
Infinite Gaussian Mixture Modeling
with an Improved Estimation of the Number of Clusters

Avi Matza and Yuval Bistritz
The school of electrical engineering, Tel-Aviv University, Tel Aviv

avimatza@mail.tau.ac.il, bistritz@tauex.tau.ac.il

Abstract

Infinite Gaussian mixture modeling (IGMM) is a modeling
method that determines all the parameters of a Gaussian mix-
ture model (GMM), including its order. It has been well doc-
umented that it is a consistent estimator for probability den-
sity functions in the sense that, given enough training data
from sufficiently regular probability density functions, it will
converge to the shape of the original density curve. It is also
known, however, that IGMM provides an inconsistent estima-
tion of the number of clusters. The current paper shows that
the nature of this inconsistency is an overestimation, and we
pinpoint that this problem is an inherent part of the training
algorithm. It stems mostly from a “self-reinforcing feedback”
which is a certain relation between the likelihood function of
one of the model hyperparameters (α) and the probability of
sampling the number of components, that sustain their mutual
growth during the Gibbs iterations. We show that this prob-
lem can be resolved by using informative priors for α and
propose a modified training procedure that uses the inverse χ2

for this purpose. The modified algorithm successfully recov-
ers the “known” order in all the experiments with synthetic
data sets. It also demonstrates good results when compared
to other methods used to evaluate model order, using real-
world databases. Furthermore, the improved performance is
attained without undermining the fidelity of estimating the
original PDFs and with a significant reduction in computa-
tional cost.

Introduction
The infinite Gaussian mixture model (IGMM) is a method
for modeling multimodal distributions in a non-parametric
Bayesian framework. It aims to provide a fully generative
Gaussian mixture model (GMM), for arbitrary data, with-
out a presumed number of Gaussians. The fact that IGMM
is able to simultaneously infer both the number of Gaussian
components and their parameters, makes it particularly at-
tractive for clustering applications, where the primary goal
is to determine the number of clusters in some unexplored
data. The IGMM has been used for this purpose in bioin-
formatics (Medvedovic and Sivaganesan 2002), astronomy
(Shin, Sekora, and Byun 2009), speech (Niekum and Barto
2011), (Kamper et al. 2014) and various other fields.
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The IGMM parameters are typically obtained by unsu-
pervised Bayesian inference techniques, in which a Dirich-
let prior is assigned to the weights of the mixture. This ap-
proach falls within a family of modeling methods known
as Dirichlet process mixture (DPM) modeling, see Fergu-
son (1973) and Antoniak (1974), that was subsequently ap-
plied to modeling, clustering and classification (Bouguila
and Ziou 2009; Görür and Rasmussen 2010; Hu et al. 2013;
Davy and Tourneret 2010; Dai and Storkey 2014; Meilă and
Chen 2016) and others.

As a Dirichlet process mixture of Gaussians, the IGMM
is a consistent estimator of probability density functions
(PDF). Namely, given enough training data from a suffi-
ciently regular PDF, the DPM model converges to the shape
of the density (Ghosal, Ghosh, and Ramamoorthi 1999;
Miller and Harrison 2013). However, consistency in estimat-
ing the shape of a density function does not necessarily mean
a proper estimation of the number of components (the order)
of the mixture (Miller and Harrison 2013, 2014, 2018; Lu
2017; Harshavardhan and Sreenivas 2010).

This inconsistency in order estimation is undesirable in
density estimation tasks, as it means wasting computation
effort on exploring insignificant regions in the parametric
space and creating a model with higher than necessary num-
ber of parameters. It becomes unacceptable in clustering ap-
plications where the main goal is to estimate the number of
clusters in some unfamiliar data.

It has been shown by West (1992) and Escobar and West
(1995), following the work of Antoniak (1974), that the
number of components in a DPM is affected mainly by a
specific parameter of the Dirichlet prior distribution called
the concentration parameter and denoted usually by α.

In spite of its significance, the selection of α has not re-
ceived enough attention. Some studies simply set α to some
adhoc value. For example, it was set to 1 in Medvedovic and
Sivaganesan (2002) and in Shin, Sekora, and Byun (2009).
Some other works, like Escobar and West (1992) and Ras-
mussen (2000), selected α with a prior distribution hav-
ing some fixed hyper-parameters. For some more elaborated
hyper-parameters selection methods of priors for α see Do-
razio (2009) and Murugiah and Sweeting (2012).

This paper proposes a new training algorithm for IGMM,
one that achieves quite accurate estimation of the “correct”
number of components in synthetically generated data as
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well as real-world databases. First we present the baseline
IGMM and explore the relationship between the concen-
tration parameter α of the prior distribution for the model
weights and the inferred model order. We expose a mech-
anism that sustains the increase in the number of weights
sampled by the Gibbs algorithm and shortly discuss a few
possible options to mitigate it. Section 4 presents the pro-
posed modified algorithm followed by some evaluation tests
results. Additional advantages of the modified IGMM in-
cludes: (i) flexibility to calibrate the algorithm roughly to-
ward the anticipated order range using a single adjustable
parameter that is shown to need only crude adjustment. (ii)
good estimation of the PDF shape and (iii) reduced cost of
computation.

The Baseline IGMM
The IGMM training algorithm as proposed by Rasmussen in
(2000) and implemented by Mandel (2005), has the follow-
ing hierarchical structure
Ground level - modeling the data. Consider a data set Y =
{y1, y2, . . . , yN} of real scalars yn that can be modelled by
a mixture of K (finite yet unknown) Gaussians

p(yn|MK) =
K∑
k=1

πkN (yn|µk, s−1
k ). (1)

In the above we use N (·) to denote a Gaussian (normal)
PDF with mean µk and precision sk and πk > 0 are weights
such that

∑K
k=1 πk = 1. The collection of parameters of this

GMM is denoted by MK viz.

MK = {πk, µk, sk, k = 1, . . . ,K} (2)

First level - modeling the priors. The means, precisions
and weights are modeled by

µk|λ, r ∼ N (λ, r−1) (3)

sk|β,w ∼ G (β,w−1) (4)

where G (·) denotes the Gamma distribution. The mixing
weights are modeled by a Dirichlet prior as follows

π1, . . . πK |α ∼ D
( α
K
, . . . ,

α

K

)
=

Γ(α)

Γ( αK )K

K∏
k=1

π
α/K−1
k

(5)
Second level - modeling the hyper parameters. The pa-
rameters λ and r (common to all the means) are modeled
by

λ ∼ N (µy, s
−1
y ) , r ∼ G (1, sy) (6)

where µy and sy denote the mean and precision of Y and are
regarded as a set of given scalars. The parameters of G (·)
(common to all the precisions) are modeled by

β−1 ∼ G (1, 1) , w ∼ G (1, s−1
y ) (7)

and the inverse of α is modeled by

α−1 ∼ G (1, 1). (8)

Actual model parameters are obtained by using the Gibbs
sampling algorithm. The Gibbs sampling is a Markov chain
Monte Carlo (MCMC) type algorithm that is used to ob-
tain a sequence of samples for the parameters of a multi-
variable distribution. It is often used when the distribution
does not have a closed form expression or when it does not
render itself easily to direct sampling. These samples are ob-
tained from the marginal posterior distributions of each pa-
rameter, in a sequential manner that can be shown to con-
verge (Casella and George 1992). And then they are used
to approximate the joint distribution. In the following we
refer to the model and algorithm outlined above as the base-
line IGMM. In the supplementary material we use synthetic
databases to demonstrate that the baseline IGMM severely
overestimates the number of components in a mixture (its
order).

Hyper Parameter Statistics
Although several parameters have an impact on the number
of estimated mixture components (K), the most significant
parameter is the concentration parameter α in the Dirichlet
process for the mixture weights in (5).

The probability of observing k distinct values when sam-
plingN times a Dirichlet process with concentration param-
eter α (corresponding to the probability that there are K dif-
ferent values of π) can be expressed by

p(k|α,N) = cn(k)N !αk
Γ(α)

Γ(α+N)
; k ∈ {1, 2, . . . , N}

(9)
where Γ(·) is the Gamma function and cn(k) is P (k|α,N)
at α = 1 , see (West 1992) and (Antoniak 1974). cn(k)
can be computed by taking the absolute value of the Stir-
ling numbers of the first kind |S(k)

n | that for large N can be
approximated by

|S(k)
n | ≈

(N − 1)!

(k − 1)!
(γ + log(N))k−1 (10)

where γ is Euler’s constant. Therefore, the distribution of k
given α and assuming largeN is approximately proportional
to

p(k|α,N) ∝
∼

αk(γ + log(N))k−1

(k − 1)!

N !(N − 1)!Γ(α)

Γ(α+N)
.

(11)
Figure 1 presents the shapes of p(k|α,N) for α =

1, . . . , 8 (with N set arbitrarily to 60 and curves scaled by
a proportion constant for convenience). In this figure, the
left most curve (marked with “+”s) corresponds to α = 1
and the following curves from left to right correspond to in-
creasing values for α. It is clear that, indeed, higher values
of α are associated with higher values of k.

Let us examine the opposite direction. Namely, let us see
how k affects α. The posterior distribution of α given k (and
N ) is proportional to the conditional likelihood of α, (desig-
nated as L(α|k,N)) times some prior distribution assigned
to it (pr(α)),

p(α|k,N) ∝ L(α|k,N)pr(α). (12)
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Figure 1: Approximated probability of k (α = 1, . . . , 8).

Figure 2: The likelihood of α for k = 1, . . . , 10.

We need to examine the impact of each of the two terms
in this product. The asymptotical likelihood of α given in
(11), suggests the following approximation, per each k (and
a fixed N )

L(α|k,N) ∝
∼
αk

Γ(α)

Γ(α+N)
. (13)

Figure 2 illustrates the shape of the curves for k =
1, . . . , 10 (scaled by a constant). The leftmost graph (also
marked by “+”) corresponds to k = 1 and the following
curves (left to right) represent the likelihood of α for the
subsequent values of k. The curves show that as k increases,
the likelihood of sampling higher values for α increases as
well.

So we see that increased values of α increase the probabil-
ity of sampling higher values for k and that as k increases,
the likelihood of sampling larger values for α increases as
well. The combination of these two observations identifies
a “self-reinforcing feedback” mechanism that sustains suc-
cessive overestimation of k. A more formal analysis of the
behaviour of p(k|α) and L(α|k,N) is presented in the sup-
plementary material.

This raises the question of how this “self-reinforcing feed-
back” mechanism might be mitigated in order to avoid the
order overestimation it “causes”. We explored various plau-
sible remedies. For example in the supplementary material
we examine changing the priors for α and it becomes ap-

parent that the specific shape of the prior distribution does
not have a significant impact on the overestimation issue. A
well established fact in Bayesian estimation is that the sup-
port range of a prior has a significant impact on the posterior
distribution. This means that setting an informative prior for
α could be useful thorough selecting a prior such that α is
confined to some restricted range of values. If, for example,
we could limit α to values not higher than α = 1, then, as
illustrated in Figure 1, the values sampled for k will reside
mostly between 1 and 20 (and most likely around 10). On
the other hand, if the prior distribution admits higher values,
say up to α = 8, then all the curves in Figure 1 represent
viable options with the consequence that values of k of 100
and beyond may be sampled. In other words, selecting an
informative prior with limited admissible range of α may
provide the remedy to the order overestimation.

Although informative priors can be assign using many
distributions (including ones that were used before), when
selecting a practical distribution we have a few additional
requirement, it should (i) lead to conditional posterior dis-
tributions of model parameters that admits easily to Gibbs
sampling (ii) admit easy manipulation of the prior informa-
tion. In this paper we offer the inverse χ2 PDF given by

pinverse χ2(α|θ) =
α(− θ2−1) exp (− 1

2α )

Γ( θ2 )2
θ
2

, α > 0.

(14)
The inverse χ2 was chosen as it is a special case of

the inverse Gamma PDF and thus retains the tractability of
many of the posterior parameters for the Gibbs procedure.
Furthermore, while it does not have a limited support, it in-
volves only a single calibration hyper parameter (θ) which
considerably simplifies prior regulation when compared for
example with PDFs having two parameters as suggested for
example in Dorazio (2009) and in Murugiah and Sweeting
(2012).

The Modified IGMM
In this section we consolidate the insights and observations
presented so far into proposing a modified IGMM. Assume
we have a set of observed data Y = {y1, y2, . . . , yN} ob-
tained from some unknown number of sources. This data
can be modelled by the GMM of order K in (1) with a set
of parameters MK as in (2). The means µk are normally dis-
tributed (3) with mean λ and precision r common to all the
mixture components.

The λ and r are hyper parameters modeled by normal and
Gamma distribution depending on mean µy and the preci-
sion sy obtained from the data Y. We assign to Y a set of
stochastic indicator variables C = {c1, c2, . . . , cN} where
cn ∈ {1, . . . ,K} indicates which component “generated”
yn. Then the conditional posterior distribution for the means
becomes

p(µk|Y,C, sk, λ, r) = N
(
yk`ksk+λr
`ksk+r , 1

`ksk+r

)
. (15)

In the above `k,
∑K
k=1 `k = N , denotes the number of data

points that belong to mixture k (the occupation number) and

8923



yk denotes their mean. The conditional posterior distribu-
tions for the hyper parameters become

p(λ|µ1, . . . , µK , r) =

N
(
µysy+r

∑K
k=1 µk

sy+Kr , 1
sy+Kr

) (16)

and

p(r|µ1, . . . , µK , λ) =

G

(
K + 1,

(
1

K+1 (s−1
y +

∑K
k=1(µk − λ)2)

)−1
)
.

(17)
The precision parameters sk are modelled by Gamma dis-

tribution with second level hyper parameters β and w as in
(4). The parameters β and w are assumed to be common to
all components and modelled as in (7). Consequently, the
conditional posteriors for sk and w are

sk|Y,C, µk, β, w ∼

G

(
β + `k,

(
1

β+`k
(wβ +

∑
n:cn=k(yn − µk)2)

)−1
)

w|s1, . . . , sK , β ∼

G

(
βK + 1,

(
1

βK+1 (sy + β
∑K
k=1 sk)

)−1
)
.

(18)
In the baseline algorithm β posterior distribution did not

have a form of a standard density functions thus the train-
ing algorithm resorted to adaptive rejection sampling (ARS)
(Gilks and Wild 1992). When driving the modified IGMM
posterior distributions we ended up with a similar issue. We
studied a few possible distribution functions and concluded
that β posterior distribution can be best approximated by us-
ing the standard generalised inverse Gaussian (GIG) distri-
bution, given by

pGIG(x|ψ, ρ, ξ) =(
ψ
ρ

) ξ
2 xξ−1

2Kξ(
√
ψρ)

exp
(
− 1

2

(
ρ
x + ψx

)) (19)

whereKξ(·) denotes the modified Bessel function of the sec-
ond kind and the corresponding β posterior approximation
is

p(β|s1, . . . , sK , w) ≈
pGIG(β|

∑K
k=1 (skw − ln(skw)) , 1, K−1

2 ).
(20)

The full derivation of the posterior and the resemblance to
the GIG distribution are provided in the supplementary ma-
terial.

Remaining is the consideration of the weights πk. These
parameters are Dirichlet distributed as in (5) with the hyper
parameter α, the so-called concentration parameter that we
investigated in the previous section. Assuming that p(α−1)
has χ2 distribution, then α has an inverse chi square distri-
bution pinverse χ2(α) defined in (14) which results in

p(α|θ,K) ∝ α(− θ
2
−1) exp (− 1

2α )

Γ( θ2 )2
θ
2

αKΓ(α)
Γ(N+α) ∝

α(K− θ
2
−1)Γ(α) exp (− 1

2α )
Γ(N+α)

(21)

(the full derivation can be found in the supplementary mate-
rial).

At this point, the Gibbs algorithm encounters an obstacle.
We notice that α can’t be sampled directly because it does
not have a closed-form PDF. In order to avoid using ARS,
we followed Escobar and West in (1995), note that the ratio
of the Gamma functions in (21) can be replaced with

Γ(α)
Γ(N+α) = (α+N)B(α+1,N)

αΓ(N) (22)

where B(α+ 1, N) is the standard Beta function

B(u, v) =

∫ 1

0

zu−1(1− z)v−1dz . (23)

After a few algebraic manipulations (provided in the supple-
mentary material) we get

p(α|z,K) ∝ ΨzpGIG(α| − 2ln(z), 1,K − θ
2
)+

(1−Ψz)pGIG(α| − 2ln(z), 1,K − θ
2
− 1).

(24)

This expression is suitable for Gibbs sampling, eliminating
the previous need for a secondary sampling (Gilks and Wild
1992). The ratio of the weights, defined via Ψz , is calculated
using

Ψz

1−Ψz
= N

√
−2ln(z). (25)

In order to complete the sampling of α, we still need the
conditional marginal PDF of the auxiliary parameter z. It
can be noticed from (23) that z can be considered as

p(z|α) ∝ zα(1− z)N−1 , (26)

which corresponds to a standard Beta distribution with
1

B(α+1,N) as the proportion constant. Thus, the auxiliary pa-
rameter z can also be obtained by Gibbs sampling. Up until
this point,K, which represents the number of components in
the model, was assumed to be a finite value. It can be shown
that the conditional posteriors of all model parameters (pre-
pared for the Gibbs sampler), except the set of indicators C,
remain the same when K in their expressions represent, in-
stead, the number of occupied mixture components (rather
than all the possible components). The conditional posterior
of the indicators can be obtained using some algebraic ma-
nipulations and the expression for the posterior probably of
attaining new components is

p(cn = k|C−n, α, µk, sk) ∝
`−n,k
N−1+αs

1
2

k exp
(
− sk(yn−µk)2

2

)
.

(27)

The combined probability for all the other (not n) indicators
to belong to other mixture components is

p(cn 6= cn′ , ∀n 6= n′|C−n, α, λ, r, β, w) ∝
α

N−1+α

∫
p(yn|µk, sk)p(µk, sk|λ, r, β, w)dµkdsk

(28)

where C−n presents all the indicators excluding cn, `−n,k
presents the number of data samples, excluding yn, that are
associated with component k of the mixture and the sub-
script −n stands for “all indices except n”.

Unfortunately, the integral for p(cn 6= cn′) is not analyt-
ically tractable. Following Neal (2000) we approximate it
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in two steps as follows. First we sample priors of µk and sk
and use them to compute yn probabilities. Next we use these
probabilities to draw new indicators from a multinomial dis-
tribution. This procedure provides a convenient way to gen-
erate new mixture components. Finally, it is noted that the
correspondence between the indicators, πk and `k (the num-
ber of data points that belong to the component k) is given
by

p(πk|C) =
`k∑K
k=1 `k

. (29)

The Proposed Procedure
In the following we formalize the training procedure, using
the modifications introduced so far. Note that the procedure
has a free parameter, the θ of the inverse chi square in (25)
that can be used to crudely adjust the expected number of
components. Notation wise, we use variables without a su-
perscript to designate the input values at the beginning of the
iteration step, and the superscript ν (“new”) for the value that
the iteration assigns to them.
• Initialization. The algorithm begins with a single mix-

ture component. All data points are allocated to K = 1
thus cn = 1 (for n = 1, . . . , N ), `1 = N and y1 = Y
(i.e. average over all the data). Calculate the sy and µy
for the available data as defined in (6). Sample initial val-
ues for the parameters for λ, r, w, β, sk, α and z using
(6),(7),(4),(14) and (26). Note that (14) requires an appro-
priate setting of θ. This value should be selected such that
it corresponds to the number of components expected in
the model.

• An M →Mν iteration.

Step 1. Sample µk, λ, r, sk, w, β from their posterior
distributions using equations (15-18,20) and assign
them to µνk, λν , rν , sνk, wν , βν respectively.

Step 2. Sampling of the hyper parameter αν :
– Calculate the ratio Ψν

z/(1−Ψν
z) using (25) and de-

termine Ψν
z .

– Sample an auxiliary parameter % from a uniform
distribution [0:1].

– If % < Ψν
z , use the parameters from the first pGIG

distribution in (24) to sample αν . Otherwise use
the parameters from the second distribution for the
same purpose.

Step 3. Sample auxiliary parameter zν using (26) and
calculate `ν−n,k.

Step 4. Obtaining probabilities for a new set of indica-
tors:
Determine intermediate Ctmpe from the posterior
probabilities p(cn = k|C−n, α, µk, sk) in (27) (for
all k ∈ {1, . . . ,K}).
Next, calculate the probability of Ctmpoth (the remain-
ing entries), in two steps:

– First, use the prior distributions (3) and (4) to
draw temporary mixture parameters µtmp, stmp.
Then use them to calculate the probabilities

p(yn|µtmp, stmp) for each sample (the probability
of yn to come from a new mixture component).

– Next, multiply the results by the first part of (28)
to obtain the conditional posterior probabilities for
getting all other entries, Ctmpoth .

Finally, allocate the probabilities of all the other en-
tries to one additional component.

Step 5. Sampling a new set of indicators Cν =
{cν1 , . . . cνN}:
Use the probabilities for Ctmpe and Ctmpoth to randomly
draw N indicators (cn) from a multinomial distribu-
tion, one for each data sample, thus obtaining an up-
dated Cν .

Step 6. Adding or discarding mixture components:
– If data points were allocated to the new extra

component, increase the value of K by one. Use
(µtmp, stmp) drawn earlier as the mean and preci-
sion of the new mixture component.

– If one or more existing mixture components were
not assigned data points in the current cycle, re-
move them from the mixture and reduce the value
of K accordingly.

Denote the resulting updated number of mixture
components Kν .

Step 7. For each k ∈ {1, . . . ,Kν}, calculate `νk and
use (29) to calculate πνk .

Step 8. Update all parameters: Rename all the new (ν)
parameters as current parameters. Namely, remove ν

from all parameters Mν →M (as defined in (2)), and
similarly {λν , rν , βν , wν , αν ,Cν ,Kν , `νk, z

ν} →
{λ, r, β, w, α,C,K, `k, z}.
Go to Step 1

• Termination. Steps 1-8 present one iteration cycle that
produces one new sampled GMM with its parameters MK

(2). This cycle is repeated till enough sampled models are
obtained (in our tests we used 12,000 samples). After-
ward, MAP is used to determine the value of K. If the
goal is to determine the number of clusters in the data
then this last MAP step terminates the algorithm. Else, if
the task also requires estimation of the PDF, some addi-
tional MAP decisions may be applied to extract the best
GMM parameters from all the models with the relevant
K.

It is important to note that the use of χ2 prior for α should
not be regarded as providing by itself the total cure for the
overestimation issue. However, the modified algorithm pro-
vides better means to mitigate this problem. Further discus-
sion regarding the impact of the selected θ on model order
estimation as well as a general method on how to judicially
select it is provided in the next section.

Evaluating the Modified IGMM
In order to evaluate the performance of the modified algo-
rithm we compare its results to the ones obtained by the
baseline algorithm. This is done by executing both with 4
synthetic data sets designated as p1, p2, p3 and p4. Each
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Data True Base Base Modif. Modif.
set K K KLmc K KLmc
p1 6 23 (21) 0.027 6 (94) 0.003
p2 3 64 (38) 0.082 3 (84) 0.041
p3 20 43 (32) 13.37 20 (62) 13.51
p4 30 63 (36) 39.95 30 (61) 36.28

Table 1: Comparison the baseline and the modified IGMM

data set contained 10,000 samples generated by randomly
sampling four GMMs as follows:
• The p1 data set was created using a GMM as in (1)

of order K = 6 with π = ( 1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ) , µ =

(−15,−8,−3, 3, 8, 15) and s−1 = (1, 1, 1, 1, 1, 1).
• The p2 data set was created using a GMM of orderK = 3

with π = ( 3
10 ,

1
2 ,

1
5 ) , µ = (−1, 0, 3) and s−1 = ( 3

2 , 1,
1
2 ).

• The p3 data set was created using a GMM of order K =
20 with weights πk, drawn from a uniform distribution
U(0, 10) (scaled to sum up to 1), means µk drawn from
N (0, 30) and precision sk drawn from U(0, 10).
• The p4 data set was created using a GMM of order K =

30 with randomly generated parameters like in data set p3.
Both algorithms were executed 500 times for each data set,
and K that was obtained most, and its % (in the parenthesis)
are presented in the Table 1. Along with order estimation, the
symmetric Kullback-Leibler divergence between the known
GMMs and the corresponding inference is presented. It was
evaluated through Monte Carlo simulation using one of the
models with an appropriate K. It is clear that in all the exper-
iments, the modified algorithm excels in estimating the order
of the models. Furthermore the resulting models are also ad-
equate as was verified by both the low divergence scores pre-
sented above, and reaffirmed by a visual inspection of their
correspondence to the original histograms, presented in the
supplementary material.

The Impact of the Calibration Parameter
One of the reasons the inverse χ2 PDF was selected as a
prior for α was the fact that it depends on a single parame-
ter θ (14) and as such can be easily manipulated. The mean
value of pinverse χ2(α|θ) is given by 1

θ−2 (for θ > 2). This
fact can be used as a rule of thumb to set a judicious choice
for θ when there is some vague prior knowledge regarding
the expected number of clusters (mixture components) in the
explored database. In this subsection we show that the spe-
cific setting of θ is not critical and that order estimation re-
sults are quite tolerant in this regard.

We executed the modified training algorithm using
p1, p2, p3, p4 with different values of θ. For each data set and
per every selection of θ we obtained 50,000 samples of K.
Figure 3 presents the results in the form of box-plots. The x
axis presents the different values of θ and the y axis the or-
der sampled (K) for these values. For each box, the central
mark presents the median, and its floor and ceiling its 25th

Figure 3: Box plots for p1 to p4 with various values of θ.

and 75th percentiles, respectively. The 2 vertical lines indi-
cate the range in which the results are still considered valid,
and outliers are plotted individually using the ’+’ symbol.

For p1, it is seen that for θ = 14, 16, K is centered
around 8, for θ = 18 K is centered around 7 and for
θ = 20, 22, 24, 26, K is centered around 6. Thus the correct
value K = 6 resides, in all cases, between the 25th and 75th
percentiles and for θ = 20, 22, 24, 26 it forms the central
value. For p2, all the values of θ around 30 (±6) resulted in
the correct value K = 3 as the central value. For p3 the cor-
rect value K = 20 is between the 25th and 75th percentiles
for values of θ ranging from 12 to 22. It is the central value
for θ = 16 and is estimated just slightly higher (K = 21)
for θ = 12, 14. Similar behavior is observed for p4, were
for small values of θ (between 12 and 18), K is estimated
higher than its actual value (K = 30) and for higher θ, the
central K values are less than 30.

Since the papers main concern is the “self-reinforcing
feedback” issue, the resulting overestimation, and how it
can be resolved, we used in the previous tests θ values that
demonstrate that this overestimation can indeed be miti-
gated. One should note, however, that a non-judicious se-
lection of θ may result not only in overestimation but also
in underestimation. Fortunately, the results presented in this
section suggest that one needs only a vague prior knowledge
regarding the expected number of clusters in the explored
data, set θ accordingly and the modified algorithm will, most
likely, converge to the correct order.

Reduced Computational Cost
It is worth noting, that the proposed algorithm also offers
a significant reduction in computational cost. The reduction
stems from obtaining closed form representations for some
of the posteriors. These representations eliminate the need
for a secondary sampling (using ARS), that was necessary
in the baseline algorithm. This circumvents several hundreds
of iterations per the creation of each model.

We used the same test environment for both the base-
line and the modified IGMM in all our experiments. They
were executed using matlab on a core i7 cpu at 2.8 GHz
with 16GB ram. Both the baseline and the modified algo-
rithms were executed several times using the reported four
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synthetic data sets. The average running time (per data set)
measured for the baseline algorithm was approximately 996
seconds where the average time for the modified algorithm
was 223 seconds. Namely, the proposed procedure is about
4 times faster than the baseline algorithm.

Comparison with Other Methods
In the previous sections we demonstrated that the modified
IGMM was able to avoid over estimation and successfully
determined model order in several test scenarios. Let us
compare our performance with a few other order estimation
methods. Most often, GMM is trained by the expectation
maximization (EM) algorithm, so our first two methods are
drawn from this realm. EM inference of a GMM typically
requires an initial setting of K, in order to determine the
best model order we executed the training algorithm multi-
ple times with different values of K (K = 2, . . . , 25) and
used two methods to select the “best” model among them.

The first method is the Akaike Information Criteria (AIC),
in Akaike (1973), expressed as

AIC(λk) = −2L(Y|Mk) + 2νk, (30)

where Y is the training data, L(Y|Mk) is the log likeli-
hood function and νk is the number of free parameters in
the model. The second is the minimum description length
(MDL) criterion which can be seen in Rissanen (1978)

MDL(λk) = −L(Y|Mk) +
νklog(N)

2
, (31)

were N represent the number of available training samples.
A third method we use for comparison is based on com-

petitive learning which is a form of unsupervised learning
were components compete each other for the right to be up-
dated. One of the main competitive learning algorithms ap-
plied to GMM is the rival penalization competitive learning
(RPEM) presented by Cheung (2005). We follow here the
procedure presented in Matza and Bistritz (2011).

Our comparison is based on a clustering task of 3 well
know databases, the galaxy, enzyme and acidity databases.
Table 2 presents the number of clusters determined, for each
database, by the various methods. The first raw presents the
range of the ”true” number of clusters, the most likely values
are in parenthesis. These values were set based on the re-
sults reported in the literature, for the galaxy database they
were set based on results from Escobar and West (1995);
Richardson and Green (1997); Fraley and Raftery (2007);
Griffin (2010) and others. For the enzyme database results
are based on Bechtel et al. (1993); Richardson and Green
(1997); Bilancia and Pollice (1999); Griffin (2010), and for
the acidity database on Richardson and Green (1997); Grif-
fin (2010); Das and Bhattacharya (2014).

Note that the modified IGMM was executed, again, 500
times per database. For the galaxy database the valueK = 4
was inferred 98% of the time, for the enzyme database K =
5 was inferred 88% of the times and in case of the acidity
database K = 4 was obtained in all our 500 repeated runs
of the algorithm.

We can see that all the compared methods, except for the
baseline IGMM, were able to infer K quite successfully and

Galaxy Enzyme Acidity
True K 1− 15 2− 10 1− 13

(5− 6) (3− 4) (2− 4)
Baseline IGMM 52 54 48
Modified IGMM 4 5 4
GMMAIC 9 10 9
GMMMDL 11 9 10

RPEM 7 9 10

Table 2: Comparing modified IGMM to other methods

their estimation is aligned with the range of values that cor-
responds to these data bases. For example, RPEM estimated
K = 7 for the galaxy database which is well within the
range of 1 − 15 deduced in other papers. AIC with K = 9
and MDL with K = 11 are also well within bounds for this
database. Similar results can be observed when looking into
the inference results of the other two data bases. One should
note, however, that in most cases these results are close to the
edge of the acceptable ranges. The modified IGMM results,
on the other hand, are closer to the center of these ranges
and corresponds better to the more likely values.

Conclusion
The paper attended to an observed order overestimation
problem in previous implementations of the IGMM that hin-
ders the use of this unsupervised hierarchical Bayes training
procedure for clustering problems. The order overestimation
was pinpointed to certain “self-reinforcing feedback” rela-
tions between the likelihood function of the concentration
parameter of the Dirichlet prior assigned to the weights (α),
and the probability of sampling values for K, that sustains
the growth of the two of them during the Gibbs iterations.
We showed that this failure can not be resolved by a sim-
ple replacement of priors but requires using informative pri-
ors for α. We proposed an alternative training algorithm that
uses inverse χ2 as prior and involves an adjustable param-
eter (θ) that, upon crude calibration toward the anticipated
range of orders, has recovered the “true” number of mixture
components in all the experiments held with synthetic data
sets. When tested using real-world databases, and compared
to other methods used to evaluate model order, the algorithm
demonstrated very good performance as well.

While other informative priors could be used, inverse χ2

was selected since it is the simplest among several possible
choices and it has the advantage of having a single tuning
parameter with a robust behaviour. The improved order esti-
mation was attained without impairing the accurate estima-
tion of the PDF. Furthermore, the modified IGMM circum-
vents the need for a secondary intermediate sampling algo-
rithm (ARS) resulting in a much simpler training procedure
with a significantly lower cost of computation. The modified
IGMM presented here may be used to model data in various
classification tasks. It is expected to be particularly attrac-
tive in tasks where the investigated data is scarce and has
few clusters whose number has to be estimated accurately.
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