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Abstract

AutoML automatically selects, composes and parameterizes
machine learning algorithms into a workflow or pipeline of
operations that aims at maximizing performance on a given
dataset. Although current methods for AutoML achieved im-
pressive results they mostly concentrate on optimizing fixed
linear workflows. In this paper, we take a different approach
and focus on generating and optimizing pipelines of com-
plex directed acyclic graph shapes. These complex pipeline
structure may lead to discovering new synthetic features and
thus boost performance considerably. We explore the power
of heuristic search and context-free grammars to search and
optimize these kinds of pipelines. Experiments on various
benchmark datasets show that our approach is highly competi-
tive and often outperforms existing AutoML systems.

Introduction
Automated Machine Learning (or AutoML for short) seeks
to automatically compose and parameterize machine learning
algorithms to maximize a given metric such as predictive
accuracy on a given dataset. It has received increasing atten-
tion over the past decades but it became even more acute in
light of the recent explosion in machine learning applications.
AutoML has gradually extended from hyper-parameter opti-
mization (HPO) for the best configuration of a single machine
learning algorithm (Bergstra et al. 2011; Snoek, Larochelle,
and Adams 2012) to tackling the optimization of the entire
machine learning pipeline from data preparation to model
learning (Feurer et al. 2015). Several AutoML international
challenges have been organized in the last decade (Guyon,
Bennett, and Cawley 2015; Guyon and Tu 2018), spurring
the development of efficient AutoML systems such as Auto-
WEKA (Kotthoff et al. 2017), TPOT (Olson et al. 2016) and
the challenge winner Auto-sklearn (Feurer et al. 2015).

In this paper, we focus on this problem of automatic con-
figuration of machine learning pipelines. Existing AutoML
systems can be divided into two main categories. First, the
AutoML problem is designed as an optimization problem
with a fixed number of decision variables, which then is
solved in many different ways, including standard Bayesian
optimization (Hutter, Hoos, and Leyton-Brown 2011), mixed
∗Work done while at IBM Research.
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integer-continuous non-linear programming (Liu et al. 2020),
hierarchical task networks (Mohr, Wever, and Hullermeier
2018) or Monte-Carlo tree search coupled with Bayesian
optimization (Rakotoarison, Schoenauer, and Sebag 2019).
Specifically, these approaches assume a fixed linear structure
of the pipeline and therefore have one variable for a pre-
processing algorithm, one variable for the learning algorithm,
and one variable for each parameter of each algorithm which
leads to a solution space of fixed dimensionality. On the other
hand, approaches of the second category attempt to relax the
fixed structure of the pipeline. Consequently, these methods
are able to generate more flexible ML pipelines that allow
for complex preprocessing steps at the expense of explor-
ing a much larger search space. More specifically, systems
like TPOT (Olson et al. 2016), RECIPE (de Sa et al. 2017)
and ML-PLAN-UL (Wever, Mohr, and Hullermeier 2018)
organize the search space in terms of a formal grammar that
naturally allows for recursive structures and employ evolu-
tionary as well as planning techniques to explore the search
space more effectively. However, as in the previous category,
the use of the grammar is limited to chain-shaped (or at most
tree-shaped) data-flow graphs.

Contribution: We consider the second category of Au-
toML systems and show how to exploit the power of heuristic
search and context-free grammars to generate ML pipelines
of complex Directed Acyclic Graph (DAG) shapes. Specif-
ically, we propose a simple yet expressive context-free
grammar that allows us to construct arbitrarily complex
pipeline structures that extend well beyond the traditional
preprocessing-estimation linear workflow. These complex
pipelines allow naturally for stacking or concatenating the
outputs of multiple transformers/estimators in a DAG struc-
ture and using them as new “synthetic features” for down-
stream estimators in the pipeline. This in turn may translate
into improved performance. The proposed grammar defines
the search space of all possible DAG-shaped pipelines. For
a given number of transformers and estimators this search
space can be many orders of magnitude larger than that cor-
responding to fixed linear pipelines. Therefore, we develop
a greedy best-first search algorithm that traverses efficiently
the space of partial pipelines guided by an effective heuris-
tic function to find the most promising pipeline structure.
Once the most promising pipeline structure is identified, we
subsequently optimize it by selecting the best configuration
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of machine learning algorithms together with their hyper-
parameters. This way we can leverage any of the existing
joint optimizers developed for fixed linear pipelines. There-
fore, we put together all these ideas into a new AutoML
system called PIPER and evaluate it extensively on a variety
of benchmark datasets. Our results show conclusively that
PIPER is highly competitive and often outperforms existing
state-of-the-art AutoML systems.

Related Work
Previous work on AutoML has focused on optimizing a fixed
linear pipeline structure consisting of a data preparation step,
a feature transformation step followed by the model learning
step. Auto-WEKA (Thornton et al. 2012; Kotthoff et al. 2017)
and Auto-sklearn (Feurer et al. 2015) are the main represen-
tatives for solving AutoML that apply the general purpose al-
gorithm configuration framework SMAC (Hutter, Hoos, and
Leyton-Brown 2011) based on Bayesian optimization (BO) to
find optimal machine learning pipelines (Snoek, Larochelle,
and Adams 2012; Hutter, Hoos, and Leyton-Brown 2011;
Bergstra et al. 2011).

TPOT (Olson et al. 2016) is the first system that attempts
to generate non-linear pipelines. It uses genetic programming
to splice and concatenate randomly generated tree-shaped
pipelines. One major drawback of TPOT is that it tends to
generate a lot of invalid pipelines that cannot be trained.
Therefore, more recent genetic programming based systems
like RECIPE (de Sa et al. 2017), Auto-MEKA (de Sa, Fre-
itas, and Pappa 2018) or Auto-DSGE (Assuncao et al. 2020)
utilize a context-free grammar to generate and evolve only
valid pipelines. However, none of these systems can generate
and optimize complex DAG shaped pipelines.

ML-Plan (Mohr, Wever, and Hullermeier 2018) is a recent
system that assumes a fixed linear structure of the pipelines
and uses a form of AI planning called hierarchical task net-
works (HTN) to optimize the pipeline. In practice, it was
highly competitive with Auto-sklearn and TPOT. The system
was extended to deal with unlimited length pipelines thus
allowing for more complex pre-processing workflows (Wever,
Mohr, and Hullermeier 2018).

AlphaD3M (Drori et al. 2018) integrates reinforcement
learning (RL) with Monte-Carlo Tree Search (MCTS) for
solving AutoML problems but without imposing efficient
decomposition over hyper-parameters and model selection.
AutoStacker (Chen et al. 2018) focuses on ensembling and
cascading to generate complex pipelines while the algorithm
selection and hyper-parameter optimization is done using
a discrete evolutionary search. Unlike our approach, Au-
toStacker does not consider transformers and therefore its
search space is a subset of the search space defined by our
grammar. Furthermore, our technique provides a natural de-
composition of the search problem where heuristic search is
used for the discrete optimization part and Bayesian optimiza-
tion (or other relevant solvers) are used for the (continuous)
hyper-parameter optimization part.

MOSAIC (Rakotoarison, Schoenauer, and Sebag 2019)
combines MCTS with BO to optimize the algorithm selec-
tion and their hyper-parameters in a fixed pipeline structure.

(Liu et al. 2020) developed an iterative ADMM based joint-
optimization method that splits the algorithm selection phase
and hyper-parameter optimization into two simpler subprob-
lems using the augmented Lagrangian function. The approach
is also restricted to fixed pipeline structures.

More recently, (Katz et al. 2020) use HTN planning and a
context-free grammar to generate DAG-shaped pipelines. The
system performs a problem agnostic “one-shot” enumerations
of pipelines from the grammar which is shown to not perform
significantly much better (or much worse) than a fixed 3-stage
baseline. Furthermore, their problem dependent feedback
scheme was shown to not perform better than the one-shot
scheme. In contrast, our proposed system is problem adaptive
and significantly outperforms the fixed 3-stage baseline (with
the same joint optimizer) across various datasets as we will
show in the experimental section.

Neural architecture search (NAS) is an area of AutoML
which focuses on optimizing the architecture of a neural net-
work. A variety of optimization methods has been explored
for this task including RL (Zoph and Le 2017), evolutionary
algorithms (Liu et al. 2018; Real et al. 2019), MCTS (Wang
et al. 2019), and BO (Kandasamy et al. 2018). Similar to
the problem of pipeline selection, a DAG containing differ-
ent operators has to be generated. However, this problem is
oftentimes reduced to finding a smaller DAG which is then
repeated several times (Real et al. 2019). Furthermore, all
state-of-the-art optimizers rely on key elements unique to
NAS that do not trivially transfer to optimizing ML pipelines.
Examples for these elements are weight-sharing between
architectures (Pham et al. 2018) and a fully differentiable
search that allows to learn the composition of the DAG (Liu,
Simonyan, and Yang 2019). Therefore, NAS and pipeline
selection for tabular data are related problems, which use
similar techniques, but their actual execution is different.

Background
Context-Free Grammars
A Context-Free Grammar (CFG) (Segovia-Aguas, Jimenez,
and Jonsson 2017) is a tuple G = 〈V, v0,Σ, R〉, where V is
a finite set of non-terminal symbols, v0 ∈ V is the start non-
terminal symbol, σ ∈ Σ is a finite set of terminal symbols,
and R = {α → β|α ∈ V, β ∈ (V ∪ Σ)∗} is a finite set of
production rules in the grammar. The semantics of the CFG
is as follows: each v ∈ V represents a sub-language of the
language defined by the grammar and Σ is the alphabet of
the language defined by G and can contain the empty string,
which we denote by ε ∈ Σ. We denote by e0 the string that
contains only the initial start symbol v0.

Given a string e1 = u1αu2 ∈ (V ∪ Σ)∗ and a rule r :
α → β ∈ R, we say that e1 directly yields e2 = u1βu2,
which we denote by e1 →r e2. Furthermore, we say that
e1 yields en (denoted by e1 →∗ en iff there exist strings
e1, . . . , en ∈ (V ∪ Σ)∗ and rules r1, . . . , rn−1 ∈ R, such
that for all 1 ≤ i < n we have that ei →ri ei+1. In this case,
we say that r1 · . . . · rn−1 is an inducing sequence of rules
for the pair of strings (e1, en).

The language of a CFG, L(G) = {e ∈ Σ∗ : v0 →∗ e} is
the set of all strings that contain only terminal symbols and
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that can be produced from the start symbol v0.

Heuristic Search

Consider a search space defined implicitly by a set of states
(the nodes in the graph), operators that map states to states
having costs or weights (the directed weighted arcs), a start-
ing state n0 and a set of goal states. The task is to find the
least cost solution path from n0 to a goal (Nilsson 1980),
where the cost of a solution path is the sum of the weights
or the product of the weights on its arcs. Best-First Search
(BFS) is perhaps the most effective search algorithms to find
the optimal solution path. Specifically, it explores the search
space using a heuristic evaluation function f(n) that esti-
mates the best cost solution path that passes through each
node n. It is known that when f(n) is a lower bound on the
optimal cost path the algorithm terminates with an optimal
solution (Nilsson 1980; Pearl 1984).

The most popular variant of BFS is A* (P. Hart and
Raphael 1968), whose heuristic evaluation function is f(n) =
g(n) + h(n), where g(n) is minimal cost from the root n0 to
n along the current path, and h(n) underestimates h∗(n), the
optimal cost from n to a goal node. A* search is known to be
optimally efficient, namely it expands the smallest number
of nodes compared with any other search strategy using the
same heuristic function (Dechter and Pearl 1985).

Greedy Best-First Search (GBFS) belongs to the family of
best-first search algorithms and uses f(n) = h(n). Unlike
BFS, GBFS is not guaranteed to terminate with the optimal
solution, however, in many cases (e.g, (Helmert 2006)) is able
to find reasonably good quality solutions relatively quickly.

A Grammar For Generating Machine
Learning Pipelines

In this section, we introduce a context-free grammar that
allows us to construct arbitrarily complex pipeline shapes that
extend well beyond the standard preprocessing-estimation
linear workflows. We will define complex pipeline structures
using two combinators denoted by > and & which resemble
those defined in the LALE library (Hirzel et al. 2019).

The > combinator performs the pipe operation, where
α > β is a pipeline where the data goes into the α oper-
ator and the output of α is piped into the β operator. The
equivalent, but more verbose, way of performing this in
scikit-learn is make_pipeline([α, β]). The & combi-
nator performs parallel independent executions, where α &
β is a (partial) pipeline with the operators α and β applied to
the data independently in parallel. The output of this (partial)
pipeline is typically piped into a special purpose operator to
concatenate (or horizontally stack) the features. Therefore,
the pipeline would be defined as (α&β) > γ, where γ is
the concatenation operator, however, for simplicity, we will
not show the concatenation step explicitly in the formal defi-
nition the grammar. This can be equivalently performed in
scikit-learn with make_union([α, β]). Note that, in the
above examples, the operators α and β can be ML operators
as well as (partial) pipelines.

(a) AutoML grammar (b) Production rules

(c) Examples of pipeline structures

Figure 1: A context-free grammar for generating complex
pipeline structures (or shapes).

AutoML Grammar We are now ready to present our
context-free grammar for pipeline structures. Specifically,
let GML = 〈V, v0,Σ, R〉 be the grammar shown in Figure
1(a) where the set of non-terminal and terminal symbols
are V = {m, d} and Σ = {N, t, e, (, )}, respectively and
the start symbol is v0 = m. For our purpose, the terminal
symbols have the following semantics: N stands for a no-
operation (NoOp) operator implying that the data is passed
as is, e stands for an estimator (or a ML modeling operator
such as a decision tree or a support vector machine), and t
is used to denote a transformer (or a ML data-preprocessing
and transformation operator such as normalization or PCA).
The parenthesis ( and ) are used to group the operators in a
consistent manner.

The set R contains 6 production rules that are used to en-
code the pipeline shape. The first rule for the non-terminal
start symbol m indicates that the pipeline contains a data
flow graph (denoted by the non-terminal d) piped into a
ML modeling step (or estimator e) as depicted graphically
at the top of Figure 1(b). The following rules correspond
to the non-terminal symbol d and allow it to be: (i) a no-
operation (NoOp), implying that data is passed as is, (ii) a t
corresponding to ML data-preprocessing and transformation
operators, (iii) a linear extension of the pipeline via the re-
cursion (d > d) thus allowing the pipeline to have arbitrary
length and (iv) two other forms of extending the pipeline
data-flow graph via the recursions (d&e) and (d&d) which
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Algorithm 1 PIPER: greedy best-first search for pipeline
structure generation and optimization

Require: Grammar GML = 〈V, v0,Σ, R〉, dataset D
1: procedure GBFS
2: Let pipeline = ∅
3: Let v0 be the start symbol of G
4: Create a node r ∈ SG and set r.symbols = v0
5: Let h(r) = ESTIMATE(r, D), OPEN = {r}
6: while OPEN is not empty or no timeout do
7: Select n from the top of OPEN
8: Remove n from OPEN
9: if ∀s ∈ n.symbols, s ∈ Σ then

10: pipeline = n.symbols
11: break
12: succ(n) = EXPAND(n)
13: for all ch ∈ succ(n) do
14: if ch /∈ OPEN then
15: Let h(ch) = ESTIMATE(ch, D)
16: OPEN = OPEN ∪ {ch}
17: Sort OPEN in ascending order of h(n)

18: return OPTIMIZE(pipeline, D)
19: function EXPAND(n)
20: succ = ∅
21: for all α ∈ n.symbols, such that α ∈ V do
22: Let e1 = n.symbols = u1αu2

23: for all rules r ∈ R, r : α→ β do
24: Apply e1 →r e2 such that e2 = u1βu2

25: Create node ch and set ch.symbols = e2
26: succ = succ ∪ {ch}
27: return succ
28: function ESTIMATE(n, D)
29: for all i = 1 to K do
30: Initialize m = n
31: repeat
32: succ(m) = EXPAND(m)
33: Randomly select ch ∈ succ(m), m = ch
34: until ∀s ∈ m.symbols, s ∈ Σ
35: Let pipeline = m.symbols
36: Set si = H(pipeline,D)

37: return average(s1, . . . , sK)

allow the pipeline data-flow graph to contain parallel data-
processing paths followed by a concatenation of features (see
the bottom of Figure 1(b) for a graphical representation of
these recursive rules for symbol d). The reason behind the
recursion (d&e) is that an estimator is essentially a function
– for example, binary classifiers generating class probabilities
can be viewed as e : D → [0, 1] – therefore can be used a
new feature generator for the input dataset D.

We say that a string s ∈ L(GML) containing only termi-
nal symbols corresponds to a terminal or complete pipeline
structure. Alternatively, a string s ∈ (V ∪ Σ)∗ containing at
least one non-terminal symbol represents a partial pipeline
structure. Any partial pipeline can be extended to a com-
plete one by applying the production rules defined by GML.
Furthermore, any pipeline structure s ∈ (v ∪ Σ)∗ can be
associated with a directed acyclic graph (DAG) G = (U,E)
where nodes correspond to symbols {e, t, d,N} and there is
a directed edge between any two nodes whose corresponding

symbols are involved in a> or & operators. For any sequence
of consecutive & operators we introduce a dummy node that
collects the edges from the nodes involved in the operators.
In Figure 1(c) the dummy nodes are the solid black ones with
three incoming edges. For clarity, we also add to G a source
node that is connected to all nodes without incoming edges.
By construction, G has only one sink node, namely a node
without outgoing edges. Then, given a pipeline structure s
and its corresponding DAG G, we define its length l(s) as
the longest path from the source to the sink node in G. The
width of s, denoted w(s) is defined as the largest in-degree
of the dummy nodes of G. Clearly, if there are no dummy
nodes in G then we assume w(s) = 1.

Example 1. For illustration, in Figure 1(c) we show two pos-
sible complete pipeline structures that can be obtained using
the grammar rules described above (we also include their
corresponding strings). The first pipeline involves two paral-
lel workflows consisting of a sequence of two transformations
and a transformation followed by an estimation, respectively.
The resulting new features are then concatenated with the
original ones (which is facilitated by the middle NoOp step).
This is then followed by another transformation and the final
estimation step. The second pipeline starts with a transfor-
mation step followed by three parallel workflows involving
additional transformations and estimations aimed at creating
additional features which are then joined together and fed
into the final estimation step. The pipeline structures have
length 5 and width 3, respectively.

Notice that, in contrast to other grammars proposed in the
literature, such as (de Sa et al. 2017; Katz et al. 2020), our
AutoML grammar does not commit the pipeline modules to
specific transformers and estimators. Although it is possible
to extend the grammar to include terminal symbols for trans-
formers and estimators, we do not do that in this paper and
focus instead on searching for the most promising shape.

Search for Pipeline Structures
The AutoML grammar GML defines a search space that
allows us to search for the most promising DAG-shaped
pipeline structure. Once such a structure is identified, we
subsequently solve the combined algorithm selection and
hyper-parameter optimization (CASH) problem (Thornton
et al. 2012; Feurer et al. 2015) which selects the best ma-
chine learning methods for each of the pipeline steps and the
corresponding hyper-parameters of these methods.

Clearly, the search space defined by GML is infinite. There-
fore, in practice, we bound the length and width of the
pipeline structures in order to traverse a finite search space.
However, even with bounded length and width, the search
space associated with DAG-shaped pipelines is much larger
than that associated with linear pipelines. More specifically,
given T transformers and E estimators, for a chain-shaped
fixed pipeline of length l (width is 1), the number of possible
pipelines is O((T + E)l−1 · E). For example, with l = 4,
T = 6 and E = 8 we get over 21,000 pipelines not includ-
ing hyper-parameters. In contrast, for DAG-shaped pipelines
with maximum width w, the number of possible pipelines
is bounded by O((T + E)w·(l−1) · E). With E, T as be-
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fore and (l = 6, w = 4) (our setting used in experiments),
the total possible pipelines without hyper-parameters is over
6.7 × 1023 which is clearly infeasible to search over with-
out the grammar. This motivates our approach to first search
for a promising pipeline structure and subsequently leverage
any of the existing schemes for solving the CASH problem
associated with the fixed pipeline structure identified.

Greedy Best-First Search
Algorithm 1 describes our greedy best-first search approach
called PIPER (PIPeline grEedy seaRch) that finds and
subsequently optimizes the most promising DAG-shaped
pipeline for input dataset D. In the following, SG denotes
the search space defined by the input AutoML grammar
GML = 〈V, v0,Σ, R〉 where each node n ∈ SG represents
a partial pipeline structure and is associated with a string
n.symbols ∈ (V ∪ Σ)∗ that encodes the pipeline structure
according to the grammar rules. Moreover, each node n is as-
sociated with a heuristic value (or h-value) denoted by h(n).
We use succ(n) to denote n’s successor nodes in SG . The
list OPEN maintains the search frontier and is assumed to
be sorted in decreasing order of the nodes’ h-values. Func-
tion EXPAND(n) describes how node n is expanded by gen-
erating its successors in the search space, while function
ESTIMATE(n, D) is used to compute n’s h-value which
estimates how promising the corresponding partial pipeline
structure is for the input dataset D. The root of SG is labeled
with the start symbol of GML.

The search proceeds in the usual best-first manner. The
node n with the best (i.e., highest) h-value is removed from
the top of the OPEN list and is expanded by generating its
successors according to the grammar rules (line 13). Specifi-
cally, let n.symbols be the string associated with the current
node n. Then, for each non-terminal symbol α ∈ n.symbols
such that n.symbols = u1αu2 and for each grammar rule
r ∈ R whose left hand side matches α (i.e., r : α → β)
the algorithm creates a new child node labeled by the new
string obtained from applying rule r on n.symbols. Further-
more, for each successor node ch ∈ succ(n) we compute
its corresponding h-value (line 16) before inserting it into
the OPEN list. If the current node n has no successors then
its labeling string n.symbols contains only terminal sym-
bols and therefore it represents a complete pipeline structure.
In this case, search terminates and PIPER subsequently op-
timizes the pipeline structure found by selecting the best
configuration of transformers and estimators together with
their hyper-parameters (line 22). This last stage is deferred to
an off-the-shelf CASH optimizer as we will show next.

We note that during search PIPER can also cache sym-
metric pipeline structures (created due to ambiguity in the
grammar) so that they are expanded only once.

Heuristic Function
As is common to best-first search algorithms, the effective-
ness of PIPER depends on the guiding heuristic function.
We show next how to compute the heuristic function h(n)
for each node n in the search space. Let n be the current
search node and let P = n.symbols be its corresponding

(partial) pipeline structure. If P contains non-terminal sym-
bols then we use the following strategy to compute h(n). Let
S = {S1, . . . , SK} be a set ofK randomly sampled terminal
pipeline structures (in our experiments we used K = 10)
that can originate from P (lines 37–42). For each pipeline
Si we use a surrogate modelH to predict the accuracy of Si

on the current dataset D, namely to compute si = H(Si,D).
Then h(n) is the average accuracy over set S (alternatively,
one can use the maximum accuracy over S). If P is a termi-
nal pipeline structure then h(n) = H(P,D). The surrogate
model H is a random forest regressor trained on tuples of
the form ((xk,pj), r) where xk is vector of meta-features
describing the k-th datasetDk, pj is a vector of meta-features
describing the j-th pipeline structure Pj and r is the predic-
tive accuracy of Pj that was optimized for dataset Dk using
an off-the-shelf optimizer. For our purpose, we considered
15 datasets from the OpenML repository (Vanschoren et al.
2013) and for each dataset we generated 100 random pipeline
structures (based on grammar GML) which we subsequently
optimized using Hyperopt1 (Bergstra et al. 2011) on a 70/30
split ratio for training and test data. The meta-features used to
describe the datasets include standard statistical, information
theoretic and landmark-based measures (Munoz et al. 2018),
while the meta-features used to describe pipeline structures
include the length and width of the pipeline structure, the
number of estimators and transformers, as well as the number
of > and & symbols.

Optimizing a Pipeline Structure
As mentioned before, once PIPER finds a solution or a ter-
minal pipeline structure it needs to solve the CASH problem
associated with that particular structure for the input dataset
(line 22). Although there have been many successful CASH
optimizers developed over the past years (e.g., Auto-sklearn
(Feurer et al. 2015) or MOSAIC (Rakotoarison, Schoenauer,
and Sebag 2019)), these methods are typically restricted to
linear pipeline structures and cannot handle directly our com-
plex pipeline structures. Therefore, we extended a recent
CASH optimizer called ADMM (Liu et al. 2020) to handle
DAG-shaped pipeline structures as well.

The ADMM system (Liu et al. 2020) provides a framework
for AutoML that formulates the problem of joint algorithm se-
lection and hyper-parameter optimization as a formal mixed
continuous-integer nonlinear program, and leverages the clas-
sic alternating direction method of multipliers to decompose
this problem into two easier sub-problems: (i) black-box opti-
mization with a small set of continuous variables (correspond-
ing essentially to the continuous hyper-parameters), and (ii) a
combinatorial optimization problem involving only Boolean
variables (corresponding to the machine learning operators
and discrete hyper-parameters). Consequently, these (poten-
tially simpler) sub-problems can be effectively addressed
by existing AutoML techniques, allowing ADMM to solve
the overall problem effectively. For example, we can use
Bayesian optimization (Snoek, Larochelle, and Adams 2012)
to solve the continuous sub-problem and random search

1Available at https://pypi.org/project/hyperopt/. We extended
Hyperopt to handle DAG-shaped pipelines.

8906



(Bergstra and Bengio 2012) for the discrete optimization
part, respectively.

Variants
We discuss next two variants of PIPER that extend the greedy
best-first search beyond the first solution thus aiming at find-
ing better pipeline structures. The first extension, called here-
after PIPERX modifies Algorithm 1 as follows. For each leaf
node n ∈ SG , namely n.symbols encodes a terminal pipeline
structure, PIPERX computes a more informed estimate for
n.symbols than h(n) by first sampling a random config-
uration for the transformers and estimators in n.symbols
together with their hyper-parameters, training the resulting
pipeline on the training subset of the input dataset and subse-
quently evaluating the performance measure (e.g., classifica-
tion error) on the test subset. This way, PIPERX keeps track
of the best possible pipeline structure until the search space is
exhausted or a time limit is reached. Then, the pipeline struc-
ture corresponding to the best solution found is optimized
for the input dataset using the same CASH optimizer as the
original PIPER.

The second variant which we denote by PIPERZ also con-
tinues the greedy best-first search after the first solution is
found, but unlike PIPERX , it optimizes the pipeline structure
corresponding to each leaf node n using the same CASH
optimizer as PIPER. In practice, however, PIPERZ runs the
CASH optimizer for a shorter amount of time compared with
PIPER and PIPERX , respectively.

Experiments
In this section, we evaluate empirically the performance
of our proposed AutoML scheme for optimizing complex
DAG-shaped pipelines. The algorithms were implemented
in Python 3.6 using the scikit-learn algorithms (Pedregosa,
Varoquaux, and Gramfort 2011) and we ran all experiments
on a 2.6GHz CPU with 20GB of RAM.

Algorithms
We compare our proposed algorithms PIPER, PIPERX and
PIPERZ with the TPOT system2 (Olson et al. 2016) as well
as two of the most recent and best-performing AutoML sys-
tems, called MOSAIC3 (Rakotoarison, Schoenauer, and Se-
bag 2019) and ADMM (Liu et al. 2020), respectively. We do
not compare with Auto-sklearn (Feurer et al. 2015) because
both MOSAIC and ADMM outperformed it by a significant
margin (Rakotoarison, Schoenauer, and Sebag 2019; Liu et al.
2020). ADMM was configured with combinatorial multi-arm
bandits for solving the discrete optimization sub-problem
and Bayesian optimization for the continuous one, using 25
iterations per sub-problem as suggested in (Liu et al. 2020).
Furthermore, for TPOT we set the population size to 100. All
competing systems except for MOSAIC used 6 transformers
(MinMaxScaler, RobustScaler, StandardScaler, Normalizer,
Nyströem, PCA) and 8 estimators (GaussianNB, Gradient-
BoostingClassifier, KNeighborsClassifier, LogisticRegres-
sion MultinomialNB, LinearSVC, RandomForestClassifier,

2Available at http://epistasislab.github.io/tpot/
3Available at https://github.com/herilalaina/mosaic_ml

ExtraTreesClassifier). On the other hand, MOSAIC uses the
search space defined in (Rakotoarison, Schoenauer, and Se-
bag 2019) which includes a much larger set of ML operators,
namely 16 estimators and 21 transformers (consisting of
13 pre-processing methods, 6 rescaling strategies and 2 bal-
ancing strategies). Moreover, the current implementation of
MOSAIC does not provide a mechanism for customizing the
search space so that the user could easily choose the trans-
formers and estimators to be used. While TPOT can evolve
tree-shaped pipelines, ADMM and MOSAIC are restricted to
a fixed linear pipeline having a pre-processing step, a trans-
formation step followed by an estimation step. We didn’t run
RECIPE (de Sa et al. 2017) because its Python 2.7 imple-
mentation lead to package version mismatch and different
implementation of the base operators thus preventing us from
having a fair comparison with PIPER, TPOT, MOSAIC and
ADMM which all use Python 3.6.

Benchmarks
We consider a collection of 504 binary and multi-class classi-
fication datasets from the OpenML repository (Vanschoren
et al. 2013) containing missing values as well as both categor-
ical and numerical features. To ensure a consistent evaluation,
we converted the features of each dataset into numerical ones
by first imputing any missing values with the most com-
mon value of the corresponding feature and subsequently
one-hot encoding the categorical features. We report the clas-
sification error as the black-box objective (or performance
measure) and evaluate it on a 70/30 train-test split for all
competing algorithms. The total computational budget is set
to 4 hours for each dataset and we average the performance
over 10 independent runs. TPOT, MOSAIC, and ADMM use
the entire time budget to optimize their corresponding fixed
pipelines. PIPER and PIPERX allocate the first 20 minutes
(1200 seconds) to the greedy best-first search for finding the
most promising DAG-shaped pipeline structure while the
remaining time is used for optimizing the pipeline structure
found. PIPERZ allocates at most 10 minutes (600 seconds)
for each terminal pipeline optimization and continues the
search until the entire time budget is exhausted (see also the
supplementary material).

Results
Figure 2 plots the average ranks across all datasets of the
mean performance over 10 runs (lower rank is better). We
can see that MOSAIC is the best performing system achiev-
ing the best average rank within the first 1.5 hours. After
that, both PIPER and PIPERX catch up and steadily outrank
MOSAIC with PIPERX achieving the best rank after 4 hours,
followed by PIPER and MOSAIC in the third place. TPOT
is the worst performing system, while PIPERZ and ADMM
are clearly outperformed by MOSAIC, PIPER and PIPERX .
Note that in Figure 2(b), for the same set of operators (and

4OpenML datasets: 3, 12, 15, 23, 29, 31, 36, 42, 54, 150, 179,
188, 469, 470, 991, 1053, 1067, 1169, 1461, 1464, 1468, 1475, 1486,
1489, 1492, 4135, 4532, 4538, 6332, 23381, 23517, 40685, 40981,
40996, 41002, 41138, 41142, 41143, 41146, 41147, 41150, 41159,
41161, 41163, 41164, 41165, 41166, 41167, 41168, 41169.
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(a) All methods (mean rank and standard deviation)

(b) All methods except MOSAIC (mean rank and standard deviation)

Figure 2: Average rank (across 50 datasets) of mean performance across 10 runs (lower rank is better).

hyper-parameter ranges), PIPER and PIPERX searching over
the pipeline structures show a significant performance im-
provement over existing fixed structured schemes as opposed
to TPOT which is not competitive to fixed structured schemes
for the 4 hour computation horizon. Figure 2(a) highlights
that even with access to a smaller set of operators compared
to MOSAIC, the pipeline structure search in PIPER and
PIPERX is able to overcome this handicap to be competi-
tive to MOSAIC, again demonstrating the value of structure
search.

Figure 3 plots the mean performance (classification error)
as a function of time, for 9 representative datasets (for clarity,
we use log scale on both axes). First, we see that MOSAIC
finds reasonably good pipelines relatively quickly which is
primarily due to its effective Monte-Carlo tree search strategy
but also to the extended set of transformers and estimators

used. PIPER typically finds the most promising pipeline struc-
ture before the 20 minute mark and spends the remaining time
optimizing it which in many cases converges to a good per-
formance value. PIPERX is slower to find the best pipeline
structure but because it explores a larger space than PIPER
in many cases is able to optimize a better structure which
often translates into better performance. Both PIPER and
PIPERX are very competitive with ADMM and MOSAIC,
in many cases converging to much better objective values. In
contrast, PIPERZ is very slow in converging to good results
and this is because it only allocates a relatively small amount
of time (10 minutes) for optimizing the pipeline structures
visited. Finally, TPOT is the worst performing system across
the majority of datasets considered.

In Table 1 we give the pipeline structures (together with
the classification errors) that were found and subsequently

8908



Figure 3: Mean performance (across 10 runs) vs time (in seconds) for representative datasets.

dataset PIPERX error

29 ((t>((t&e)&e))&(t>(t&e)))>e 0.0818
991 (((t>t>t)>((t&t)>t))&e)>e 0.0014

1492 (t>(t&e))>e 0.2797
41167 (t&t)>e 0.2658

Table 1: Pipeline structures optimized by PIPERX .

optimized by PIPERX on the datasets from Figure 3. We
observe a wide variety of shapes that in many cases lead to
improved performance over the competitors.

Conclusion
The paper explores the power of heuristic search and context-
free grammars to generate machine learning pipelines having
directed acyclic graph shapes. These more complex pipelines
go beyond the traditional fixed linear workflows and have
the potential to discover additional hidden features which

in turn could translate into improved performance. We de-
veloped a greedy best-first search scheme that first traverses
the search space of possible pipeline structures in order to
identify the most promising one and subsequently optimizes
the best structure found by selecting the best configuration of
machine learning algorithms and their hyper-parameters. We
also discuss several variants of this approach. Our empirical
evaluation on a variety of datasets demonstrates the compet-
itiveness of our approach which often outperforms current
state-of-the-art AutoML systems. Future work includes the
development of new heuristic search algorithms, more accu-
rate heuristic functions as well as interleaved computation
between heuristic search and pipeline optimization.
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