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Abstract

Cross-modal clustering (CMC) aims to enhance the cluster-
ing performance by exploring complementary information
from multiple modalities. However, the performances of ex-
isting CMC algorithms are still unsatisfactory due to the con-
flict of heterogeneous modalities and the high-dimensional
non-linear property of individual modality. In this paper, a
novel deep mutual information maximin (DMIM) method
for cross-modal clustering is proposed to maximally preserve
the shared information of multiple modalities while eliminat-
ing the superfluous information of individual modalities in
an end-to-end manner. Specifically, a multi-modal shared en-
coder is firstly built to align the latent feature distributions by
sharing parameters across modalities. Then, DMIM formu-
lates the complementarity of multi-modalities representations
as a mutual information maximin objective function, in which
the shared information of multiple modalities and the super-
fluous information of individual modalities are identified by
mutual information maximization and minimization respec-
tively. To solve the DMIM objective function, we propose
a variational optimization method to ensure it converge to
a local optimal solution. Moreover, an auxiliary overcluster-
ing mechanism is employed to optimize the clustering struc-
ture by introducing more detailed clustering classes. Exten-
sive experimental results demonstrate the superiority of D-
MIM method over the state-of-the-art cross-modal clustering
methods on IAPR-TC12, ESP-Game, MIRFlickr and NUS-
Wide datasets.

Introduction
With the rapid development of information technology, mas-
sive amounts of unlabeled data from multiple sources or
views are generated in real-world applications every day.
Usually, data from multiple sources is exhibited in a multi-
modal form. For example, web news consists of pictures and
corresponding texts. In live streaming, a video contains vi-
sual appearance and acoustic signal. Although multi-modal
data appears in different modalities, sources and spaces, they
often have similar high-level semantic information or cluster
structures (Baltrusaitis, Ahuja, and Morency 2019). Thus,
it is rational to learn cluster structures in cross-modal data
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with the aid of the complementary information from differ-
ent modalities.

In recent years, cross-modal clustering (CMC) has made
significant progress in machine learning and computer vi-
sion communities (Zhang et al. 2018, 2019; Guo and Ye
2019; Xing et al. 2019; Yan, Hu, and Ye 2017; Yan et al.
2020a). One of the most prevalent CMC approaches is to
learn a shared subspace such that the mutual agreement be-
tween multiple modalities is maximized (Kim, Kittler, and
Cipolla 2007; Akaho 2006; Chen et al. 2020; Zhang et al.
2019; Peng et al. 2019; Xing et al. 2019). In this research di-
rection, the early and representative one is canonical correla-
tion analysis (CCA) (Kim, Kittler, and Cipolla 2007), which
seeks the shared subspace representations of two vectors by
maximizing their correlations. After that, a variety of exten-
sions of CCA have been proposed to learn a shared low-
dimensional subspace of multiple modalities, such as kernel
CCA (Akaho 2006), kernel information embedding (Wang
et al. 2020) and generalized multi-view analysis (Sharma
et al. 2012).

However, in these CMC methods, the original feature rep-
resentations are destroyed and some necessary information
is lost when the original features of different modalities are
compressed into a shared low-dimensional subspace. Be-
sides of learning a shared subspace, there are many oth-
er types of CMC approaches, such as matrix factorization
based methods (Xing et al. 2019), graph model based meth-
ods (Gao et al. 2020b; Yan et al. 2020b). Although these
aforementioned methods have made encouraging progress,
they rely on hand-crafted features and linear embedding
functions and cannot capture the non-linear structure of
complex cross-modal data.

Recently, deep neural networks (DNN) have made vast in-
roads into unsupervised clustering due to their commendable
performance. Motivated by this, DNN for cross-modal clus-
tering has been increasingly exploited with the state-of-the-
art results (Andrew et al. 2013; Abavisani and Patel 2018;
Zhu et al. 2019; Federici et al. 2020; Li et al. 2019; Zhou
and Shen 2020). Existing multi-modal clustering method-
s based on DNN are usually classified into the following
two categories. The first category adopts a two-stage strat-
egy (Wang et al. 2015; Abavisani and Patel 2018; Zhang,
Liu, and Fu 2019), i.e., extracting features based on DNN
and then learning the final clustering results by traditional
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Figure 1: The pipeline of the proposed DMIM method. The
L1 represents the preservation of shared information and L2

represents the elimination of superfluous information, which
can be calculated byKL distance after variational optimiza-
tion.

clustering method. For example, (Abavisani and Patel 2018)
proposes a deep multi-modal subspace clustering network,
which first utilizes multi-modal encoder to fuse modalities
to a latent subspace representation and then applies spec-
tral clustering to obtain the final results. (Zhang, Liu, and
Fu 2019) presents an autoencoder in autoencoder network,
which jointly performs view-specific encoding and multi-
view encoding with a nested autoencoder, then K-means is
applied to the multi-view representation. Obviously, this s-
trategy may disconnect feature learning and cluster assign-
ment, which results in the obtained feature representation is
irrelevant to the later clustering task. The second category
designs a clustering loss to guide the process of multi-modal
feature learning (Li et al. 2019; Zhou and Shen 2020; Xu
et al. 2019; Wang et al. 2018). For instance, (Zhou and Shen
2020) utilizes a adversarial network and clustering loss to
optimize the pre-trained autoencoder and directly obtains the
cluster structure. (Li et al. 2019) adopts an autoencoder to
obtain a shared representation space between multiple views
and develops a discriminator network to optimize data distri-
bution. Although the second category has gained satisfacto-
ry results, it overly focuses on the extraction of multi-modal
shared information, and does nothing to discard the irrele-
vant information. The resulting representations are not ro-
bust for given task as they have not eliminated modality spe-
cific nuisances.

Aiming at these challenging issues, we propose a nov-
el deep mutual information maximin (DMIM) method
for cross-modal clustering, which maximally preserves the
shared information of multiple modalities while eliminat-
ing the superfluous information of individual modalities in
an end-to-end manner. To this end, we first build a multi-
modal shared encoder to align the latent feature distribu-
tions by sharing parameters across modalities. The multi-
modal shared encoder can relieve the heterogeneous gap be-
tween different modalities since the data of different modal-
ities obey the same coding rule by sharing parameter across
modalities. Then, to maximize the shared information of
multiple modalities and minimize the superfluous informa-
tion of individual modalities, DMIM formulates the comple-

mentarity of multi-modalities representations as an mutual
information maximin objective function. In this way, DMIM
can obtain more reasonable clustering results as it has elim-
inated modality specific nuisances. And we also propose a
variational optimization method to ensure the DMIM objec-
tive function converge to a local optimal solution. Further-
more, an auxiliary overclustering mechanism is employed
to improve the clustering performance by introducing more
detailed clustering classes. Figure 1 shows the pipeline of
the proposed DMIM method. Extensive experimental results
demonstrate the superiority of DMIM method over the state-
of-the-art cross-modal clustering methods. The main contri-
butions can be summarized as follows.
• We propose a novel deep mutual information maximin

(DMIM) method for cross-modal clustering, which maxi-
mally preserves the shared information of multiple modal-
ities while eliminating the superfluous information of in-
dividual modalities in an end-to-end manner.

• A multi-modal shared encoder is built to align the latent
feature distributions by sharing parameters across modal-
ities, which relieves the heterogeneous gap by letting the
data of different modalities obey the same coding rule.

• A variational optimization method is proposed to ensure
the DMIM objective function converge to a local optimal
solution. Beside, an auxiliary overclustering mechanism
is employed to improve the clustering performance by in-
troducing more detailed clustering classes.

Related Work
CMC methods can effectively utilize the shared informa-
tion between different modalities and have received exten-
sive attention in recent years. We briefly introduce the rel-
evant CMC methods in this section, which can be roughly
divided into two categories: traditional CMC methods and
deep learning based methods.

Cross-modal Clustering
The most representative method of traditional CMC is la-
tent subspace learning, which maps cross-modal data into
a shared latent subspace. Latent subspace learning can be
roughly divided into three subcategories. The first is canon-
ical correlation analysis (CCA) (Kim, Kittler, and Cipolla
2007), which seeks a low-dimensional latent subspace rep-
resentation by maximizing the correlation between modal-
ities. In order to improve the non-linear learning ability of
CCA, (Akaho 2006) combines multiple non-linear kernel
functions with CCA, and proposes the KCCA method. The
second one uses matrix factorization technology to find la-
tent factors for cross-modal data (Xing et al. 2019; Tsai
et al. 2019). For instance, (Xing et al. 2019) proposes a col-
laborative matrix factorization method, which collaborative-
ly factorizes relational data matrices to capture the intrin-
sic relations of multi-view data. The third is binary code
learning (Zhang et al. 2018, 2019). For example, (Zhang
et al. 2019) en codes cross-modal data into a shared binary
code subspace through complementary information between
modalities. In addition to latent subspace learning, anchor-
based CMC have also attracted researchers attention. (Guo
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and Ye 2019) employs anchors to reconstruct the correlation
between instances and builds a similarity matrix between
modalities. However, the aforementioned methods rely on
hand-crafted features, and the representation ability of orig-
inal features limits the performance of the methods.

Deep Clustering
The combination of DNN and CMC can obtain better fea-
ture representations than traditional methods, and has be-
come a research hotspot in recent years. The CMC methods
based on DNN can be roughly classified into two subcate-
gories. The first one learns non-linear feature representations
through DNN, and then uses traditional clustering methods
to obtain cluster structures (Andrew et al. 2013; Abavisani
and Patel 2018; Federici et al. 2020; Gao et al. 2020a). For
example, (Wang et al. 2015) proposes a deep canonically
correlated autoencoders (DCCAE) to learn a common repre-
sentation of multiple modalities, then K-means is performed
to obtain the cluster structures. (Federici et al. 2020) uti-
lizes mutual information maximization to train a shared deep
autoencoder (DAE) for cross-modal data, which can obtain
cross-modal shared features. However, these methods only
focus on feature learning and lack of improvement on clus-
tering process. The second one combines feature representa-
tion with clustering process, and uses clustering loss to guide
model learning (Li et al. 2019; Zhou and Shen 2020; Wang
et al. 2018; Xu et al. 2019). For instance, (Wang et al. 2018)
complements the common latent network of DAE by genera-
tive adversarial networks (GAN), and uses adversarial mech-
anisms to explore the supplementary information shared by
each modality. However, the above methods only focus on
finding the shared information among cross-modal data, and
do not remove superfluous information in each modality,
which reduces the performance of these methods.

Deep Mutual Information Maximin
In this section, the network architecture of the DMIM
method is introduced and the formulation of its objective
function is given, then we provide the optimization of D-
MIM approach.

Network Architecture
We are given two heterogeneous modalities X1 = {xi1} ∈
Rd1×N , X2 = {xi2} ∈ Rd2×N , whereN is the size of cross-
modal data instances, d1 and d2 are the feature dimension of
X1 and X2. We adopt random variable Y to denote the class
label that DMIM intends to predict about X1 and X2, |Y |
indicates the number of class label. DMIM involves predict-
ing class label Y while maximizing the shared information
of multiple modalities and minimizing the superfluous infor-
mation of individual modalities simultaneously.

As shown in Figure 1, the network architecture of DMIM
consists of the following components: multi-modal shared
encoder Φ, clustering layer C and overclustering layer C ′.
Specifically, the multi-modal shared encoder Φ is designed
to align the latent feature distributions by sharing parameters
across modalities, while the clustering layerC and overclus-
tering layerC ′ are utilized to transform the pattern structures

of X1 and X2 into probability distribution of class label Y .
Let Z1 and Z2 be probability distribution of class label Y
of modalities X1 and X2. In order to share the parameters
across modalities, we generate Z1 and Z2 through the same
autoencoder Φ, which make Z1 and Z2 obey the same cod-
ing rule (Federici et al. 2020). Since the multiple related
modalitiesX1 andX2 are characterized by Z1 and Z2, max-
imising the predictability from Z1 to Z2 will preserve the
shared information between modalities X1 and X2. At the
same time, the superfluous information of individual modal-
ities is identified so as to discard modality-specific details.

When the number of class label |Y | is small, the super-
vision effect of probability distribution of class label Y will
be weaken in the process of back propagation. Thus, we al-
so add a overclustering layer C ′ to the multi-modal shared
encoder Φ. Usually, the number of predicted label of over-
clustering layer is set as much larger than true label, which
can improve the clustering performance by introducing more
detailed classes.

Objective Function
DMIM aims to maximally preserve the shared information
of multiple modalities while eliminating the superfluous in-
formation of individual modalities. With this end in view, we
devise a two-fold objective function. In the first part, we pre-
serve the shared information of multiple modalities by max-
imizing the mutual information between Z1 to Z2 as follows

L1 = max I(Z1;Z2) (1)
where Z1 and Z2 are probability distributions of class label
Y of modalities X1 and X2.

In the traditional entropy based loss function, maximiz-
ing entropy alone can result in degenerate solutions since
entropy could be maximized trivially by setting all predic-
tion vectors to same cluster (Caron et al. 2018). In contrast,
mutual information measurement can avoid this problem. As
we know, I(Z1;Z2) can be rewritten as

I(Z1;Z2) = H(Z1)−H(Z1|Z2) (2)
where the maximum value of H(Z1) is log |Y | when each
instance is allocated into every cluster with equally prob-
ability. The minimum value of the conditional entropy
H(Z1|Z2) is 0 when two clustering assignments are exact-
ly predictable from each other. Thus, allocating all data in-
stances to one cluster cannot maximize the mutual informa-
tion I(Z1;Z2), which naturally avoids degenerate solutions.

To eliminate modality specific nuisances, we devise the
second part of the objective function as follows

L2 = min[I(Z1;X1) + I(Z2;X2)] (3)
where Z1 can be seen as a compressed representation of o-
riginal data X1, so minimizing I(Z1;X1) can eliminate the
information in X1. The minimal value of I(Z1;X1) is 0,
obviously, this is not our goal since the information in X1

is totally discarded. Thus, we introduce a trade-off between
shared information preservation and superfluous informa-
tion elimination, and obtain the objective function of DMIM
as follows

L = max (L1 + L2)

= I(Z1;Z2)− [I(Z1;X1) + I(Z2;X2)]
(4)
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Figure 2: The illustration of shared information preservation
and superfluous information elimination.

The Figure 2 shows the process of shared information p-
reservation and superfluous information elimination.

Optimization

In this part, a variational optimization method is proposed to
optimize the objective function of DMIM method. For the
calculation of mutual information I(Z1;Z2), we should first
obtain the joint probability distribution p(Z1, Z2). When the
random variables Z1 and Z2 are independent to each other,
p(Z1, Z2) can be calculated by p(Z1, Z2) = p(Z1)×p(Z2).
In this study, Z1 and Z2 are generated by related cross-
modal data X1 and X2, so they are not independent. Ac-
cording to (Ji, Vedaldi, and Henriques 2019), we can calcu-
late p(Z1, Z2) = p(Z1)×p(Z2)T after marginalization over
the cross-modal dataset (or batch, in practice).

Now, we present the optimization of the second part L2

of the DMIM objective function. In this study, we pro-
pose a variational method to fit L2 by its variational low-
er bound (Barber and Agakov 2003), in which maximizing
this variational lower bound gives an unbiased estimation of
the objective function. According to the definition of mutual
information, we obtain

I(Z1;X1) =

∫
z1,x1

p(z1, x1) log
p(z1, x1)

p(z1)p(x1)

=

∫
z1,x1

p(z1, x1) log
p(z1 | x1)

p(z1)

(5)

We try to use the variational estimation q(z1) of p(z1)
to calculate the posterior probability distribution p(z1|x1).
From the non-negativeness of Kullback-Leibler (KL) di-

vergence, we can get

KL[p(z1), q(z1)] =

∫
z1

p(z1) log
p(z1)

q(z1)
> 0

⇒
∫
z1

p(z1) log p(z1) >

∫
z1

p(z1) log q(z1)

(6)

Now, the mutual information I(Z1;X1) can be rewritten
as follows

I(Z1;X1) =

∫
z1,x1

p(z1, x1) log
p(z1 | x1)

p(z1)

<

∫
z1,x1

p(z1, x1) log
p(z1 | x1)

q(z1)

<

∫
z1,x1

p(x1)p(z1 | x1) log
p(z1 | x1)

q(z1)

(7)

Similarly,

I(Z2;X2) <

∫
z2,x2

p(x2)p(z2 | x2) log
p(z2 | x2)

q(z2)
(8)

Now, the second part of DMIM objective function L2 is

L2 = I(Z1;X1) + I(Z2;X2)

<

∫
z1,x1

p(x1)p(z1|x1) log
p(z1|x1)

q(z1)

+

∫
z2,x2

p(x2)p(z2|x2) log
p(z2|x2)

q(z2)

(9)

Next, in order to calculate the variational approximation
of L2, unnecessary items need to be removed. Therefore
we adopt Monte Carlo sampling (Shapiro 2003) to replace
p(x1), p(x2) and get

L2 <
1

N

N∑
i

{
∫
z1

p(z1 | x1) log
p(z1 | x1)

q(z1)
+∫

z2

p(z2 | x2) log
p(z2 | x2)

q(z2)
}

(10)

Suppose p(z1|x1) and p(z2|x2) obey Gaussian distri-
bution, where the mean and variances can be learned
from the multi-modal shared encoder Φ, i.e., p(z|x) =
N (µφ(x), σ(x)), and φ is the parameters in the encoder. For
simplicity, we re-parameterize (Kingma and Welling 2014)
z1 and z2 as

z1 = µ(x1) + σ(x1) ∗ ε
z2 = µ(x2) + σ(x2) ∗ ε (11)

where ε is the standard normal distribution. Now, the second
part of DMIM objective function L2 can be rewritten as

L2 <
1

N

N∑
i

{Eε1 log
p(z1 | x1)

q(z1)
+ Eε2 log

p(z2 | x2)

q(z2)
}

<
1

N

N∑
i

Eε{KL[p(z1 | x1), q(x1)]

+KL[p(z2 | x2), q(x2)]}
(12)
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Algorithm 1 The DMIM Algorithm

1: Input:
Cross-modal data X1 and X2, the number of clusters
|Y |

2: Random initialization: Initialize the encoder Φ, layer
of clustering C and over-clusteringC ′

3: repeat
4: Lc ← Z1 = ΦC(X1), Z2 = ΦC(X2) according to

Eq. 14
5: Lc′ ← Z1 = ΦC′(X1), Z2 = ΦC′(X2) according to

Eq. 14
6: L = Lc + Lc′
7: Optimize network parameters of encoder Φ,C andC ′
8: until converge
9: Output: The encoder Φ and layer of clustering C

where p(z1 | x1) and p(z2 | x2) are all learned from en-
coder Φ. Besides, to make sure that the instances are evenly
allocated into all clusters, we set a uniform distribution con-
straint (Asano, Rupprecht, and Vedaldi 2020) to q(x1) and
q(x2), i.e.,

N∑
i

q(x1,2) =
N

|Y |
(13)

Finally, the overall objective function of the proposed D-
MIM method can be formulated as

L ≈ I(Z1;Z2)− 1

N

N∑
i

Eε{KL[p(z1 | x1), q(x1)]

+KL[p(z2 | x2), q(x2)]}, with
n∑
i

q(x1,2) =
N

|Y |
(14)

In every loop of training, the DMIM method gets two
probability distributions from clustering layer C and over-
clustering layer C ′. The overclustering layer is only utilized
for training. The overall clustering process is presented in
Algorithm 1, in which the ΦC(X1) and ΦC′(X1) denote the
clustering results of X1 from clustering layer and overclus-
tering layer.

Experiments
In this section, extensive experiments on four real-world
cross-modal datasets are conducted to verify the effective-
ness of the proposed DMIM method.

Datasets and Description
The datasets used in our experiments include: 1) IAPR-
TC12 (Michael Grubinger 2006): It is a publicly image
dataset with annotated tags, which contains 20,000 images
with 6 classes. Each image is accompanied by a short text
description. We randomly select 7855 images with its texts
after removing the images which the number of tags is less
than 4. 2) ESP-Game (von Ahn and Dabbish 2004): It is
a social image collection searched from a image annotation

website, which consists of 20,770 images and correspond-
ing tags. We select 11,032 images with approximately 5 tags
per image. 3) MIRFlickr (Huiskes and Lew 2008): It con-
tains 25,000 images with 1386 tags. After de-noising and
de-duplication, we construct a dataset with 12,154 images
in total of 6 classes. 4) NUS-Wide (Chua et al. 2009): It
consists of 269,648 social images, i.e., image with tags. By
removing blank images and non-English words, we build a
dataset with 20,000 images, which contains 8 classes and
each image is along with 7 tags on average. We call these
four datasets IAPR, ESP, Flickr and NUS for short, respec-
tively. The details of the four datasets are shown in Table ??.

For the image representation, we adopt the penultimate
layer of VGG-16 (Simonyan and Zisserman 2015) as the
4096 dimensional features of images. To improve the com-
putational efficiency, we use Principal Component Analy-
sis (PCA) (Vidal, Ma, and Sastry 2005) to reduce the di-
mensions to 100. For the text representation, we employ
BERT (Turc et al. 2019) to extract 768 dimensional features.
Similarly, we also reduce the dimensions to 100 by PCA.

Dataset Clusters Size
IAPR 6 7855
ESP 7 11032

Flickr 6 12154
NUS 8 20000

Table 1: Statistics of the four datasets.

Experimental Setup
In the proposed DMIM method, the multi-modal shared en-
coder is composed of two fully connected layers. Each fully
connected layer is followed by a BatchNorm layer and a Re-
LU layer, which are utilized to perform data normalization
and non-linear activation, respectively. The clustering lay-
er and overclustering layer also adopt fully connected layer,
in which the number of hidden nodes are set as |Y | and 10
× |Y |, respectively. At the beginning of training process, all
parameters in the model are initialized randomly. After train-
ing, the clustering result is the output of clustering layer C
with a softmax layer. We use Adam (Kingma and Ba 2015)
optimizer with the learning rate 5× 10−5.

We implement our proposed DMIM method and deep
clustering baselines with the public toolbox of PyTorch.
Other traditional comparison baselines are conducted on
Matlab 2016a. We conduct all the experiments on the plat-
form of Windows 10 with NVIDIA 1060 Graphics Process-
ing Units (GPUs) and 32G memory size.

Baselines and Evaluation Metrics
The performance of DMIM is compared with the state-of-
the-art cross-modal clustering methods. There are six shal-
low and four deep cross-modal clustering algorithms.

1) K-means: It is a traditional single-modal clustering
methods. We report its best clustering results on all modali-
ties.
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Methods ESP Flickr IAPR NUS
ACC NMI ACC NMI ACC NMI ACC NMI

Kmeans 0.421 0.272 0.407 0.223 0.383 0.166 0.308 0.183
CCA 0.465 0.295 0.492 0.237 0.461 0.229 0.340 0.203

MCLES 0.528 0.367 0.432 0.274 0.442 0.231 0.398 0.231
BMVC 0.523 0.351 0.531 0.321 0.421 0.227 0.467 0.293
HSIC 0.537 0.339 0.533 0.302 0.413 0.236 0.406 0.275

APMC 0.523 0.347 0.532 0.328 0.442 0.227 0.375 0.224
DCCA 0.457 0.252 0.495 0.313 0.436 0.234 0.381 0.265

DCCAE 0.461 0.311 0.429 0.307 0.413 0.227 0.357 0.273
AE2Net 0.437 0.279 0.544 0.321 0.444 0.213 0.445 0.288
DMIB 0.509 0.232 0.561 0.287 0.494 0.238 0.449 0.198

Our 0.561 0.371 0.574 0.347 0.527 0.274 0.485 0.311

Table 2: Clustering performance of different methods on four challenging datasets. The best results are highlighted in bold.

2) Canonical correlation analysis (CCA) (Kim, Kittler,
and Cipolla 2007): it maps the original data into a shared
subspace to maximize the correlations between modalities.

3) Multi-view clustering in latent embedding space
(MCLES) (Chen et al. 2020): It learns the latent embed-
ding representations of multi-modal data, and then obtains
the clustering index matrix of global structure.

4) Binary multi-view clustering (BMVC) (Zhang et al.
2019): It encodes multi-modal data into a shared binary
code subspace through complementary information between
modalities.

5) Highly-economized scalable image clustering
(HSIC) (Zhang et al. 2018): It jointly learns multi-modal
shared binary code representations and a discrete clustering
architecture.

6) Anchor-based partial multi-view clustering
(APMC) (Guo and Ye 2019): It utilizes anchors to re-
construct the correlations between instances and builds a
similarity matrix between modalities.

7) Deep canonical correlation analysis (DCCA) (Andrew
et al. 2013): It is a non-linear extension of traditional CCA,
which learns a non-linear mapping of multi-modal data to
maximize the correlations of the result representations.

8) Deep canonically correlated autoencoders
(DCCAE) (Wang et al. 2015): It employs two deep
autoencoders to learn the cross-modal features, and the
correlations between these features are calculated to
reconstruct the data and optimize the network.

9) Autoencoder in autoencoder networks
(AE2Net) (Zhang, Liu, and Fu 2019): It jointly per-
forms view-specific encoding and multi-view encoding with
a nested autoencoder.

10) Deep multi-view information bottleneck
(DMIB) (Federici et al. 2020): It adopts mutual infor-
mation to measure the correlation of two autoencoder, and
obtains fused feature representations of two views.

We report the average evaluation with the metrics of Clus-
tering Accuracy (ACC) and Normalized Mutual Information
(NMI). Higher values indicate better clustering performance
for the metrics. For the multi-view methods, we consider d-
ifferent modalities as the different views. In the experiments,

we run 20 times for each experiment and report the average
performance.

Comparison Results
The clustering performances of DMIM and comparison al-
gorithms on four datasets are reported in Table ??. From
the presented results, we have the following observation-
s and discussions: 1) Our method achieves the best results
on each dataset compared with other algorithms, which ver-
ifies the DMIM method can effectively explore the shared
information among cross-modal data and obtain better clus-
tering performance. 2) The DMIM method shows superi-
or performance than traditional methods on four datasets,
which demonstrates that the DMIM method based on deep
neural networks can more effectively learn the non-linear re-
lationships contained in the features. 3) At the same time, D-
MIM is also superior to the representative deep cross-modal
clustering methods. It shows that our DMIM maximally pre-
serves the shared information of multiple modalities while e-
liminating the superfluous information of individual modal-
ities, which allows it to obtain more robust clustering struc-
ture. 4) Similar to our method, the DMIB method is also
based on mutual information. Compared with the DMIB, D-
MIM method achieves better clustering structure. The rea-
son is that the DMIB method separates feature learning and
clustering tasks, which makes it only focus on feature learn-
ing and ignore the clustering task. In addition, our DMIM
method employs an auxiliary overclustering mechanism to
improve clustering performance.

Ablation Study
We perform ablation study to analyze the role of each com-
ponent in DMIM method in this part. Specifically, we con-
duct experiments with different components ablation as fol-
lows: 1) Without overclustering and superfluous informa-
tion elimination (Without Over and SIE). In this scenario,
we only remain the first part of objective function 4, i.e.,
I(Z1;Z2). 2) Without overclustering (Without Over). In this
setting, we remove the overclustering layer compared with
DMIM method. 3) Without superfluous information elimi-
nation (Without SIE). We only remove the part of superflu-
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(d) NUS

Figure 3: The convergence of DMIM. The red line indicates the values of objective function, while the blue line denotes the
ACC values.

Methods ESP Flickr IAPR NUS
Without Over&SIE 0.4864 0.5051 0.4606 0.4407

Without SIE 0.5162 0.5357 0.4701 0.4595
Without Over 0.5305 0.5517 0.5148 0.4678

DMIM 0.5613 0.5739 0.5274 0.4855

Table 3: Ablation study in terms of ACC.

ous information elimination from DMIM method. As shown
in Table 3, we can observe: firstly, the overclustering layer
has a certain impact on the clustering performance, which
provides more detailed clustering classes for the target da-
ta. Secondly, the part of superfluous information elimination
has a significant impact on the final clustering results, which
can eliminate modality specific nuisances. These above ob-
servations indicate that all components in DMIM method are
designed reasonably.

Convergence Analysis
In order to investigate the convergence of the proposed D-
MIM method, we report the values of objective function and
the ACC values with the increasing of iteration number in
Figure 3. In this figure, the red line indicates the value of
objective function, while the blue line denotes the ACC val-
ues. As shown in Figure 3, we can observe that these two
values increase quickly in the first approximately 300 iter-
ations, then the values approach to be a fixed value after
approximately 500 iterations. Therefore, our proposed op-
timization algorithm is reliable and converges quickly.

Impact of the Cluster Number of Overclustering
The proposed DMIM incorporates an auxiliary overclus-
tering mechanism, which improves the clustering perfor-
mance by introducing more detailed clustering classes. In
this section, we perform experiments to explore the im-
pact of the cluster number of overclustering on the final
clustering results. Suppose the number of ground-truth la-
bel is |Y |, the cluster number of overclustering varies in
{1× |Y |, 2× |Y |, · · · , 20× |Y |}. As shown in Figure 4, we
can observe that with the gradual increasing of the cluster
number from 1×K, the ACC values of DMIM have a raise
on the four used datasets. The reason of this phenomenon is

Figure 4: The impact of cluster number of the overclustering
mechanism.

that small cluster number may lack the discriminative pow-
er, since it cannot provide detailed class information. As the
number of clusters increases, overclustering layer can pro-
vide more and more detailed cluster structures. Then, with
further increasing of the cluster number, the accuracy de-
creases to some extent. Note that, the DMIM method obtains
best ACC when cluster number is 10× |Y | on the four used
datasets. This is because too large cluster number is not only
sensitive to errors, but also makes the model more inclined
to optimize the overclustering layer C ′, while ignoring the
optimization of the clustering layer C.

Conclusion
In this paper, a novel deep mutual information maximin
(DMIM) method for cross-modal clustering is proposed
to maximally preserve the shared information of multiple
modalities while eliminating the superfluous information of
individual modalities. Specifically, a multi-modal shared en-
coder is built to align the latent feature distributions. Then,
the shared information of multiple modalities and the super-
fluous information of individual modalities are identified by
mutual information maximization and minimization respec-
tively. Finally, a variational optimization method is proposed
to ensure it converge to a local optimal solution. Experimen-
tal results on several real-world datasets show the superiority
of the proposed DMIM method over state-of-the-art cross-
modal clustering methods.
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