion admits an iterative procedure more friendly to neural
network parameterization.

Method
In this section, we present the proposed method OTCOARS-
ENING, beginning with two main ingredients: coarsening
and optimal transport, followed by a summary of the compu-
tational steps in training and the use of the results for down-
stream tasks.

AMG-Style Coarsening
The first ingredient coarsens a graph G into a smaller one
Gc. For a differentiable parameterization, an operator will
need be defined that transforms the corresponding graph ad-
jacency matrix A ∈ Rn×n into Ac ∈ Rm×m, where n
and m are the number of nodes of G and Gc respectively,
with m < n. We motivate the definition by algebraic multi-
grid (Ruge and Stüben 1987), because of the hierarchical
connection and a graph-theoretic interpretation. AMG also
happened to be referenced as a potential candidate for pool-
ing in some graph neural network architectures (Bruna et al.
2014; Defferrard, Bresson, and Vandergheynst 2016).

Background on Algebraic Multigrid AMG belongs to
the family of multigrid methods (Briggs, Henson, and Mc-
Cormick 2000) for solving large, sparse linear systems of the
form Ax = b, where A is the given sparse matrix, b is the
right-hand vector, and x is the unknown vector to be solved
for. For simplicity, we assume throughout that A is symmet-
ric. The simplest algorithm, two-grid V-cycle, consists of the
following steps: (i) Approximately solve the system with an
inexpensive iterative method and obtain an approximate so-
lution x′. Let r = b − Ax′ be the residual vector. (ii) Find
a tall matrix S ∈ Rn×m and solve the smaller residual sys-
tem (STAS)y = ST r for the shorter unknown vector y. (iii)
Now we have a better approximate solution x′′ = x′+Sy to
the original system. Repeat the above steps until the residual
is sufficiently small.

The matrix of the residual system, STAS, is called the
Galerkin coarse-grid operator. One may show that step (ii),
if solved exactly, minimizes the energy norm of the error
x − x′′ over all possible corrections from the range of the
matrix S. Decades of efforts on AMG discover practical def-
initions of S that both is economic to construct/apply and
encourages fast convergence. We depart from these efforts
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(a) Graph G (b) Coarse nodes
(red) and fine
nodes (blue)

(c) Coarse graph
Gc (using only half
of the nodes in G)

Figure 1: Example graph and coarsening.

and define/parameterize an S that best suites graph repre-
sentation learning.

Coarsening Framework Following the above motivation,
we settle with the coarsening framework

Ac = STAS, (1)

where S is named the coarsening matrix. For parameteriza-
tion, we might have treated S as a parameter matrix, but it
requires a fixed size to be learnable and hence it can only be
applied to graphs of the same size. This restriction both is
unnatural in practice and destroys permutation invariance of
the nodes. In what follows, we discuss the properties of S
from a graph theoretic view, which leads to a natural param-
eterization.

Properties of S Let V be the node set of the graph G.
AMG partitions V into two disjoint subsets C and F , whose
elements are called coarse nodes and fine nodes, respec-
tively. See Figure 1(b). For coarsening, C becomes the node
set of the coarse graph and the nodes in F are eliminated.

The rows of the coarsening matrix S correspond to the
nodes in V and columns to nodes in C. This notion is con-
sistent with definition (1), because the rows and columns of
Ac correspond to the coarse nodes. It also distinguishes from
DIFFPOOL (Ying et al. 2018b), which although defines the
next graph by the same equation (1), does not use the nodes
in the original graph as those of the smaller graph.

If S is dense, so is Ac. Then, the graphs in the coarsening
hierarchy are all complete graphs, which are less desirable.
Hence, we would like S to be sparse. Assuming so, one sees
that each column of S plays the role of aggregation. For con-
venience, we define χ(j) to be the set of nonzero locations
of this column and call it the aggregation set of the coarse
node j. The following result characterizes the existence of
an edge in the coarse graph.
Theorem 1. There is an edge connecting two nodes j and j′
in the coarse graph if and only if there is an edge connect-
ing the two aggregation sets χ(j) and χ(j′) in the original
graph.

Proof. We say that the sum of two numbers is structurally
nonzero if at least one of the numbers is nonzero, even if
they sum algebraically to zero (e.g., when one number is the
opposite number of the other). Structural nonzero of an ele-
ment in the adjacency matrix is the necessary and sufficient

condition for the existence of the corresponding edge in the
graph.

Recall that Ac = STAS. For two coarse nodes j and j′,
one sees that the element Ac(j, j′) is structurally nonzero
if and only if the submatrix A(χ(j), χ(j′)) is nonempty. In
other words, j and j′ are connected by an edge in the coarse
graph Gc if and only if there exists an edge connecting χ(j)
and χ(j′) in the original graph G. Note that such an edge
may be a self loop.

Hence, in order to encourage sparsity of the coarse graph,
many of the aggregation set pairs should not be connected
by an edge. One principled approach to ensuring so, is to re-
strict the aggregation set to contain at most direct neighbors
and the node itself. The following corollary is straightfor-
ward. We say that the distance of two nodes is the number
of edges in the shortest path connecting them.
Corollary 2. If each aggregation set contains at most di-
rect neighbors and the node itself, then there is an edge con-
necting two nodes in the coarse graph only if the distance
between them in the original graph is at most 3.

Proof. If there is an edge connecting j and j′ in the coarse
graph, then according to Theorem 1, there is an edge con-
necting i ∈ χ(j) and i′ ∈ χ(j′) in the original graph, for
some nodes i and i′. Then by the assumption that the ele-
ments of χ(j) are either j or j’s direct neighbors and simi-
larly for χ(j′), we know that j and j′ are connected by the
path {j, i, i′, j′}, which means that the distance between j
and j′ is at most 3.

Consequently, in what follows we will let S have the same
sparsity structure as the corresponding part of A + I . The
identity matrix is used to introduce self loops. An illustration
of the resulting coarse graph is given in Figure 1(c), with self
loops omitted.

Parameterization of S With the graph-theoretic interpre-
tation of S, we now parameterize it. The strategy consists of
the following computational steps. First, select coarse nodes
in a differentiable manner, so that the sparsity structure of S
is determined. Then, compute the nonzero elements of S.

The selection of coarse nodes may be done in several
ways, such as the top-k approach that orders nodes by pro-
jecting their feature vectors along a learnable direction (see,
e.g., Cangea et al. (2018); Gao and Ji (2019)). This ap-
proach, however, leverages only node features but not the
graph information. To leverage both, we apply one graph
convolution

α = sigmoid(ÂXWα) (2)
to compute a vector α ∈ Rn×1 that weighs all nodes (Lee,
Lee, and Kang 2019). Here, Â ∈ Rn×n is the normalized
graph adjacency matrix defined in graph convolutional net-
works (Kipf and Welling 2017), X ∈ Rn×d is the node
feature matrix, and Wα ∈ Rd×1 is a parameter vector.
The weighting necessitates using sigmoid (or other invert-
ible functions) rather than ReLU as the activation function.

For a coarsening into m nodes, we pick the top m val-
ues of α and list them in the sorted order. Denote by αs ∈
Rm×1 such a vector, where the subscript s means sorted and
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picked. We similarly denote by Âs ∈ Rn×m the column-
sorted and picked version of Â.

We let S be an overlay of the graph adjacency matrix with
the node weights αs. Specifically, define

S = `1-row-normalize[Âs � (1αTs )], (3)

where 1 means a column vector of all ones.
There are several reasons why S is so defined. First, S

carries the nonzero structure of Âs, which, following Corol-
lary 2, renders more likely a sparse coarse graph. Second,
the use of the normalized adjacency matrix introduces self
loops, which ensure that an edge in the coarse graph exists if
the distance is no more than three, rather than exactly three
(which is too restrictive). Third, because both Âs and αs
are nonnegative, the row normalization ensures that the total
edge weight of the graph is preserved after coarsening. To
see this, note that 1TAc1 = 1TSTAS1 = 1TA1.

Optimal Transport
The second ingredient of the proposed OTCOARSENING
uses optimal transport for unsupervised learning. Optimal
transport (Peyré and Cuturi 2019) is a framework that de-
fines the distance of two probability measures through op-
timizing over all possible joint distributions of them. If the
two measures lie on the same metric space and if the in-
finitesimal mass transportation cost is a distance metric,
then optimal transport is the same as the Wasserstein-1 dis-
tance. In our setting, we extend this framework for defining
the distance of the original graph G and its coarsened ver-
sion Gc. Then, the distance constitutes the coarsening loss,
from which model parameters are learned in an unsuper-
vised manner.

Optimal Transport Distance To extend the definition of
optimal transport of two probability measures to that of two
graphs, we treat the node features from each graph as atoms
of an empirical measure. The coarse node features result
from graph neural network mappings, carrying information
of both the initial node features and the graph structure.
Hence, the empirical measure based on node features char-
acterizes the graph and leads to a natural definition of graph
distance.

Specifically, let M be a matrix whose element Mij de-
notes the transport cost from a node i inG to a node j inGc.
We define the distance of two graphs as

Wγ(G,Gc) := min
P∈U(a,b)

〈P,M〉 − γE(P ), (4)

where P , a matrix of the same size as M , denotes the joint
probability distribution constrained to the space U(a, b) :=
{P ∈ Rn×m+ | P1 = a, PT1 = b} characterized by
marginals a and b; E is the entropic regularization (Wilson
1969)

E(P ) := −
∑
i,j

Pij(logPij − 1);

and γ > 0 is the regularization magnitude.
Through a simple argument of Lagrange multipliers, it

is known that the optimal Pγ that solves (4) exists and is

unique, in the form Pγ = diag(u)K diag(v), where u and
v are certain positive vectors of matching dimensions and
K = exp(−M/γ) with the exponential being element-wise.
The solution Pγ may be computationally obtained by us-
ing Sinkhorn’s algorithm (Sinkhorn 1964): Starting with any
positive vector v0, iterate

for i = 0, 1, 2, . . . until convergence,

ui+1 = a� (Kvi) and vi+1 = b� (KTui+1). (5)

Because the solution Pγ is part of the loss function to be
optimized, we cannot iterate indefinitely. Hence, we instead
define a computational solution P kγ by iterating only a finite
number k times:

P kγ := diag(uk)K diag(vk). (6)

Accordingly, we arrive at the k-step optimal transport dis-
tance

W k
γ (G,Gc) := 〈P kγ ,M〉 − γE(P kγ ). (7)

The distance (7) is the sample loss for training.

Parameterization of M With the distance defined, it re-
mains to specify the transport cost matrix M . As discussed
earlier, we model Mij as the distance between the feature
vector of node i fromG and that of j fromGc. This approach
on the one hand is consistent with the Wasserstein distance
and on the other hand, carries both node feature and graph
structure information.

Denote by GNN(A,X) a generic graph neural network
architecture that takes the graph adjacency matrix A and
node feature matrix X as input and produces as output
a transformed feature matrix. We produce the feature ma-
trix Xc of the coarse graph through the following encoder-
decoder-like architecture:

Z = GNN(A,X), Zc = STZ, Xc = GNN(Ac, Zc).
(8)

The encoder produces an embedding matrix Zc of the coarse
graph through a combination of GNN transformation and
aggregation ST , whereas the decoder mapsZc to the original
feature space so that the resulting Xc lies in the same metric
space as X . Then, the transport cost, or the metric distance,
Mij is the p-th power of the Euclidean distance of the two
feature vectors:

Mij = ‖X(i, :)−Xc(j, :)‖p2. (9)

In this case, the optimal transport distance is the p-th root of
the Wasserstein-p distance. The power p is normally set as
one or two.

Training and Downstream Use
With the technical ingredients developed in the preceding
subsections, we summarize the computational steps into Al-
gorithm 1, which is self explanatory.

After training, for each graph G we obtain a coarsening
sequence and the corresponding node embedding matrices
Zc for each graph in the sequence. These node embeddings
may be used for a downstream task. Take graph classifica-
tion as an example. For each node embedding matrix, we
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Algorithm 1 Unsupervised training: forward pass

1: for each coarsening level do
2: Compute coarsening matrix S by (2) and (3)
3: Obtain Ac and Xc by (1) and (8)
4: Obtain also node embeddings Zc from (8)
5: Compute transport cost matrix M by (9)
6: Compute k-step joint probability P kγ by (5) and (6)
7: Compute current-level loss W k

γ (G,Gc) by (7)
8: Set G← Gc, A← Ac, and X ← Xc

9: end for
10: Sum the loss for all coarsening levels as the sample loss

perform a global pooling (e.g., a concatenation of max pool-
ing and mean pooling) across the nodes and obtain a sum-
mary vector. We then concatenate the summary vectors for
all coarsening levels to form the feature vector of the graph.
An MLP is then built to predict the graph label.

Experiments
In this section, we conduct a comprehensive set of experi-
ments to evaluate the performance of the proposed method
OTCOARSENING. Through experimentation, we aim at an-
swering the following questions. (i) As an unsupervised hi-
erarchical method, how well does it perform on a down-
stream task, compared with supervised approaches and un-
supervised non-hierarchical approaches? (ii) In a multi-task
setting, how well does it perform compared with supervised
models trained separately for each task? (iii) Do the coarse
graphs carry the structural information of the original graphs
(i.e., are they meaningful)?

Setup
We perform experiments with the following data sets: PRO-
TEINS, MUTAG, NCI109, IMDB-BINARY (IMDB-
B for short), IMDB-MULTI (IMDB-M for short), and
DD. They are popularly used benchmarks publicly available
from Kersting et al. (2016). Except IMDB-B and IMDB-M
which are derived from social networks, the rest of the data
sets all come from the bioinformatics domain. Information
of the data sets is summarized in Table 1.

We gauge the performance of OTCOARSENING with
several supervised approaches. They include the plain

PROTEINS MUTAG NCI109
# Graphs 1,113 188 4,127
# Classes 2 2 2
Ave. # nodes 39.06 17.93 29.68
Ave. node degree 3.73 2.21 2.17

IMDB-B IMDB-M DD
# Graphs 1,000 1,500 1,178
# Classes 2 3 2
Ave. # nodes 19.77 13.00 284.32
Ave. node degree 9.76 10.14 5.03

Table 1: Data sets.

GCN (Kipf and Welling 2017) followed by a gloabl mean
pooling, as well as five more sophisticated pooling meth-
ods: SORTPOOL (Zhang et al. 2018), which retains the top-
k nodes for fixed-size convolution; DIFFPOOL (Ying et al.
2018b), which applies soft clustering; SET2SET (Vinyals,
Bengio, and Kudlur 2015), which is used together with
GRAPHSAGE (Hamilton, Ying, and Leskovec 2017) as a
pooling baseline in Ying et al. (2018b); GPOOL (Cangea
et al. 2018; Gao and Ji 2019), which retains the top-k nodes
for graph coarsening, as is used by GRAPH U-NET; and
SAGPOOL (Lee, Lee, and Kang 2019), which applies self-
attention to compute the top-k nodes. Among them, DIFF-
POOL, GPOOL, and SAGPOOL are hierarchical methods,
similar to ours. In addition, we also employ an ablation
model, i.e., a supervised version of our coarsening model
without using optimal transport distance as the loss func-
tion. This model is called OTCOARSENING-SUP, where we
remove the unsupervised learning phase and directly train
the coarsening model by using the prediction loss on train-
ing data.

Additionally, we take a simple unsupervised baseline.
Named GRAPHAE-UNSUPV, this baseline is a graph au-
toencoder that does not perform coarsening, but rather, ap-
plies GCN twice to respectively encode the node features
and decode for reconstruction. The encoder serves the same
purpose as that of the plain GCN and the decoder is needed
for training without supervised signals.

Experimentation Details
We evaluate all methods using 10-fold cross validation. For
training, we use the Adam optimizer with a tuned initial
learning rate and a fixed decay rate 0.5 for every 50 epochs.
We perform unsupervised training for a maximum of 200
epochs and choose the model at the best validation loss. Af-
terward, we feed the learned representations into a 2-layer
MLP and evaluate the graph classification performance.

The weighting vector α (cf. Equation (2)) used for
coarse node selection is computed by using 1-layer GCN
with activation function sigmoid ◦ square. That is, α =

sigmoid((ÂXWα)
2). The GNNs in Equation (8) for com-

puting the coarse node embeddings Zc and coarse node fea-
tures Xc are 1-layer GCNs. The power p in Wasserstein-p
(cf. Equation (9)) is fixed as 2. We use grid search to tune
hyperparameters: the learning rate is from {0.01, 0.001};
and the number of coarsening levels is from {1, 2, 3} for
the propoed method and {2, 3, 4} for the compared meth-
ods. The coarsening ratio is set to 0.5 for all methods.

We implement the proposed method and the graph au-
toencoder by using the PyTorch Geometric library, which is
shipped with off-the-shelf implementation of all other com-
pared methods.

The code is available at https://github.com/matenure/
OTCoarsening.

Graph Classification
Graph classification accuracies are reported in Table 2. OT-
COARSENING outperforms the compared methods in five
out of six data sets. Moreover, it improves significantly the
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Method PROTEINS MUTAG NCI109 IMDB-B IMDB-M DD
GCN 72.3±3.1 73.4±5.2 69.6±1.3 71.3±5.2 50.5±2.4 71.8±4.1

SET2SET 73.4±3.7 74.6±5.3 70.3±1.6 72.9±4.7 49.7±3.5 70.8±3.9

SORTPOOL 73.5±4.5 80.1±6.7 69.1±4.5 71.6±3.6 49.9±2.1 73.7±7.7

DIFFPOOL 74.2±3.2 84.5±7.3 71.7±2.8 74.3±3.5 50.3±2.8 73.9±3.5

GPOOL 72.2±3.1 76.2±9.0 72.4±2.2 73.0±5.5 49.5±3.2 71.5±4.7

SAGPOOL 73.3±3.1 78.6±6.4 73.1±2.4 72.2±4.7 50.4±2.1 72.0±4.2

GRAPHAE-UNSUPV 74.3±3.6 84.6±8.0 66.4±4.6 72.4±5.9 49.9±2.9 76.5±2.8

OTCOARSENING-SUP 73.6±3.0 84.4±6.8 68.6±1.8 73.6±4.7 50.2±3.9 74.2±3.3

OTCOARSENINGOTCOARSENINGOTCOARSENING 74.9±3.9 85.6±6.2 68.5±5.2 74.6±4.9 50.9±3.3 77.2±3.1

Table 2: Graph classification accuracy (in percentage).

accuracy on DD over all supervised baselines. Interestingly,
the supervised runner up is almost always DIFFPOOL, out-
performing the subsequently proposed GPOOL and SAG-
POOL. On the other hand, these two methods perform the
best on the other data set NCI109, with SAGPOOL taking
the first place. On this data set, OTCOARSENING performs
on par with the lower end of the compared methods. It ap-
pears low-performing, possibly because of the lack of use-
ful node features that play an important role in the optimal
transport distance. Our ablation model, OTCOARSENING-
SUP, is comparable to the best performance among all su-
pervised baselines on most datasets, but performs worse than
the final unsupervised model OTCOARSENING using opti-
mal transport.

Based on these observations, we conclude that hierarchi-
cal methods indeed are promising for handling graph struc-
tured data. Moreover, as an unsupervised method, the pro-
posed OTCOARSENING performs competitively with strong
supervised approaches. In fact, even for the simple unsuper-
vised baseline GRAPHAE-UNSUPV, it outperforms DIFF-
POOL on PROTEINS, MUTAG, and DD. This observation
indicates that unsupervised approaches are quite competi-
tive, paving the way for possible uses in other tasks.

Sensitivity Analysis
OTCOARSENING introduces parameters owing to the com-
putational nature of optimal transport: (a) the entropic regu-
larization strength γ; and (b) the number of Sinkhorn steps,
k. In Figure 2, we perform a sensitivity analysis and inves-
tigate the change of classification accuracy as these parame-
ters vary. One sees that most of the curves are relatively flat,
except the case of γ on NCI109. This observation indicates
that the proposed method is relatively robust to the parame-
ters of optimal transport. The curious case of NCI109 inher-
its the weak performance priorly observed, possibly caused
by the lack of informative input features.

The observation that performance is insensitive to the pa-
rameters does not contradict the computational foundation
of optimal transport. In the standard use, a transport cost M
is given and the optimal plan P is computed accordingly.
Hence, P varies with γ and k. In our case, on the other hand,
M is not given. Rather, it is parameterized and the param-
eterization carries over to the computational solution of P .
Thus, it is not impossible that the parameterization finds an
optimum that renders the loss (Equation (7)) insensitive to γ

Figure 2: Classification accuracy as parameters vary. Left:
Entropic regularization, γ; right: Sinkhorn steps, k.

and k. In other words, the optimization of Equation (7), with
respect to neither M nor P but the parameters therein, turns
out to be fairly stable.

Multi-Task Learning
We further investigate the value of unsupervised graph rep-
resentation through the lens of multi-task learning. We com-
pare three scenarios: (A) a single representation trained
without knowledge of the downstream tasks (method: OT-
COARSENING, GRAPHAE-UNSUPV); (B) a single repre-
sentation trained jointly with all downstream tasks (meth-
ods: GCN, SET2SET, SORTPOOL, DIFFPOOL, GPOOL, and
SAGPOOL, all suffixed with “-joint”); and (C) different
representations trained separately with each task (method:
DIFFPOOL-sep).

The data set is QM7b (Wu et al. 2018), which consists
of 14 regression targets. Following Gilmer et al. (2017), we
standardize each target to mean 0 and standard deviation 1;
we also use MSE as the training loss but test with MAE.
Table 3 reports the MAE and timing results.

One sees from Table 3 that in terms of regression error,
single unsupervised representation (A) significantly outper-
forms single supervised representations (B), whilist being
inferior to separate supervised representations (C). Separate
representations outperform single representations at the cost
of longer training time, because they need to train 14 sepa-
rate models whereas others only one. The timings for (B)
are comparable with that of (A). The timing variation is
caused by several factors, including the architecture differ-
ence and dense-versus-sparse implementation. DIFFPOOL is
implemented with dense matrices, which may be faster com-
pared with other methods that treat the graph adjacency ma-
trix sparse, when the graphs are small.
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Figure 3: Coarsening sequence for graphs from MUTAG. Left (magenta): OTCOARSENING. Right (orange): SAGPOOL.
Hollow nodes are coarse nodes.

Method MAE Time
(A) OTCOARSENING 0.6625 1296
(A) GRAPHAE-UNSUPV 0.6749 587
(B) GCN-joint 2.4225 2122
(B) SET2SET-joint 2.4256 2657
(B) SORTPOOL-joint 2.4408 2652
(B) DIFFPOOL-joint 2.4231 1100
(B) GPOOL-joint 2.4200 2117
(B) SAGPOOL-joint 2.4221 1874
(C) DIFFPOOL-sep 0.1714 15520

Table 3: Multi-task regression error and training time (in
seconds).

Qualitative Study
As discussed in the related work section, coarsening ap-
proaches may be categorized in two classes: clustering
based and node-selection based. Methods in the former class
(e.g., DIFFPOOL) coarsen a graph through clustering similar
nodes. In graph representation learning, similarity of nodes
is measured by not only their graph distance but also the
closeness of their feature vectors. Hence, two distant nodes
bear a risk of being clustered together if their input features
are similar.

On the other hand, methods in the latter class (e.g.,
GRAPH U-NET and SAGPOOL) use nodes in the original
graph as coarse nodes. If the coarse nodes are connected
based on only their graph distance but not feature vectors,
the graph structure is more likely to be preserved. Such is
the case for OTCOARSENING, where only nodes within a
3-hop neighborhood are connected. Such is also the case for
GRAPH U-NET and SAGPOOL, where the neighborhood is
even more restricted (e.g., only 1-hop neighborhood). How-
ever, if two coarse nodes are connected only when there is
an edge in the original graph, these approaches bear another

risk of resulting in disconnected coarse graphs.
Theoretical analysis is beyond scope. Hence, we conduct

a qualitative study and visually inspect the coarsening re-
sults. In Figure 3, we show a few graphs from the data set
MUTAG, placing the coarsening sequence of OTCOARS-
ENING on the left and that of SAGPOOL on the right for
comparison. The solid nodes are selected as coarse nodes.

For the graph on the top row, OTCOARSENING selects
nodes across the consecutive rings in the first-level coars-
ening, whereas SAGPOOL selects the ring in the middle.
For the graph in the middle row, both OTCOARSENING and
SAGPOOL select the periphery of the honeycomb for the
first-level coarsening, but differ in the second level in that
one selects again the periphery but the other selects the heart.
For the graph at the bottom row, OTCOARSENING preserves
the butterfly topology through coarsening but the result of
SAGPOOL is hard to comprehend.

Conclusion
Coarsening is a common approach for solving large-scale
graph problems in various scientific disciplines. How one
effectively selects coarse nodes and aggregates neighbors
motivates the present work. Whereas a plethora of coars-
ening methods were proposed in the past and are used to-
day, these methods either do not have a learning component,
or have parameters that need be learned with a downstream
task. In this work, we present OTCOARSENING, which is an
unsupervised approach. It follows the concepts of AMG but
learns the selection of the coarse nodes and the coarsening
matrix through the use of optimal transport. We demonstrate
its successful use in graph classification and regression tasks
and show that the coarse graphs preserve the structure of
the original one. We envision that the proposed idea may be
adopted in many other graph learning scenarios and down-
stream tasks.
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