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Abstract

The reinforcement learning (RL) framework formalizes the
notion of learning with interactions. Many real-world prob-
lems have large state-spaces and/or action-spaces such as
in Go, StarCraft, protein folding, and robotics or are non-
Markovian, which cause significant challenges to RL algo-
rithms. In this work we address the large action-space prob-
lem by sequentializing actions, which can reduce the action-
space size significantly, even down to two actions at the ex-
pense of an increased planning horizon. We provide explicit
and exact constructions and equivalence proofs for all quan-
tities of interest for arbitrary history-based processes. In the
case of MDPs, this could help RL algorithms that bootstrap.
In this work we show how action-binarization in the non-
MDP case can significantly improve Extreme State Aggrega-
tion (ESA) bounds. ESA allows casting any (non-MDP, non-
ergodic, history-based) RL problem into a fixed-sized non-
Markovian state-space with the help of a surrogate Marko-
vian process. On the upside, ESA enjoys similar optimality
guarantees as Markovian models do. But a downside is that
the size of the aggregated state-space becomes exponential in
the size of the action-space. In this work, we patch this issue
by binarizing the action-space. We provide an upper bound
on the number of states of this binarized ESA that is loga-
rithmic in the original action-space size, a double-exponential
improvement.

Introduction
The reinforcement learning (RL) setting can be described by
an agent-environment interaction (Sutton and Barto 2018).
The agent Π has an action-space A to choose its actions
from while the environment P reacts to the action by dis-
pensing an observation and a reward from the sets O and
R ⊆ R, respectively, see Figure 1. For simplicity, we as-
sume that these sets are finite and hence the rewards are
bounded. Even with these restrictions, the problem of RL
does not trivialize, i.e. the agent can not learn the optimal
behavior without further structure. Under a suitable defini-
tion of the “state” of environment, the resultant set of states
might be huge or even infinite (Powell 2011).

The problem of RL is plagued with the curse of dimen-
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Figure 1: The agent-environment interaction.

sionality. The sizes of an appropriately defined set of states1

and action-space play an important role in the choice of al-
gorithms, architectures and solution techniques used to solve
the task (Sutton and Barto 2018).

It is usually required that the set of states is relatively
small to make the problem of RL tractable (Lattimore and
Hutter 2014b). There are many ways to achieve such approx-
imations/abstractions, e.g. state aggregation (Li, Walsh, and
Littman 2006; Abel, Hershkowitz, and Littman 2016; Hut-
ter 2016), homomorphism (Majeed and Hutter 2019), lin-
ear function approximation (Bertsekas and Tsitsiklis 1996),
or neural networks (Mnih et al. 2015) just to name a few.
The usual assumption for such abstractions is that they try
to produce a Markovian representation of the environment,
which is known as a Markov Decision Process (MDP) (Hut-
ter 2009). In an MDP the most recent (abstract) observation
is sufficient to predict any future event2, but not all events
are equally valuable. Some events might not lead to a high
rewarding state and/or some distinctions are not really nec-
essary to perform well (McCallum 1995). For example, the
agent might end up experiencing two completely different
streams of observations with the same reward structure. An
algorithm which tries to produce a Markovian representation

1We prefer not to call the set of observations O the set of states.
This set becomes a set of states under strong assumptions, see Sec-
tion “Extreme State Aggregation” for more details on this distinc-
tion.

2An event is any set of action-observation-reward sequences.
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would try to make this “unnecessary” distinction.
A lot can be achieved in terms of the representation power

if an algorithm only makes “useful” distinctions, i.e. the
distinctions (or states) which respect the reward structure
(McCallum 1995; Hutter 2016; Majeed and Hutter 2019).
In some cases, such “useful” but non-Markovian abstrac-
tions reduce the effective state-space dramatically. Usually,
a smaller state-space facilitates faster learning (Strehl, Li,
and Littman 2009; Lattimore and Hutter 2014b).

The usual methods of state or action-space reductions ei-
ther (1) reduce the problem to a fixed size where the quality
of reduction deteriorates as the original problem becomes
more complicated, or (2) provide a problem-specific reduc-
tion which usually grows, albeit much slower, as the orig-
inal problem grows (Powell 2011). In Markovian abstrac-
tions the size of the state-space grows with the size of the
observation and reward spaces. For example, if an MDP ab-
straction produces states from some low-resolution images
then we need more states to handle high-resolution versions
of the input images because the high-resolution images need
a bigger transition matrix to predict the next image. How-
ever, it is perfectly plausible that the increased resolution
might not be “useful” to achieve better rewards.

To the best of our knowledge, extreme state aggrega-
tion (ESA), a non-MDP abstraction framework, is the only
method which provides a provable upper bound on the size
of required state-space uniformly3 for all problems (Hut-
ter 2016). However, a downside of ESA is that the size of
the aggregated state-space is exponential in the size of the
action-space, see Theorem 0.10. In this paper, we move the
research further in this direction. We provide a variant of
ESA that can help provide much more compact representa-
tions as compared to MDP abstractions. Our approach im-
proves the key upper bound on the size of the state-space in
the original ESA framework.

The key trick to achieve this improvement is to sequential-
ize the actions. Often A already has a natural vector struc-
ture Bd, e.g. real valued activators in robotics (B = R)
or (padded) words (B = {a, . . . , z, }), or more generally
B1 × . . . × Bd, where B denotes a finite set of decision
symbols. In this case, sequentialization is natural, but one
may further want to binarize B to Bd′ esp. for ESA (The-
orem 0.11). If actions are (converted to) B-ary strings, the
RL agent could execute the action “bits” sequentially with
fictitious dummy observations in-between.

The example in Figure 2 provides a naive way of sequen-
tializing the actions in an MDP. Apparently, it might seem
that such sequentialization of the action-space would be of
no help, as the state-space would blow up, and it is simply
shifting the problem from the actions to the states. However,
we prove that this can be avoided. Most importantly, the
universal upper bound on the effective state-space of ESA
remains valid. Our scheme of sequentializing the actions
achieves a double exponentially improved bound; compare
Theorem 0.11 with Theorem 0.10.

Along the way, we also establish some other key results,

3Which depends only on the size of the action-space, discount
factor and the optimality gap.
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Figure 2: A simple sequentialization example in an MDP.
To see how the actions sequentialized, consider an agent
which has to choose among four alternatives, e.g. A =
{a00, a01, a10, a11}. Let the agent receive a state signal s
from the environment. It first decides between a partition
of actions, say two actions each, {a00, a01} and {a10, a11}.
After it has decided on the bifurcation, the extended state
becomes sx, where x is the decision of the first stage. Now
the agent on this extended state sx makes its second deci-
sion to choose from the short-listed set of actions. This way,
the agent only selects among two alternatives at each stage
by tripling the effective state-space. In the figure, s′(sa) de-
notes the next state s′ reached from state s when the agent
takes action a, the filled circles represent the states of the
original MDP, and the squares denote the added states.

which are interesting and useful on their own. We pro-
vide explicit and exact constructions and equivalence proofs
for all quantities of interest for arbitrary history-based pro-
cesses, which are then used to double-exponentially im-
prove the previous ESA bound (Theorem 0.11). In the spe-
cial case of MDPs, we show that through a sequentialized
scheme (of augmenting observations with partial decision
vectors) the resultant “sequentialized process” preserves the
Markov property (Theorem 0.4), which should help RL al-
gorithms that bootstrap, though demonstrating or proving
this is left for future work. Moreover in Theorem 0.8, we
prove that the stipulated sequentialization scheme preserves
near-optimality, i.e. a near-optimal policy of the sequential-
ized process is also near-optimal in the original process.

Notation
This paper is notation heavy, but we use a consistent notation
throughout. The set of natural numbers is N := {1, 2, . . . },
B := {0, 1} is a set of binary symbols, and R is the set
of reals. We denote by 4(X) the set of probability distri-
butions over any set X . The concatenation of two objects
(or strings) is expressed through juxtaposition, e.g. xy is a
concatenation of x and y. We express a finite string with
boldface, e.g. x = x1x2 . . . x|x| where | · | is used to de-
note the length or cardinality of the object. The individual
members of a string or a vector may be accessed as xi = xi
for any i ≤ |x|. A substring of length i ≤ |x| is denoted
as x≤i = x1x2 . . . xi and x<i = x1x2 . . . xi−1. We inter-
changeably use the same notation for vectors and strings,
e.g. x ∈ Bd is a d-dimensional B-ary decision vector which
may also be expressed as a string. This choice simplifies the
notation and saves redundant variables. If a variable is time-
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indexed, we express the continuation of the variable with a
prime on it, e.g. if x := xt then x′ := xt+1 where := denotes
equality by definition. A small scaler value (usually the error
tolerance) is denoted by ε > 0. A different member of the
same set is expressed with a dot on it, e.g. x, ẋ ∈ B. We
express the fact of x being a prefix of y by x v y or y w x.
Moreover, xy represents a vector that is point-wise joined,
i.e. xyi := xiyi.

Problem Setup
This section provides the formal foundations for us to build
up to the main result of this work. We formulate the problem
of RL from the ground up without starting from the usual
Markovian assumption (Sutton and Barto 2018). We formal-
ize a history-based RL setup. After formalizing the (general)
RL problem, we set up the scheme of sequentializing the
decision-making process to reduce the effective action-space
for the agent. Especially for our main result about ESA, we
sequentialize the action-space to binary decisions.

Although this work assumes very little about the RL
problem, we assume that the size of the action-space is fi-
nite and |A | = |B|d for some d ∈ N. The latter as-
sumption is not restrictive, as we can extend the set of ac-
tions by repeating some of the actions. It is important to
note that these repeated actions should be labeled distinctly.
This way we can have a bijection between the original (ex-
tended) action-space and the sequentialized one. For exam-
ple, let an action set be {a1, a2, a3, a4, a5}. One possible
extended set, with repetition, for |B| = 2 and d = 3 is
A := {a1, a2, a3, a4, a5, a51

, a52
, a53
}. Where, the actions

a5i for i ≤ 3 are functionally the same as a5, i.e. taking a5

or any a5i action has the same effect, but they are labeled
distinctly.

Note that continuous action-spaces could be approxi-
mately sequentialized/binarized by using the binary expan-
sion of reals to some desired precision, say δ. Our main
bound will only depend logarithmically on δ.

General Reinforcement Learning
We consider a general reinforcement learning (GRL) setup
where the agent keeps the complete history of interaction
(Hutter 2009). The (infinite4) interaction produces an infinite
history. Recall that O,R and A represent some finite sets
of observations, rewards and actions, respectively. This also
implies that the rewards are bounded. The set of all finite
histories5 is denoted by

H :=
∞⋃
t=1

O ×R ×A × . . .× O ×R ×A︸ ︷︷ ︸
(t−1)−step interactions

×O ×R

(1)

4For simplicity, we assume the interaction never stops. We do
not consider the case where the agent or the environment can stop
responding. It complicates the modeling beyond the scope of this
work.

5Note that this set (of underlying “state” space) is (countably)
infinite.

which is used to express most of the quantities in our setup,
e.g. the environment, agent, and value functions. Note that
the history set H does not contain the empty history. This
is a design choice we make to be consistent with the stan-
dard RL setup (Sutton and Barto 2018) where the initial state
(in our case the initial observation and reward) is chosen by
some “initial” distribution.

Formally, the environment P is a (conditional) probability
function such that P : H × A → 4(O × R). Similarly,
the agent is also expressible as a (conditional) distribution on
the action-space, i.e. Π : H →4(A ). For a fixed policy Π
the expected discounted future sum of rewards is the value
of the policy. At any history h ∈ H and action a ∈ A the
action-value function (or Q-function) is expressed as

QΠ(h, a) :=
∑
o′r′

P (o′r′|ha)
(
r′ + γV Π(hao′r′)

)
(2)

where V Π(h) :=
∑
aQ

Π(h, a)Π(a|h) is the value function
of Π and 0 ≤ γ < 1 is the discount factor. Equation (2) is
known as the Bellman equation (BE). The optimal behavior
(or policy) is the one which achieves the maximum value
for all histories, i.e. Π∗(h) :∈ arg maxΠ V

Π(h). The op-
timal value (and action-value) functions, V ∗ := V Π∗ and
Q∗ := QΠ∗ , of this optimal policy satisfy the following
optimal Bellman equation (OBE) (Hutter 2016; Sutton and
Barto 2018).

Q∗(h, a) :=
∑
o′r′

P (o′r′|ha) (r′ + γV ∗(hao′r′)) (3)

where V ∗(h) := maxaQ
∗(h, a). The agent defined in this

sub-section works with the original action-space A and
keeps the histories from H . In the next sub-section, we for-
mulate another agent which only works in the “sequential-
ized” action-space, i.e. it takes decisions in a sequence of
B-ary choices, and responds only to the histories generated
by this B-ary interaction, see Figure 3. In the extreme case,
this agent may only take binary decisions by sequentializing
the action-space to binary sequences, i.e. B = B.

Sequential Decisions
We want to transform the action-space into a sequence of B-
ary decision code words, which are decided sequentially. To
map the actions between the original action-space and the
sequentialized decision-space, we define a pair of encoder
and decoder functions. Let C be any encoding function that
maps the actions to a B-ary decision code of length d, i.e.
C : A → Bd. A decoder function D : Bd → A sends the
B-ary decision sequences generated by C back to the ac-
tions in the (original) action-space. In this work, the choices
ofC andD do not matter6 as long as they are bijections such
that D(C(A )) = A .

This sequentialization of the action-space changes the in-
teraction history. The generated histories are no longer mem-
bers of H . The goal of this paper is to argue that an agent

6The choice could matter in a practical implementation of such
agents. For example, a clever choice of such functions might pro-
duce sparse B-ary decision sequences for the optimal actions,
hence it may facilitate in learning such optimal B-ary decision se-
quences.
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Figure 3: The agent-environment interaction through the
sequentialization scheme. Note that the sequentialized-
environment block (or a B-ary “mock”) manages two dif-
ferent time-scales t and k. It is simply a buffer block which
knows (de)coders C and D (see text for details). It buffers
the input B-ary actions and dispatches the buffered observa-
tion and reward. Once a complete B-ary decision sequence
is produced by the agent the B-ary mock decodes the en-
coded actions to the original environment to continue the in-
teraction loop. We can consider this sequentialized environ-
ment as a “middle layer” between the agent and the original
environment.

can still work with the sequentialized histories only. The
agent can plan, learn and interact with the environment using
B-ary actions and keeping sequentialized histories. Hence,
the agent can be agnostic to the original action-space and
with the state provided through an appropriate abstraction it
can only take B-ary decisions at every time step, see Fig-
ure 3.

We construct a history transformation function which
maps the original histories from H to some sequentialized
histories in H̆ , where

H̆ :=
∞⋃
t=1

O ×R ×B × . . .× O ×R ×B︸ ︷︷ ︸
(t−1)−step interactions

×O ×R

(4)

It is worth noting that H̆ does not (directly) contain any
information about A , cf. Equation (1). The agent experienc-
ing histories from this set would not be aware of A .

Definition 0.1 (History transformation function). A history
transformation function is expressed with g : H → H̆ . The
map is recursively defined for any history h, action a, next
observation o′ and next reward r′ as

g(hao′r′) := g(h)x1or⊥x2or⊥ . . .xdo
′r′ and g(e) := e

(5)
where x := C(a), o is the last observation of the history h, e
denotes the “initial” history7, and r⊥ is any fixed real-value.

7The initial history e ∈ O ×R is similar to the initial state in

In this work, we assume8 that r⊥ ∈ R and r⊥ = 0.
In the above construction, we chose to repeat the last ob-

servation o in between the real interactions with the environ-
ment. This is not the only possible choice, we can choose a
dummy observation o⊥ ∈ O instead without affecting the
claims. For brevity, we define o and r⊥ as d-dimensional
constant vectors of o and r⊥, respectively. These vectors are
then “welded” with x to succinctly replace x1or⊥ . . . xior⊥
with xor⊥≤i. Note that we do not sequentialize the obser-
vations. It can be done, but we believe it is not useful in any
way.

However, if the original processP is an MDP, i.e. the most
recent observation is the state of P , then there is another
interesting option possible for o⊥: extend the observation
space O with O × ∪d−1

i=0 Bi =: Õ , and let the B-ary mock
dispatch an appropriate observation at every partial B-ary
decision vector x<i as:

õ⊥ ··= (o,x1,x2, . . . ,xi−1) ∈ Õ (6)

It is not hard to show that with this sequentialization
scheme the resultant sequentialized decision process is also
an MDP over Õ , see Theorem 0.4. By doing so, we end up
with a state-space of size |Õ|= |O|(|A | − 1) ≤ |O ×A |.
It is clear that this recasting of the original problem might
not be very helpful for some Monte-Carlo like tree search
methods, however, it might significantly improve the perfor-
mance of some temporal-difference like algorithms,, e.g. Q-
learning (Watkins and Dayan 1992), when applied to huge
action-spaces.

Note that g is injective, but it may not be a bijection. There
are many sequentialized histories τ ∈ H̆ which are not
mapped by g, i.e. there does not exist any history in H such
that τ = g(h). For such sequentialized histories we define
g−1(τ) := ⊥, which formally allows us to talk about g−1

without worrying about it being undefined on some argu-
ments. The choice of this definition is not important. As a
matter of fact, there is no particular significance of the sym-
bol ⊥. What makes this choice insignificant is the fact that
the environment does not react until the agent has taken d
B-ary actions. All realizable histories not covered by g are
such “partial” sequentialized histories where the actual en-
vironment does not react. Note that the rewards of the se-
quentialized setup are zero (r⊥ := 0) unless the sequen-
tialized history length is a multiple of d, i.e. a “complete”
sequentialized history. See Figure 4 for an example sequen-
tialized/binarized setup for B = B and d = 2.

Any agent which interacts with the environment through
this sequentialized scheme would effectively experience the
following sequentialized environment.
Definition 0.2 (Sequentialized environment). For any B-
ary action x ∈ B, sequentialized history τ ∈ H̆ , and any
partial extension xor⊥<i for i ≤ d the probability of re-
ceiving o′ and r′ as the next observation and reward is as

the standard RL. It is dispatched by environment without any input
at the start.

8This assumption is not much of a restriction, if r⊥ /∈ R then
we can extend the reward space by R ∪ {r⊥}.
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Figure 4: A simple sequentialization/binarization example
in a deterministic history-based process. The B-ary/binary
decisions are on the edges. For brevity, we do not represent
o⊥ and r⊥ in the figure. For example, it should be apparent
that τ1o⊥r⊥ ≡ τ1. The circles represent complete histories
while the squares indicate partial histories.

follows:

P̆ (o′r′|τxor⊥<ix)

:=


P (o′r′|ha) if τxor⊥<ixo

′r′ = g(hao′r′)

1 if o′r′ = or⊥
and g−1(τxor⊥<ixo

′r′) = ⊥
0 otherwise

(7)

where P is the actual environment.

As highlighted before, the history h can not be empty, so
the above definition is well-defined.

The next step is to define the (action) value functions for
this sequentialized agent-environment interaction. Let Π̆ be
a policy such that Π̆ : H̆ → 4(B). Then, we define
the (action) value functions similar to the original agent-
environment interaction case. For any τ ∈ H̆ and x ∈ B,
the action-value function is defined as

Q̆Π̆(τ, x) :=
∑
o′r′

P̆ (o′r′|τx)
(
r′ + λV̆ Π̆(τxo′r′)

)
(8)

where V̆ Π̆(τ) :=
∑
x∈B Q̆Π̆(τ, x)Π̆(x|τ) and λ is the dis-

count factor of this sequentialized problem. Similar to the
original optimal (action) value functions, Q̆∗ and V̆ ∗ de-
note the optimal (action) value functions of the sequential-
ized problem. The discount factor λ plays an important role
in trading off the size of the action-space with the planning
horizon. Recall that the size of the original action-space is
|A | = |B|d. Therefore, if the agent has to make d B-ary
decisions for each original action the discount factor after d
B-ary actions should be γ, i.e. λd = γ. This implies that
λ = γ1/d < 1 as γ < 1 and d <∞.

This completes the problem setup. We have defined an
agent Π̆ which only makes B-ary decisions and reacts to the
sequentialized histories, see Figure 3. As expected, the set
of sequentialized histories H̆ is blown out in comparison
with H . However, in the later sections, we show that, under
certain non-Markovian abstractions of either H or H̆ , this
expansion is not “harmful”.

Sequentialized Processes and Values
In this section we formally define the sequentialized pro-
cess and related value functions. But first we need a cou-
ple of important quantities to state our main results. For
any B-ary vector x ∈ Bi where i ≤ d, we define
A (x) := {a ∈ A : x v C(a)} as a restricted set of
actions. Moreover, for any history h, an action-value func-
tion maximizer on this restricted set is defined as Π∗(h,x) ∈
arg maxa∈A (x)Q

∗(h, a).
We start off the section by noting an important relation-

ship between the sequentialized process and the original pro-
cess.
Proposition 0.3 (Sequentialized Process). For any o′ ∈
O, r′ ∈ R, h ∈ H and D(x) =: a ∈ A , the following
relationship holds between P̆ and P :

P̆ (o′r′|g(h)xor⊥<dxd) = P (o′r′|ha) (9)

Proof. The proof trivially follows from Definition 0.2 by
evaluating the definition at i = d with D(x<dxd) = a.

When the original process is an MDP then there exists a
sequentialization scheme such that the sequentialized pro-
cess is also Markovian.
Theorem 0.4 (Sequentialization preserves Markov prop-
erty). If P is an MDP over O , and the observations from
the B-ary mock are Õ ··= O × ∪d−1

i=0 Bi, then P̆ is also an
MDP over Õ .

Proof. In the case of augmenting the observation space, the
definition of P̆ becomes slightly more verbose than Defini-
tion 0.2 as o⊥ is different for each partial history as defined
in Equation (6).

P̆ (õ′r′|τxõr⊥<ix)

:=


P (o′r′|ha) if τxõr⊥<ixõ

′r′ = g(hao′r′)

1 if õ′r′ = ox<ixr⊥
and g−1(τxõr⊥<ixõ

′r′) = ⊥
0 otherwise

(10)

for any i ≤ d, õ, õ′ ∈ Õ , and o ∈ O is the most recent ob-
servation in h. At any h the sufficient information is o, so
P (o′r′|ha) ≡ P (o′r′|oa). Therefore, from the above (ex-
panded) definition of P̆ , it is clear that:

P̆ (õ′r′|τxõr⊥<ix) ≡ P̆ (õ′r′|ox<ix) = P̆ (õ′r′|õx)

hence proves the proposition.

The following proposition proves that the action-values of
the “partial” histories of the sequentialized problem are re-
lated. This fact later helps us to show that these action-value
functions respect the Q-uniform structure of the original en-
vironment.
Proposition 0.5 (Q̆∗max-relationship). For any sequential-
ized history τ ∈ H̆ such that g−1(τ) ∈ H , the following
holds

max
x∈B

Q̆∗(τ, x) = λd−1 max
x∈Bd

Q̆∗(τxor⊥<d,xd) (11)
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Proof. The proof is straight forward. We successively apply
the definition of Q̆∗.

max
x1∈B

Q̆∗(τ, x1)

= max
x1∈B

∑
o′r′

P̆ (o′r′|τx1)(
r′ + λ max

x2∈B
Q̆∗(τx1o

′r′, x2)

)
(a)
= λ max

x1∈B
max
x2∈B

Q̆∗(τx1or⊥, x2)

... (continue unrolling for d− 1-steps)

= λd−1 max
x∈Bd

Q̆∗(τxor⊥<d,xd) (12)

where (a) follows from the definition of P̆ and the fact that
r′ = r⊥ = 0 when P̆ 6= 0.

Now, using Proposition 0.5 we can prove a relationship
between the action-value functions of the actual environ-
ment and the sequentialized environment.

Lemma 0.6 (Q̆∗ x-relationship). For any history h with the
corresponding sequentialized history τ = g(h) and B-ary
decision vector x ∈ Bd, the following holds for any i ≤ d.

Q̆∗(τxor⊥<i,xi) = γ
d−i
d Q∗(h,Π∗(h,x≤i))

Proof. Before we prove the general result, we show that the
result holds for i = d, i.e. the sequentialized problem has
same optimal action-values at the “real” decision steps. Note
that Π∗(h,x≤d) = D(x). Let x := C(a) and τ := g(h).
Using the fact that r⊥ = constant = 0, we get

fr⊥(h, a)

:= Q̆∗(τxor⊥<d,xd)

(a)
=
∑
o′r′

P̆ (o′r′|τxor⊥<dxd)(
r′ + λmax

x′
Q̆∗(τxor⊥<dxdo

′r′, x′)
)

(b)
=
∑
o′r′

P (o′r′|ha)(
r′ + λmax

x′
Q̆∗(τxor⊥<dxdo

′r′, x′)
)

(c)
=
∑
o′r′

P (o′r′|ha) (r′

+λd max
x′∈Bd

Q̆∗(τxor⊥<dxdo
′r′xor⊥

′
<d,x

′
d)

)
(d)
=
∑
o′r′

P (o′r′|ha)

(
r′ + γ max

a′∈A
fr⊥(hao′r′, a′)

)
(13)

where (a) is just Equation (8) with the optimal policy, (b)
follows by Proposition 0.3, (c) is given by Proposition 0.5,
(d) is true by rearranging the argument, the definition of fr⊥
and by using the relation λd = γ. Note that Equation (13)

is the OBE of the original problem, see Equation (3). The
solution of the OBE is unique (Lattimore and Hutter 2014a),
hence fr⊥ is indeed Q∗.

Having proved the claim for i = d, we show that it also
holds for any i < d.

Q̆∗(τxor⊥<i,xi)

(a)
=
∑
o′r′

P̆ (o′r′|τxor⊥<ixi)(
r′ + λmax

xi+1

Q̆∗(τxor⊥<ixio
′r′, xi+1)

)
(b)
= λmax

xi+1

Q̆∗(τxor⊥<ixior⊥, xi+1)

... (continue unrolling for d− i− 1-steps)

= λd−i max
xi+1

. . .max
xd

Q̆∗(τxor⊥<ixi

or⊥xi+1or⊥ . . . xd−1or⊥, xd)

(c)
= λd−i max

a∈A (x≤i)
Q∗(h, a) (14)

where, again (a) is Equation (8) with the optimal policy, (b)

follows from the definition of P̆ and r⊥ = 0, and (c) is
true from the fact that the claim holds for i = d and the
maximum is over the restrictive set of actions.

What we have proved so far is that the sequentialization
scheme produces action-value functions which (at the “par-
tial” histories) are rescaled versions of the original action-
value function. They agree with the original Q∗ at the deci-
sion points (at the “complete” histories) where the sequen-
tialized policy Π̆ completes an action code.

We also show that a similar relationship as proved in
Lemma 0.6 holds for a fixed policy Π̆. However, we use a
different proof method for the following lemma. Note that
Π̆ induces a policy Π̄ on the original environment, which
can trivially be expressed as follows:

Π̄(a|h) :=
d∏
i=1

Π̆(xi|τxor⊥<i) =: Π̆(x|τ) (15)

for any a = D(x) and τ = g(h).

Lemma 0.7 (Q̆Π̆ x-relationship). For any arbitrary policy
Π̆ the following relationship is true:

Q̆Π̆(τxor⊥<d,xd) = QΠ̄(h,D(x)) (16)

for any history τ = g(h) and x ∈ Bd.

Proof. Before we prove the main result of the lemma, we
show that the following relationship holds for the value-
functions of the sequentialized and the original environment:

V Π̆(τ) = λd−1V Π̄(h) (17)

for any τ = g(h). We use a different argument than
Lemma 0.6 to prove the above statement. Lets imagine the
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sequentialized environment is at the history τ = g(h).
The agent starts to follow the policy Π̆. The following is
the (expected-reward, discount-factor) sequence it generates
from this history.

(0, λ0), (0, λ1), . . . , (0, λd−2), (r̄, λd−1),

(0, λd), (0, λd+1), . . . , (0, λ2d−2), (r̄′, λ2d−1),

(0, λ2d), . . .

where r̄ is the expected reward. The sum of the reward part
of the above sequence returns V̆ Π̆(τ). Now, if we re-scale
the discount part of the above sequence by λd−1 we get
V Π̄(h) as the sum of the reward part.

(0, λ1−d), (0, λ2−d), . . . , (0, λ−1), (r̄, λ0),

(0, λ1), (0, λ2), . . . , (0, λd−1), (r̄′, λd),

(0, λd+1), . . .

which proves Equation (17) when λd = γ. Now, let a :=
D(x).

QΠ̆(τxor⊥<d,xd)

=
∑
o′r′

P̆ (o′r′|τxor⊥<dxd)
(
r′ + λV Π̆(τxor⊥<dxdo

′r′)
)

(a)
=
∑
o′r′

P (o′r′|ha)
(
r′ + λV Π̆(τxor⊥<dxdo

′r′)
)

(17)
=
∑
o′r′

P (o′r′|ha)
(
r′ + λdV Π̄(hao′r′)

)
=
∑
o′r′

P (o′r′|ha)
(
r′ + γV Π̄(hao′r′)

)
= QΠ̄(h,D(x))

where (a) is due to Proposition 0.3.

The following theorem proves the usefulness of our se-
quentialization framework. We show that the optimal policy
of the sequentialized environment is also optimal in the orig-
inal environment when it is lifted back using the decoding
function D.

Theorem 0.8 (Sequentialization preserves ε-optimality).
Any λd−1ε-optimal policy of the sequentialized environment
is ε-optimal in the original environment.

Proof. Let Π̆ be an ε′-optimal policy of the sequentialized
environment, where ε′ := λd−1ε. It implies the following:

V̆ ∗(τxor⊥<i)− V̆ Π̆(τxor⊥<i) ≤ ε′ (18)

for any complete sequentialized history τ = g(h) and x ∈
Bi−1 where i ≤ d. Especially, we are interested in the case
when i = 1, i.e. values at the complete histories.

V̆ ∗(τ)− V̆ Π̆(τ) ≤ ε′ (19)

With simple algebra, we can show that the following rela-
tionship holds for the optimal policies of the sequentialized

and original processes:

V̆ ∗(τ)
(a)
= max

x
Q̆∗(τ, x)

(b)
= λd−1 max

x∈Bd
Q̆∗(τxor⊥<d,xd)

(c)
= λd−1 max

x∈Bd
Q∗(h,D(x)) = λd−1V ∗(h) (20)

where (a) is the definition of the value function, (b)
holds due to Proposition 0.5, and (c) is true by applying
Lemma 0.6 for i = d.

Now, by simply using Equation (17) and Equation (20),
we can prove the claim.

V ∗(h)− V Π̄(h)
(a)
= λ1−d

(
V̆ ∗(τ)− V̆ Π̆(τ)

) (19)
≤ ε (21)

for any τ = g(h), where (a) is due to Equation (17) and
Equation (20).

We are done formally defining the setup. In the next sec-
tion we put everything together under the context of ESA to
establish the validity of our sequentialization setup.

Extreme State Aggregation
In the previous sections, we formalized the GRL problem
with a sequentialized action-space. A GRL agent keeps the
history of its interaction to decide the next action. The his-
tory grows with time but even worse is that, without more as-
sumptions and/or abstractions, no history ever repeats (Hut-
ter 2009). This is a unique characteristic of the history-based
setup which sets it apart from the standard RL (Sutton and
Barto 2018). It enables the GRL framework to cover from
the extreme case of unique histories to the most restrictive
scenarios of bandits. However, without abstractions, a GRL
agent which assumes every history is unique is more of a
theoretical artifact than a realizable algorithm. It is critical
to note that our sequentialization scheme results in just like
any other GRL agent. It also requires an abstraction map (or
further structural assumptions) to provide an implementable
algorithm. Usually, one starts by assuming some structure
on the history set(s). After reviewing some, we will argue
against all of them.

On one extreme we have unique histories and on the other
end, typically, the environment distribution is assumed to be
Markovian, i.e. for any h and a, P (o′r′|ha) ≡ P (o′r′|oa)
for all o′r′ where o is the most recent observation in h (Sut-
ton and Barto 2018). This means that histories with the same
most recent observation are members of the same class (or
state). This assumption provides a lot of structure on H .
The value functions become functions of the most recent
observations. Note that Hutter (2016) defines the Markovian
assumption directly on histories, which is a bit weaker than
what we have stated above.

Unfortunately, the Markovian assumption is too strong to
be used in many real-world problems. We do not interact
with the world based on just our recent observations. As gen-
eral agents, we keep “relevant” historical events in memory
to plan better in the future, sometimes optimally. Apart from

8880



some “toy” examples and (well-defined) games (Mnih et al.
2015; Silver et al. 2016, 2018), this assumption demands
too much structure on the history space. So, what other as-
sumption can we make? We can keep the Markovian struc-
ture but can weaken the assumption, significantly, by assum-
ing that the agent is not able to observe the state directly.
The agent may require a sufficiently long history of inter-
action to discern the hidden Markovian state of the environ-
ment (Kaelbling, Littman, and Cassandra 1998). The class of
problems this assumption models is known as partially ob-
servable Markov decision problems (POMDP). Almost all
problems we care about can be modeled as POMDPs. How-
ever, POMDP solution methods are very demanding and the
optimal behavior is not guaranteed to be learnable in gen-
eral (Pendrith and McGarity 1998). We do not address this
non-MDP class any further.

We focus on other important quantities in GRL formula-
tion, e.g. Π∗, V ∗, and Q∗, and make no direction assump-
tion on P . This has been a subject of many works; Li,
Walsh, and Littman (2006); Abel, Hershkowitz, and Littman
(2016) considered a unified abstraction framework by map-
ping states similar in value, Hutter (2016) subsumed the pre-
vious work by considering the GRL setup, and Majeed and
Hutter (2019) extended the work to state-action abstractions.
The value functions provide a natural criteria to group his-
tories. The resultant structure can be non-Markovian. Such
non-MDP abstractions have many benefits over Markovian
reductions. The resultant state-space (∼= the set of groups of
histories) can be significantly smaller with these abstractions
than the Markovian counterparts. One advantage of using
such abstractions, as compared to POMDPs, is the guaran-
tee of the optimal behavior being a function of states, which
helps the learning in many problems that were traditionally
not considered learnable (Majeed and Hutter 2018).

However, the most remarkable aspect of such non-MDP
abstractions is that there may exist an upper bound on the
required number of states uniformly for any problem, as it is
the case in ESA (Hutter 2016). The idea is to group histo-
ries together which have similar optimal action-values Q∗.
Since Q∗ is a bounded real function (which is the case as
R is bounded and the future rewards are geometrically dis-
counted), we can potentially upper bound the required num-
ber of states by lumping together histories by discretization
of the action-value function. In this work, we are primarily
interested in non-MDP abstractions of the following type.
Definition 0.9 (ε-Q-uniform abstraction). An abstraction
function φ : H → S is an ε-Q-uniform abstraction if for
any h, ḣ ∈H and all a ∈ A we have(

φ(h) = φ(ḣ)
)

=⇒
∣∣∣Q∗(h, a)−Q∗(ḣ, a)

∣∣∣ ≤ ε
where S is the set of states9 of the abstraction.

In ESA, the agent’s policy is (constrained to be only)
a function of the states. Although these states do not ex-
hibit Markovian dynamics, the agent can “pretend” that

9We consider a finite abstract set of states, but the underlying
set of states (∼= history-space) is (allowed to be) infinite. Note also
that we consider approximate Q-uniform aggregations which result
into a finite abstract state.

the abstract process is Markovian. This structure provides
a surrogate-MDP whose optimal policy is ε-optimal in the
original environment.

The ε-Q-uniform, non-MDP abstractions lead to the fol-
lowing important result due to Hutter (2016). We only state
the result without a proof for the closure of exposition, see
Hutter (2016) for more details about ESA and proofs.

In the following theorems we assume that the rewards are
bounded in the unit interval, i.e. R ⊆ [0, 1]. This is done
for brevity, and it is not a necessary condition. The rescal-
ing of the rewards does not affect the decision-making pro-
cess in (G)RL. In general, let the range of the rewards be
R := max R − min R. Then, the scalars in the nomina-
tors of Theorems 0.10 and 0.11 are replaced by 2R and 4R2

respectively.
Theorem 0.10 (ESA(Hutter 2016, Theorem 11)). For every
environment P there exists a reduction φ and a surrogate-
MDP whose optimal policy10 is an ε-optimal policy for the
environment. The size of the surrogate-MDP is bounded
(uniformly for any P ) by11

|S | ≤
(

2

ε(1− γ)3

)|A |
This is a powerful result, but it suffers from the exponen-

tial dependence on the action-space size. We now put our ac-
tion sequentialization framework to work and dramatically
improve this dependency from exponential to only a loga-
rithmic dependency in |A |.

So far, we have considered an arbitrary B-ary decision set
to sequentialize the action-space. However, in the following
theorem we go to the extreme case of sequentializing the
action-space to binary decisions (B = B) to squeeze out the
maximum improvement possible through the framework.
Theorem 0.11 (Binary ESA). For every environment there
exists an abstraction and a corresponding surrogate-MDP
for its binarized version (B = B) whose optimal policy is
ε-optimal for the true environment. The size of the surrogate-
MDP is uniformly bounded for every environment as

|S | ≤ 4d1− γ + log2|A |e6

γ2ε2(1− γ)6

Proof. Consider the agent that is interacting with the se-
quentialized/binarized environment P̆ . By Theorem 0.8, we
know that a near-optimal policy of this sequentialized en-
vironment is also near-optimal in the original environment.
Now, if we use ESA on the binarized problem and get
an ε′-optimal policy through the surrogate-MDP by Theo-
rem 0.10, we are sured to be ε-optimal in the original envi-
ronment P as explained above. Additionally, the size of the
state-space is bounded as

|S |
Theorem 0.10

≤
(

2

ε′(1− λ)3

)2

=
4

ε′2(1− λ)6
(22)

10See Hutter (2016) of how to learn this policy, the surrogate-
MDP, Q∗, and φ.

11The 2 instead of a 3 in the original theorem is a trivial improve-
ment by removing the grid point at 0 in the construction.
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where λ is the discount factor of the sequentialized problem.
Next, we upper bound Equation (22) by using the fact that
λd = γ. Let δ := 1− γ < 1. So,

1− λ = 1− (1− δ)1/d = 1− e
ln(1−δ)

d

(a)

≥ 1− 1

1− ln(1− δ)/d
(b)

≥ 1− 1

1 + δ/d

=
δ

d+ δ
=

1− γ
d+ 1− γ

(23)

where (a) holds due to 1
e−α ≤

1
1−α , (b) is true by using the

fact that δ < 1, hence ln(1 − δ) ≤ −δ. Therefore, using
Equation (22), Equation (23), and ε′ = λd−1ε ≥ λdε = γε
we get,

|S | ≤ 4

ε′2(1− λ)6
≤ 4(1− γ + d)6

γ2ε2(1− γ)6
(24)

which proves the claim.

Superficially, it might seem that we have simply replaced
the original discount factor with a larger value. But, it is not
the case. If we simply scaled the discount factor (without se-
quentializing the actions) then the resulting bound would in-
deed deteriorate, see Theorem 0.10, but on the contrary, with
sequentialization/binarization and our analysis the bound
(dramatically) improves.

Usually in RL the discount factor γ is close to 1. In that
case, the bound in Theorem 0.11 can be tightened further as:

|S | . 4dlog2|A |e6

ε2(1− γ)6
(25)

which agrees with the bound in Theorem 0.10 for the case
when |A | = 2, i.e. when the original problem already has a
binary action-space.

Conclusion & Outlook
This work contributes to the study of the GRL problem. We
have provided a reduction to handle large state and action
spaces by sequentializing the decision-making process. This
helped us improve the upper bound on the number of states
in ESA from an exponential dependency in |A | to logarith-
mic. The gain is double exponential in terms of the action-
space dependence at no other cost.

Our result carries a broader impact on the implementa-
tion of general RL agents12. The required storage for such
agents, which have access to a non-MDP, approximate Q-
uniform abstraction, can be reasonably bounded which only
scales logarithmically in the size of the action-space.

We conclude the paper with some future research direc-
tions. This work analyses the case when the agent has a
fixed aggregation map. Hutter (2016) provides an outline for
a learning algorithm to learn such abstractions which can be
combined with our sequentialization framework.

Another direction, which we also did not touch in this
work, is to explore the connection, if any, between the

12The general (or strong) agents are designed to work with a
wide range of environments (Hutter 2005).

surrogate-MDPs of a map on the original environment, and
its extension on the sequentialized problem. By lifting the
small binary ESA map, say ψ, back to H , one obtains a
small map directly on H , say φ. While ψ used sequen-
tialization/binarization for the construction of φ, the map
φ can be used without further referencing to sequentializa-
tion. This suggests that a bound logarithmic in |A | should
be possible without a detour through the sequentialization.
This deserves further investigation.

We sequentialize the action-space through an arbitrary
coding scheme C, so the main result does not depend on this
choice. Sometimes, it is possible that the action-space may
allow “natural” sequentialization, e.g. in a video game con-
troller the “macro” action might be a binary vector where the
first bit might represent the left/right direction, the second bit
indicates up/down, and so on. The exact nature of these “bi-
nary decisions” depends on the domain which is reflected by
the choice of encoding C. Sequentialization was our path to
double-exponentially improve that bound. Whether there are
more direct/natural aggregations with the same bound is an
open problem. Moreover, if the agent is learning an abstrac-
tion through interaction, the choice of these functions may
become critical.

This paper focused on rigorously formalizing and proving
the main improvement result. One can also try to empirically
show the effectiveness of our improved upper bound. To do
this, we need a problem domain where ESA requires more
states than the sequentialized/binarized version of it. But a
point of caution is that the upper bound still scales badly in
terms of γ and ε. Any reasonable value of these parameters
would imply a huge upper bound. Even with Markovian ab-
stractions, a cubic dependency on the discount factor is the
best achievable. We considered a general underlying process
and non-Markovian abstractions, and dramatically improved
the previously best bound (1−γ)−3|A | to (1−γ)−3·2. Indeed
it would be interesting to see whether this can be further im-
proved to the optimal (1− γ)−3 rate.
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