
Physarum Powered Differentiable Linear Programming Layers and Applications

Zihang Meng, 1 Sathya N. Ravi, 2 Vikas Singh 1

1 University of Wisconsin-Madison
2 University of Illinois at Chicago

zihangm@cs.wisc.edu, sathya@uic.edu, vsingh@biostat.wisc.edu

Abstract
Consider a learning algorithm, which involves an internal call
to an optimization routine such as a generalized eigenvalue
problem, a cone programming problem or even sorting. In-
tegrating such a method as a layer(s) within a trainable deep
neural network (DNN) in an efficient and numerically stable
way is not straightforward – for instance, only recently, strate-
gies have emerged for eigendecomposition and differentiable
sorting. We propose an efficient and differentiable solver for
general linear programming problems which can be used in a
plug and play manner within DNNs as a layer. Our develop-
ment is inspired by a fascinating but not widely used link be-
tween dynamics of slime mold (physarum) and optimization
schemes such as steepest descent. We describe our develop-
ment and show the use of our solver in a video segmentation
task and meta-learning for few-shot learning. We review the
existing results and provide a technical analysis describing its
applicability for our use cases. Our solver performs compara-
bly with a customized projected gradient descent method on
the first task and outperforms the differentiable CVXPY-SCS
solver on the second task. Experiments show that our solver
converges quickly without the need for a feasible initial point.
Our proposal is easy to implement and can easily serve as lay-
ers whenever a learning procedure needs a fast approximate
solution to a LP, within a larger network.

1 Introduction
Many problems in machine learning can be expressed as,
or otherwise involve as a sub-routine, the minimization of a
linear function constrained by a set of linear equality and in-
equality constraints, also known as a Linear Program (LP).
LPs can be solved efficiently even when the problem sizes
are large, and industrial strength solvers are readily avail-
able. Over the last twenty years, direct applications of LPs in
machine learning and computer vision include image recon-
struction (Tsuda and Rätsch 2004), denoising (Tavakoli and
Pourmohammad 2012), deconvolution (Ahmed, Recht, and
Romberg 2013) surface reconstruction (Grady 2008), graph-
ical models (Ravikumar and Lafferty 2006), scene/view
understanding (Mauro et al. 2014), and numerous others.
While the use of specialized solvers based on combinato-
rial optimization rather than the direct use of a simplex or
interior point method has been more common in large scale

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

settings (e.g., in vision), there are also numerous instances
where LP duality inspired schemes (such as primal-dual
methods) have led to competitive and/or more general so-
lution schemes.

Are LPs needed in modern learning problems? Within
the last decade, deep neural networks have come to dominate
many AI problems. So, an LP (or other well-studied numer-
ical algorithms/methods) will rarely provide an end-to-end
model for a practical problem. Nonetheless, similar to how
various linear algebra routines such as eigendecomposition
still play a key role as a sub-routine in modern learning tasks,
LP type models are still prevalent in numerous pipelines
in machine learning. For instance, consider a representation
learner defined by taking our favorite off-the-shelf architec-
ture where the representations are used to setup the cost for
a “matching” problem (commonly written as a LP). Then,
once a matching problem is solved, we route that output to
pass through downstream layers and finally the loss is evalu-
ated. Alternatively, consider the case where we must reason
about (or group) a set of low-level primitives, via solving
an assignment problem, to define a higher order semantic
construct as is often the case in capsule networks (Sabour,
Frosst, and Hinton 2017). Or, our architecture involves esti-
mating the Optimal transport distance (Salimans et al. 2018;
Bousquet et al. 2017; Sanjabi et al. 2018) where the cost
matrix depends on the outputs of previous layers in a net-
work. Such a module (rather, its approximations) lie at the
heart of many popular methods for training generative ad-
versarial networks (GANs) (Arjovsky, Chintala, and Bottou
2017). Separately, confidence calibration is becoming an im-
portant issue in deep learning (Guo et al. 2017; Nixon et al.
2019);several forms of calibration involve solutions to LPs.
One approach for dealing with such a “in the loop” algo-
rithmic procedure (Amos and Kolter 2017) is to treat it as a
general two-level optimization. When the feasible set of the
LP is a box/simplex or can be represented using ratio type
functions (Ravi et al. 2020), it is possible to unroll the op-
timization with some careful modifications of existing sub-
routines such as projections. This is not as straightforward
in general where one must also concurrently perform pro-
jections on to the feasible set. An ideal solution would be a
LP module that could be used anywhere in our architecture:
one which takes its inputs from the previous layers and feeds
into subsequent layers in the network.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8939

Contributions: Backpropagation through LP. The key
difficulty in solving LPs within a deep network is efficiently
minimizing a loss `(·) which depends on a parameter derived
from the solution of a LP – we must backpropagate through
the LP solver to update the network weights. This problem
is, of course, not unique to LPs but has been recently en-
countered in inserting various optimization modules as lay-
ers in a neural network, e.g., reverse mode differentiation
through an ODE solver (Chen et al. 2018), differentiable
sorting (Mena et al. 2018) and formulating quadratic (Amos
and Kolter 2017) or cone programs as neural network lay-
ers (Agrawal et al. 2019). Our inspiration is a beautiful link
(Straszak and Vishnoi 2015; Johannson and Zou 2012) be-
tween dynamics of a slime mold (physarum polycephalum)
and mathematical optimization that has not received atten-
tion in deep learning. Exploiting the ideas in (Straszak and
Vishnoi 2015; Johannson and Zou 2012) with certain ad-
justments leads to a “LP module/layers” called γ−AuxPD
that can be incorporated within various architectures. Specif-
ically, our main result in Thm. 2 together with the results
in (Straszak and Vishnoi 2015; Johannson and Zou 2012)
shows that γ−AuxPD can solve a much larger class of LPs.
Some immediate advantages of γ−AuxPD include (a) sim-
ple plug-and-play differentiable LP layers; (b) converges
fast; (c) does not need a feasible solution as an initializa-
tion (d) very easy to integrate or implement. We demonstrate
how these properties provide a practical and easily usable
module for solving LPs.

1.1 Related Works
The challenge in solving an optimization module within a
deep network often boils down to the specific steps and
the end-goal of that module itself. In some cases (uncon-
strained minimization of simple functions), the update steps
can be analytically calculated (Dave et al. 2019; Schmidt
and Roth 2014). For more general unconstrained objectives,
we must perform unrolled gradient descent during training
(Amos, Xu, and Kolter 2017; Metz et al. 2016; Goodfel-
low et al. 2013). When the optimization involves certain
constraints, one must extend the frameworks to use itera-
tive schemes incorporating projection operators, that repeat-
edly project the solution into a subspace of feasible solutions
(Zeng et al. 2019). Since such operators are difficult to dif-
ferentiate in general, it is hard to incorporate them directly
outside of special cases. To this end, (Amos, Xu, and Kolter
2017) dealt with constraints by incorporating them in the
Lagrangian and using the KKT conditions. For combinato-
rial problems with linear objectives, (Vlastelica et al. 2019)
implemented an efficient backward pass through blackbox
implementations of combinatorial solvers and (Berthet et al.
2020) recently reported success with end-to-end differen-
tiable learning with blackbox optimization modules. In other
cases, when there is no associated objective function, some
authors have reported some success with using reparameter-
izations for homogeneous constraints (Frerix, Cremers, and
Nießner 2019), adapting Krylov subspace methods (de Roos
and Hennig 2017), conditional gradient schemes (Ravi et al.
2019) and so on.

Our goal here is to incorporate an LP as a module within

the network, and is related in principle to some other works
that incorporate optimization routines of different forms
within a deep model which we briefly review here. In (Be-
langer and McCallum 2016), the authors proposed a novel
structured prediction network by solving an energy min-
imization problem within the network whereas (Mensch
and Blondel 2018) utilized differentiable dynamic program-
ming for structured prediction and attention. To stabilize the
training of Generative Adversarial Networks (GANs), (Metz
et al. 2016) defined the generator objective with respect to
an unrolled optimization of the discriminator. Recently, it
has been shown that incorporating concepts such as fairness
(Sattigeri et al. 2018) and verification (Liu et al. 2019) within
deep networks also requires solving an optimization model
internally. Closely related to our work is OptNet (Amos
and Kolter 2017), which showed how to design a network
architecture that integrates constrained Quadratic Program-
ming (QP) as a differentiable layers. While the method is
not directly designed to work for linear programs (quadratic
term needs to be positive definite), in experiments, one may
add a suitable quadratic term as a regularization. More re-
cently, (Agrawal et al. 2019) introduces a package for dif-
ferentiable constrained convex programming. Specifically, it
utilizes a solver called SCS implemented in CVXPY pack-
age (O’Donoghue et al. 2016, 2019), which we denote as
CVXPY-SCS in our paper.

2 Why Physarum Dynamics?
Consider a Linear Program (LP) in the standard form given
by,

min
x∈Rn

cTx s.t. Ax = b, x ≥ 0 (1)

where A ∈ Rm×n, c ∈ Rn>0, b ∈ Rm. In (1), c is called
the cost vector (we explain how to deal with nonpositive c
in Section 3), and the intersection of the linear equalities
Ax = b, and inequalities x ≥ 0 is called the feasible set
denoted by P . Now, we briefly discuss two main families of
algorithms that are often used to solve LPs of the form (1).

2.1 Simplex Algorithms: The Workhorse
Recall that by the Minkowski-Weyl theorem, the feasible
set P can be decomposed into a finite set of extreme points
and rays. A family of algorithms called Simplex exploits this
decomposition of P to solve LPs. Intuitively, the Simplex
method is based on the principle that if there exists a solu-
tion to a LP, then there is at least one vertex (or an extreme
point) of P that is optimal. In fact, Simplex algorithms can
be seen as First Order methods with a careful choice of
update direction so as to move along the edges of P . There
are three key properties of simplex algorithms to solve LP
(1): (i) Good: We can obtain exact solutions in finite number
of iterations; (ii) Bad: The worst case complexity is expo-
nential in m (or n); and (iii) Highly undesirable: The update
directions are computed by forming the basis matrix making
the algorithm combinatorial/nondifferentiable in nature.
Remark 1. It may not be possible to use a differentiable
update rule since it would require an enumeration of vertices
of P – exponential in dimensions n (Barvinok 2013).

8940

2.2 Interior Point Algorithms: Trading Exactness
for Efficiency

Asking for exact solutions of LP (1) may be a stringent re-
quirement. An approximate solution of LP (1) can be com-
puted using a different family of methods called Interior
Point Method (IPM) in O(

√
max(m,n) (Wright 1997). In-

tuitively, while the iterates of a simplex method proceed
along the edges of P , an IPM passes through the interior
of this polyhedron. In particular, IPMs are second order al-
gorithms since they directly solve the system of nonlinear
equations derived from KKT conditions by applying variants
of Newton’s method (Wright 1997). As with Simplex meth-
ods, we point out to three key properties of IPM: (i) Good:
IPM based algorithms can efficiently solve LP (1) in theory
(Lee and Sidford 2014; Gondzio 2012); (ii) Bad: IPMs need
to be started from a feasible point although there are special
infeasible start IPMs (Roos 2006); and (iii) Bad: In practice,
IPMs are faster than Simplex Method only when m, and n
are large, e.g., millions (Cui et al. 2019).

Remark 2. Even if we can find a feasible point efficiently,
it is not easy to warm start IPM methods due to the high
sensitivity of the central path equation (John and Yıldırım
2008). In contrast, first order methods like Simplex can be
easily warm started (Arsham 1997).

2.3 Physarum Dynamics: Best of Both Worlds?
The term Physarum Dynamics (PD) refers to the movement
of a slime mold called Physarum polycephalum, and is stud-
ied in mathematical biology for its inherent computational
nature and properties that closely mirror mathematical opti-
mization. For example, in an interesting result, (Toshiyuki,
Hiroyasu, and Ágota 2000) showed that the slime mold can
solve a shortest path problem on a maze. Further, the tempo-
ral evolution of Physarum has been used to learn robust net-
work design (Tero, Kobayashi, and Nakagaki 2007; Johann-
son and Zou 2012), by connecting it to a broad class of dy-
namical systems for basic computational problems such as
shortest paths and LPs. In (Straszak and Vishnoi 2015), the
authors studied the convergence properties of PD for LPs,
and showed that these steps surprisingly mimic a steepest-
descent type algorithm on a certain Riemannian manifold.
While these interesting links have not been explored in
AI/deep learning, we find that the simplicity of these dy-
namics and its mathematical behavior provide an excellent
approach towards our key goal.

We make the following mild assumption about LPs (1)
that we consider here

Assumption 1 (Feasibility). The feasible set P := {x :
Ax = b, x ≥ 0} of (1) is nonempty.

For the applications considered in this paper, Assumption
1 is always satisfied. We now describe the PD for solving
LPs and illustrate the similarities and differences between
PD and other methods.

Consider any vector x ∈ Rn with x > 0 and let W ∈
Rn×n be the diagonal matrix with entries xi

ci
, i = 1, 2, ..., n.

Let L = AWAT and p ∈ Rm is the solution to the linear

system Lp = b. Let q = WAT p. The PD for a LP (e.g., in
(1)) given by (A, b, c) is defined as,

dxi(t)

dt
= qi(t)− xi(t), i = 1, 2, . . . , n. (2)

Equivalently, using the definition of q we can write the con-
tinuous time PD compactly as,

ẋ = W (ATL−1b− c). (3)

Theorem 1 and 2 in (Straszak and Vishnoi 2015) guarantee
that (3) converges to an ε−approximate solution efficiently
with no extra conditions and its discretization converges as
long as the positive step size is small enough.
Remark 3 (PD vs IPM). Similar to IPM, PD requires us to
compute a full linear system solve at each iteration. How-
ever, note that the matrix L associated with linear system in
PD is completely different from the KKT matrix that is used
in IPM. Moreover, it turns out that unlike most IPM, PD can
be started with an infeasible starting point. Note that PD
only requires the initial point to satisfy As = b which corre-
sponds to solving ordinary least squares which can be easily
done using any iterative method like Gradient Descent.
Remark 4 (PD vs Simplex). Similar to Simplex, PD corre-
sponds to a gradient, and therefore is a first order method.
The crucial difference between the two methods, is that the
metric used in PD is geodesic whereas Simplex uses the Eu-
clidean metric. Intuitively, using the geodesic metric of P
instead of the Euclidean metric can vastly improve the con-
vergence speed since the performance of first order methods
is dependent on the choice of coordinate system (Yang and
Amari 1998; Zhang and Sra 2016).

When is PD efficient? As we will see shortly in Section
5, in the two applications that we consider in this paper, the
sub-determinant ofA is provably small – constant or at most
quadratic in m,n. In fact, when A is a node incidence ma-
trix, PD computes the shortest path, and is known to con-
verge extremely fast. In order to be able to use PD for a wider
range of problems, we propose a simple modification de-
scribed below. Note that since many of the vision problems
require auxiliary/slack variables in their LP (re)formulation,
the convergence results in (Straszak and Vishnoi 2015) do
not directly apply since L in (3) is not invertible. Next, we
discuss how to deal with noninvertibility of L using our pro-
posed algorithm called γ−AuxPD (in Algorithm 1).

3 Dealing with Auxiliary Variables using
γ−AuxPD

In the above description, we assume that c ∈ Rn>0. We now
address the case where ci = 0 under the following assump-
tion on the feasible set P of LP (1):
Assumption 2 (Bounded). The feasible set P ⊆ [0,M]n,
i.e., x ∈ P =⇒ xi ≤M ∀ i ∈ [n].

Intuitively, if P is bounded, we may expect that the op-
timal solution set to be invariant under a sufficiently small
perturbation of the cost vector along any direction. The fol-
lowing observation from (Johannson and Zou 2012) shows
that this is indeed possible as long as P is finitely generated:

8941

Algorithm 1: γ−AuxPD Layer
1 Input: LP problem parameters A, b, c, initial point x0,

Max iteration number K, step size h, accuracy level ε,
approximate diameter γP

2 Set xs ← x0 if x0 is provided else rand([n], (0, 1))
3 Perturb cost c← c+ γP10 where 10 is the binary

vector with unit entry on the indices i with ci = 0
4 for i = 1 to K do
5 Set: W ← diag(xs/c)

6 Compute: L← AWAT

7 Compute: p← L−1b using iterative solvers
8 Set: q ←WAT p
9 Update: xs ← (1− h)xs + hq

10 Project onto R≥ε: xs ← max (xs, ε)
11 end
12 Return: xs

Observation 1 ((Johannson and Zou 2012)). Let ε > 0
be the given desired level of accuracy, and say ci = 0 for
some i ∈ [n]. Recall that our goal is to find a point x̂ ∈ P
such that cT x̂ − cTx∗ ≤ ε where x∗ is the optimal solu-
tion to the LP (1). Consider the γ−perturbed LP given by
{A, b, ĉ}, where ĉi = ci if ci > 0 and ĉ = γ if ci = 0.
Let x2 be an extreme point that achieves the second lowest
cost to LP (1). Now it is easy to see that if γ < δ

n·M where
δ = cTx2 − cTx∗, then x∗ is an approximate solution of
{A, b, ĉ}. Hence, it suffices to solve the γ−perturbed LP.

With these modifications, we present our discretized
γ−AuxPD algorithm 1 that solves a slightly perturbed ver-
sion of the given LP.
Remark 5. Note that γ−perturbation argument does not
work for any P and c since LP (1) may be unbounded or
have no extreme points.

Observation 1 can be readily used for computational pur-
poses by performing a binary search over γ if we can ob-
tain a finite upper bound γu. Furthermore, if γu is a poly-
nomial function of the input parameters m,n of LP, then
Observation 1 implies that γ−AuxPD algorithm is also effi-
cient. Fortunately, for applications that satisfy the bounded
assumption 2, our Theorem 2 shows that a tight upper bound
γu on γP can be provided in terms of M (diameter of P).

Implementation. Under Assumption 2, negative costs
can be handled by replacing xi = −yi whenever ci < 0,
or in other words, by flipping the coordinate axis of coor-
dinates with negative costs, which has been noticed in (Jo-
hannson and Zou 2012). Since we use an iterative linear sys-
tem solver to compute q, we project x on to R≥ε after each
iteration: this corresponds to a simple clamping operation.

4 Analysis of Some Testbeds for γ−AuxPD:
Bipartite Matching and SVMs

In order to illustrate the potential of the γ−AuxPD layer
(Alg. 1), we consider two classes of LPs common in a num-
ber of applications and show that they can be solved using
γ−AuxPD. These two classes of LPs are chosen because

they link nicely to interesting problems involving deep neu-
ral networks which we study in §5.

4.1 Bipartite Matching using Physarum
Dynamics

Given two finite non-intersecting sets I , J such that |I| =
m, |J | = n, n � m, and a cost function C : I × J → R,
solving a minimum cost bipartite matching problem corre-
sponds to finding a map f : I → J such that total cost∑
i C(i, f(i)) is minimized. If we represent f using an as-

signment matrix X ∈ Rn×m, then a LP relaxation of the
matching problem can be written in standard form (1) as,

min
(X,sm)≥0

tr(CXT) + γ1Tmsm

s.t. X1m = 1n, X
T 1n + sm = 1m (4)

where C ∈ Rn×m is the cost matrix, 1d is the all-one vector
in d dimension, and sm ∈ Rm is the slack variable.

Remark 6. Note that in LP (4), the slack variables sm im-
pose the m inequalities XT 1n ≤ 1m.

The following theorem shows that the convergence rate of
γ−AuxPD applied to the bipartite matching in (4) only has
a dependence which is logarithmic in n.

Theorem 2. Assume we set 0 < γ ≤ γu such that 1/γu =
Θ(
√
m). Then, our γ−AuxPD (Algorithm 1) converges to an

optimal solution to (4) in Õ
(
m
ε2

)
iterations where Õ hides

the logarithmic factors in m and n.

Proof. (Sketch) To prove Theorem 2, we use a result from
convex analysis called the sticky face lemma to show that
for all small perturbations of c, the optimal solution set re-
mains invariant. We can then simply estimate γu to be the
largest acceptable perturbation (which may depend on C,P
but not on any combinatorial function of P like extreme
points/vertices). See Section A for details.

Verifying Theorem 2. We construct random matching
problems of size n = 5,m = 50 (used later in §5.1) with
batch size 32, where we randomly set elements of C to be
values in [0, 1]. We compare our method with CVXPY-SCS
and a projected gradient descent algorithm in which the pro-
jection exploits the Dykstra’s algorithm (used by (Zeng et al.
2019) in §5.1) (we denote it as PGD-Dykstra).

Evaluation Details. We run 100 random instances of
matching problems for both our γ−AuxPD algorithm and
PGD-Dykstra with different number of iterations. We re-
port the objective value computed using the solution given
by our γ−AuxPD solver/PGD-Dykstra/CVXPY-SCS. Our
step size is 1 and learning rate of PGD-Dykstra is set to 0.1

γ−AuxPD PGD-Dykstra
Iter. # 10 50 100 10 50 100
Proj. # NA NA NA 5 10 50
Objective 0.100 0.098 0.099 0.137 0.121 0.120
Time (s) 0.016 0.040 0.071 0.016 0.146 0.498

Table 1: Results on solving random matching problems.

8942

(both used in §5.1). For CVXPY-SCS, the number of itera-
tions is determined by the solver itself for each problem and
it gets 0.112 objective with mean time 0.195 (s). The results
of γ−AuxPD and PGD-Dykstra are reported in Table 1. Our
γ−AuxPD algorithm achieves faster convergence and better
quality solutions.

4.2 `1-normalized Linear SVM using γ−AuxPD
In the next testbed for γ−AuxPD, we solve a `1-normalized
linear SVM (Hess and Brooks 2015) in the standard form of
LP (1). Below, K̃ [i,j] stands for K(xi, xj)(α1j − α2j):

min
α1,α2,s,b1,b2,ξ

n∑
i=1

si + C
n∑
i=1

(ξi + 2zi)

s.t. yi

 n∑
j=1

yjK̃
[i,j] + (b1 − b2)

+ ξi −Mzi − li = 1,

n∑
j=1

yjK̃
[i,j] − si + pi = 0,

n∑
j=1

yjK̃
[i,j] + si − qi = 0,

zi + ri = 1, α1, α2, s, b1, b2, ξ, zi, li, pi, qi, ri,≥ 0

∀i = 1, 2, · · · , n.
(5)

Like Thm. 2, we can show a convergence result for `1-
SVM (5) (see Section B).

Verifying convergence of γ−AuxPD for `1-SVM (5).
We compare our method with the recent CVXPY-SCS solver
(Agrawal et al. 2019) which can also solve LPs in a differen-
tiable way. We constructed some simple examples to check
whether CVXPY-SCS and our γ−AuxPD solver works for
SVMs (e.g., binary classification where training samples of
different class come from Gaussian distribution with differ-
ent mean). Both γ−AuxPD and CVXPY-SCS give correct
classification results. We will further show in §5.2 that when
used in training, γ−AuxPD achieves better performance and
faster training time than CVXPY-SCS.

5 Differentiable LPs in Computer Vision
We now demonstrate the versatility of our γ−AuxPD layer
in particular scenarios in computer vision. Our goal here is to
show that while the proposed procedure is easy, it can indeed
be used in a plug and play manner in fairly different settings,
where the current alternative is either to design, implement
and debug a specialized sub-routine (Zeng et al. 2019) or to
utilize more general-purpose schemes when a simpler one
would suffice (solving a QP instead of a LP) as in (Lee et al.
2019). We try to keep the changes/modifications to the orig-
inal pipeline where our LP solver is deployed as minimal as
possible, so ideally, we should expect that there are no major
fluctuations in the overall accuracy profile.

5.1 Differentiable Mask-Matching in Videos
We review the key task from (Zeng et al. 2019) to introduce
the differentiable mask-matching network for video object
segmentation, and how/why it involves a LP solution. The
overall architecture is in Fig. 1.

Jm Jr Jd Fm Fr Fd
DMM-Net (Zeng et al. 2019) 63.4 72.7 9.3 77.3 84.9 10.5
γ−AuxPD layer 63.4 72.2 9.2 77.3 85.3 10.4

Table 2: Results on Youtube-VOS train-val split. Subscripts
m, r, d stand for mean, recall, and decay respectively.

Problem Formulation. Given a video with T frames as
well as the mask templates in the first frame, the goal is to
obtain a segmentation of the same set of instances in all
of remaining frames. (Zeng et al. 2019) shows that differ-
entiable matching between the templates and the bounding
boxes proposed by the detector achieves superior perfor-
mance over previous methods.

LP instance. The goal is to use the cost matrix and
solve a matching problem. Recall that minimum-cost bipar-
tite matching can be formulated as a integer linear program
(ILP) and can be relaxed to a LP, given by the formulation
in standard form stated in (4) (identical to the ILP and LP
in (Zeng et al. 2019)). The number of proposals m is much
larger than the number of templates n and so one would ask
that XT1n ≤ 1m instead of XT1n = 1m.

Solver. In (Zeng et al. 2019), the authors use a specialized
projected gradient descent algorithm with a cyclic constraint
projection method (known as Dykstra’s algorithm) to solve
the LP. The constraints in this LP are simple enough that
calculating the projections is not complicated although the
convergence rate is not known. We can directly replace their
solver with γ−AuxPD in Alg. 1 to solve the problem, also
in a differentiable way. Once the solution is obtained, (Zeng
et al. 2019) uses a mask refinement module which we also
use to ensure consistency between the pipelines.

Experiments on Youtube-VOS. Parameter settings.
The projection gradient descent solver in (Zeng et al. 2019)
has three parameters to tune: number of gradient steps, num-
ber of projections, and learning rate. We use Ngrad =
40, Nproj = 5, lr = 0.1 as in their paper to reproduce their
results. For γ−AuxPD layer, the choice is simple: step size
h = 1 and K = 10 iterations work well for both two ex-
periments and the other tests we performed. From Table 1
we can see that the PGD-Dykstra solver from (Zeng et al.
2019) is faster and more tailormade for this application than
CVXPY-SCS thus we only compare with the PGD-Dykstra
solver for this application.

How do different solvers compare on Youtube-VOS?
Our final results are shown in Table 2. Our solver works well
and since the workflow is near identical to (Zeng et al. 2019),
we achieve comparable results with (Zeng et al. 2019) while
achieving small benefits in inference time. We notice that al-
though our solver performs better for a simulated matching
problems; since the matching problem here is small and the
cost matrix learned by the feature extractor is already good
(so easy to solve), the runtime behavior is similar. Nonethe-
less, it shows that the general-purpose solver can be directly
plugged in and offers performance which is as good as a
specialized solution in (Zeng et al. 2019) that exploits the
properties of the particular constraint set.

8943

Figure 1: Architecture of DMM (Zeng et al. 2019): The yellow box is where the linear program is solved. In this application the linear
program is a bipartite matching problem.

Figure 2: Architecture of Meta-learning (Lee et al. 2019): The yellow box is where the linear program is solved. In this application, the linear
program is a linear SVM.

5.2 Meta-learning for Few-shot Learning
We briefly review the key task from (Lee et al. 2019) to in-
troduce the few-shot learning task using a meta-learning ap-
proach, and how it involves getting a solution to a LP. Due to
limited space, we refer readers to (Lee et al. 2019) for more
details of the meta-learning for few-shot learning task. The
overall architecture is in Fig. 2.

Problem Formulation. Given a training set Dtrain =
{(xt, yt)}Tt=1, in this problem, the goal of the base learner
A is to estimate parameters θ of the predictor y = f(x; θ)
so that it generalizes well to the unseen test set Dtest =

{(xt, yt)}Qt=1. The meta learner seeks to learn an embed-
ding model φ that minimizes the generalization error across
tasks given a base learner A.

LP instance. There are several requirements for the base
learners. First, the evaluation needs to be very efficient since
a base learner needs to be solved in every iteration within
the meta-learning procedure. Second, we need to be able to
estimate and backpropagate the gradient from the solution
of the base learner back to the embedding model fφ, which
means that the solver for the base learner needs to be differ-
entiable. In (Lee et al. 2019), the authors use a multi-class
linear support vector machine (SVM) with an `2 norm on the
weights (Crammer and Singer 2001). Instead, to instantiate
an LP, we use a `1 normalized SVM proposed by (Hess and
Brooks 2015). The optimization model for this SVM in a
standard form is shown in (5). This is a binary SVM model,
on top of which we run

(
k
2

)
pairwise SVMs to obtain the

solution where k is the number of classes in the task.
Solver. In (Lee et al. 2019), the authors use OptNet. Note

that the number of parameters is only related to the num-
ber of training examples and the number of classes, which is

often much smaller than the dimensionality of the features
for few-shot learning. Since feature selection seems more
appropriate here, we may directly replace OptNet with our
γ−AuxPD layer to solve the `1-SVM efficiently. Our base-
line method is CVXPY-SCS (Agrawal et al. 2019). The im-
plementation of Optnet (Amos and Kolter 2017) does not
directly support solving LPs since it requires a positive def-
inite quadratic term. Still, to test its ability of solving LPs,
we add a diagonal matrix with a small value (0.1, since di-
agonal value smaller than 0.1 leads to numerical errors in
our experiment) as the quadratic term (can be thought of as
a regularization term).

Experiments on CIFAR-FS and FC100. Datasets. We
follow the code from (Lee et al. 2019) to conduct the ex-
periments on CIFAR-FS and FC100. Other training details
and dataset information are in the supplement.

How do different solvers compare on CIFAR-FS and
FC100? The results on CIFAR-FS and FC100 are shown in
Table 3. Using the `1 normalized SVM, our solver achieves
better performance than CVXPY-SCS (Agrawal et al. 2019)
and Optnet (with a small quadratic term as regularization) on
both datasets and both the 1-shot and 5-shot setting. Expect-
edly, since the pipeline is very similar to (Lee et al. 2019),
we achieve a similar performance as reported there, although
their results were obtained through a different solver. This
suggests that our simpler solver works at least as well, and
no other modifications were needed. Importantly, during the
training phase, our solver achieves 4× improvement in
runtime compared with CVXPY-SCS (baseline which can
also solve the `1-SVM). (Lee et al. 2019) also reported the
performance of solving `2 normalized SVM. The choice of
`1 versus `2 often depends on specific application settings.

8944

CIFAR-FS 5-way FC100 5-way
LP Solver 1-shot 5-shot 1-shot 5-shot
MetaOptNet-CVXPY-SCS 70.2± 0.7 83.6± 0.5 38.1± 0.6 51.7± 0.6
MetaOptNet-Optnet (with regularization) 69.9± 0.7 83.9± 0.5 37.3± 0.5 52.2± 0.5
MetaOptNet-γ−AuxPD (Ours) 71.4± 0.7 84.3± 0.5 38.2± 0.5 54.2± 0.5

Table 3: Results on CIFAR-FS and FC100. In K-way, N -shot few shot learning, K is the number of classes and N is the
number of training examples per class. Performance of more baseline methods is in appendix Table 6.

batch size 8 32 128
CVXPY-SCS 32.3 122.7 455.2
Optnet 42.4 88.1 243.7
γ−AuxPD (Ours) 24.0 25.1 25.8

Table 4: Time (ms) spent on solving a batch of LP problems.
The time reported here for CVXPY-SCS does not include
that spent on constructing the canonicalization mapping.

Variance of noise 0 0.01 0.03 0.05 0.1
Test accuracy 71.4 70.1 69.1 68.2 61.91

Table 5: Experiment on CIFAR-FS 5-way 1-shot setting
where zero mean random Gaussian noise is added to the so-
lution of γ−AuxPD solver.

We also compare the time spent on solving a batch of LP
problems with n = 92,m = 40, p = 122 (same size used in
the experiment), where n is number of variables, m is num-
ber of equality constraints and p is the number of inequality
constraints in the original problem form. Table 4 shows that
our implementation is efficient for batch processing on GPU,
which is crucial for many modern AI applications. We also
performed a GPU memory consumption comparison with
a batch size of 32: our solver needs 913MB GPU mem-
ory, CVXPY-SCS needs 813MB and Optnet needs 935MB
which are mostly comparable.

How does LP solver influence the global convergence
of the task? To understand how the quality of LP solver
influences the global convergence of the learning task (i.e.,
where the LP is being used), we conduct a simple exper-
iment. This addresses the question of whether a good LP
solver is really needed? Here, we add a random Gaussian
noise with zero mean and small variance to the solution of
LP solver (to emulate results from a worse solver) and ob-
serve the convergence and final accuracy in the context of
the task. We can see in Table 5 that the quality of LP solu-
tion has a clear influence on the overall performance of the
training (few-shot learning in this example).

6 Discussion
6.1 Other Potential Applications
Linear programming appears frequently in machine learn-
ing/vision, and γ−AuxPD can be potentially applied fairly
directly. We cover a few recent examples which are interest-
ing since they are not often solved as a LP.

Differentiable Calibration. Confidence calibration is
important for many applications, e.g., self-driving cars (Bo-
jarski et al. 2016) and medical diagnosis (Liang et al. 2020).
However, it is known that SVMs and deep neural networks
give a poor estimate of the confidence to their outputs. In
general, calibration is used only as a post-procedure (Guo
et al. 2017). Observe that some calibration methods can be
written or relaxed in the form of a LP. For example, Isotonic
regression (Guo et al. 2017), fits a piecewise non-decreasing
function to transform uncalibrated outputs. By using a `1
loss, Isotonic regression can be written as a linear program.
Therefore γ−AuxPD layer can solve it differentiably within
an end to end network during training, which may be a de-
sirable and lead to better calibration.

Differentiable Calculation of Wasserstein Distance
(WD). WD is widely used in generative adversarial mod-
els (Arjovsky, Chintala, and Bottou 2017) as well as the
analysis of shapes/point clouds (Trillos 2017). An entropy
regularized LP formulation of WD can be solved using the
Sinkhorn algorithm. Results in (Amari et al. 2019) suggest
that Sinkhorn may be suboptimal since the limit of the se-
quence generated by the Sinkhorn algorithm may not co-
incide with the minimizer of the unregularized WD. Inter-
estingly, we can apply Thm 2 (or Thm. 1 in (Straszak and
Vishnoi 2015)) to conclude that PD (i) is asymptotically ex-
act; and (ii) matches the convergence rate of the Sinkhorn
algorithm. For training deep networks, this means that we
can obtain unbiased gradients using γ−AuxPD layers which
may lead to faster training.

Differentiable Hierarchical Clustering. Hierarchical
clustering algorithms are often used in segmentation based
vision tasks, see (Arbelaez et al. 2010). It is well known that
an approximate hierarchical clustering can be computed by
first rounding the optimal solution of a LP relaxation, see
(Charikar and Chatziafratis 2017). Observe that the LP for-
mulation of the sparsest cut problem has more constraints
than decision variables owing to the ultrametric requirement
of the decision variables. Hence, γ−AuxPD may be em-
ployed to approximately solve the Hierarchical Clustering
problem, thus enabling us to differentiate through cluster-
ing based objective functions in end-to-end deep learning
frameworks. Until recently, the EM-style clustering was a
bottleneck

6.2 Implicit Differentiation of PD
In this section we show how to get implicit differentiation of
c. Then A and b follow similarly. Let the updating direction

8945

P (x) = W (ATL−1b − c), where W is the diagonal matrix
with entries xi

ci
, denoted as diag(x � c), and L = AWAT ,

where � is element-wise division. So we can rewrite P at
the optimal solution x∗ as

P (x∗) = diag(x∗�c)(AT (A·diag(x∗�c)AT)−1b−c) (6)

As a joint function of c, x∗, we differentiate both the sides
of (6) with respect to c as,

∂P

∂c
+
∂P

∂x∗
∂x∗

∂c
= 0 =⇒ ∂x∗

∂c
= −

(
∂P

∂x∗

)−1
∂P

∂c
. (7)

Denote t0 = x � c, T1 = (Adiag(t0)AT)−1 and t2 =
c� c. ∂P

∂x∗ and ∂P
∂c can be computed analytically as follows:

∂P

∂x∗
= diag((ATT1b− c)� c)−

diag(t0)ATT1Adiag(bT (Adiag(t0)AT)−1A� cT)

and
∂P

∂c
= diag(t0)ATT1Adiag(x∗T � (bT (Adiag(t0)AT)−1A)

� tT2)− diag(t0)− diag(x� (ATT1b− c)� t2)

For computational purposes, without loss of generality,
we can assume that the norm of the gradient to be some fixed
value, say one. This is because, for training networks with
PD layer using first order methods, scale or magnitude of
the gradients can simply absorbed in the learning rate (inter-
preted as a hyperparameter) and tuned using statistical tech-
niques such as cross validation. Hence, in order to evaluate
the quality of the implicit gradient calculated from the above
equations, we ignore the scale and use similarity based mea-
sures. To this end, we used our bipartite matching problem
as a testbed and compared explicit gradient (calculated by
unrolling the update rules) and implicit gradient (using the
formula above). A high cosine value between explicit gradi-
ent and implicit gradient indicates that the two gradients are
mostly in the same direction. After running 100 matching
problems with different random cost matrices, we find that
in all cases (as shown in Fig. 3a), the P (x) becomes very
small (with norm less than 0.01) which means that the qual-
ity of the final solution from our solver is good. But we find
that in a fair number of cases, the cosine values are less than
0.99. We suspect that this is due to the inverse operation in
(7) – note that both the terms in (7) are matrices, so after the
forward pass, we have to solve n linear systems in order to
compute the gradient. Indeed, this can be tricky in practice –
the local geometry around the optimal solution x∗ may not
be ideal (for example, Hessian at x∗ with a high condition
number) which can then introduce floating point errors that
can affect overall gradient computation significantly. Fortu-
nately, we find that our algorithm converges in less than 10
iterations in our experiments, so it is extremely convenient
to do unrolled gradient computation which tends to perform
better with the overall training of the network. The above
discussion also provides reasons why in Table 3, our solver
performs slightly better than CVXPY and Optnet: both of
which are based on implicit gradients.

-1 -0.5 0 0.5 1

Cosine

0

5

10

15

20

25

30

35

40

C
o
u
n
ts

(a) Histogram of the cosine val-
ues between implicit and explicit
gradient on 100 random con-
structed matching problems.

0 20 40 60 80 100

Number of iterations

0

0.05

0.1

0.15

0.2

0.25

T
im

e
 s

p
e

n
t

o
n

 b
a

c
k
w

a
rd

 p
a

s
s
 (

s
)

(b) Time cost of explicit dif-
ferentiation. The time cost in-
creases linearly with the number
of iterations.

Figure 3: Comparison between explicit gradient and implicit
gradient.

Finally, we note that implicit differentiation may have
potential benefits in certain scenarios. One benefit of im-
plicit differentiation is that the time spent on the backward
pass (gradient backpropagation) is not related to the num-
ber of iterations that our Physarum solver uses in the for-
ward pass. From this perspective, when is implicit differ-
entiation preferable compared with explicit differentiation
(unrolling)? Consider the bipartite matching problem (m =
10, n = 50) as a LP example, we plot the time spent on ex-
plicit differentiation as a function of the number of iterations
that our Physarum solver uses in forward pass time in Fig.
3b. Leaving aside the numerical issues discussed above, im-
plicit differentiation costs 0.028s, which is roughly equal to
the backward pass time of explicit differentiation for 10−15
iterations. This means that when the iterations needed in the
forward pass is larger than 10 − 15 iterations, implicit dif-
ferentiation may be preferable in terms of time for the back-
ward pass, in addition to potential memory savings an un-
rolled scheme would need for a large number of iterations.

7 Conclusions
This paper describes how Physarum dynamics based ideas
(Straszak and Vishnoi 2015; Johannson and Zou 2012)
can be used to obtain a differentiable LP solver that can
be easily integrated within various deep neural networks
if the task involves obtaining a solution to a LP. Outside
of the tasks shown in our experiments, there are many
other use cases including differentiable isotonic regression
for calibration, differentiable calculation of Wasserstein
Distance, differentiable tracking, and so on. The algo-
rithm, γ−AuxPD, converges quickly without requiring a
feasible solution as an initialization, and is easy to im-
plement/integrate. Experiments demonstrate that when we
preserve existing pipelines for video object segmentation
and separately for meta-learning for few-shot learning,
with substituting in our simple γ−AuxPD layer, we obtain
comparable performance as more specialized schemes.
As briefly discussed earlier, recent results that utilize
implicit differentiation to solve combinatorial problems
(Vlastelica et al. 2019) or allow using blackbox solvers
for an optimization problem during DNN training (Berthet

8946

CIFAR-FS 5-way FC100 5-way
LP Solver 1-shot 5-shot 1-shot 5-shot
MAML (Finn, Abbeel, and Levine 2017) 58.9± 1.9 71.5± 1.0 − −
Prototypical Networks (Snell, Swersky, and Zemel 2017) 55.5± 0.7 72.0± 0.6 35.3± 0.6 48.6± 0.6
Relation Networks (Sung et al. 2018) 55.0± 1.0 69.3± 0.8 − −
R2D2 (Bertinetto et al. 2018) 65.3± 0.2 79.4± 0.1 − −
TADAM (Oreshkin, López, and Lacoste 2018) − − 40.1± 0.4 56.1± 0.4
ProtoNets(with backbone in (Lee et al. 2019))
(Snell, Swersky, and Zemel 2017) 72.2± 0.7 83.5± 0.5 37.5± 0.6 52.5± 0.6
MetaOptNet-RR (Lee et al. 2019) 72.6± 0.7 84.3± 0.5 40.5± 0.6 55.3± 0.6
MetaOptNet-SVM (Lee et al. 2019) 72.0± 0.7 84.2± 0.5 41.1± 0.6 55.5± 0.6
MetaOptNet-CVXPY-SCS 70.2± 0.7 83.6± 0.5 38.1± 0.6 51.7± 0.6
MetaOptNet-Optnet (with regularization) 69.9± 0.7 83.9± 0.5 37.3± 0.5 52.2± 0.5
MetaOptNet-γ−AuxPD (Ours) 71.4± 0.7 84.3± 0.5 38.2± 0.5 54.2± 0.5

Table 6: More baseline results on CIFAR-FS and FC100. We achieve comparable performance using `1-SVM with (Lee et al.
2019) which uses `2-SVM and surpasses previous baseline methods. The choice between `1 and `2 often depends on the specific
application considered, and `1 is often faster to solve than `2. Using the same `1-SVM, our solver achieves better performance
than CVXPY-SCS and Optnet while being faster in terms of training time.

et al. 2020; Ferber et al. 2020), are indeed promising
developments because any state of the art solver can be
utilized. However, current LP solvers are often implemented
to be CPU-intensive and suffer from overhead compared
with solvers that are entirely implemented on the GPU.
This is beneficial for DNN training. Our code is available at
https://github.com/zihangm/Physarum-Differentiable-LP-Layer
and integration with CVXPY is ongoing, which will com-
plement functionality offered by tools like OptNet and
CVXPY-SCS.

Acknowledgements
We would like to thank one of the anonymous AAAI
2021 reviewers who apart from suggestions also provided
an alternative implementation that improved the perfor-
mance of CVXPY-SCS in our experiments. This helped
strengthen our evaluations. We thank Damian Straszak
and Nisheeth Vishnoi for helpful clarifications regard-
ing the convergence of continuous time physarum dy-
namics, and Yingxin Jia for interfacing our solver with
a feature matching problem studied in computer vi-
sion (https://github.com/HeatherJiaZG/SuperGlue-pytorch).
This research was supported in part by UW CPCP
AI117924, NSF CCF #1918211, NIH R01 AG062336 and
R01 AG059312, NSF CAREER award RI#1252725 and
American Family Insurance. Sathya Ravi was also supported
by UIC-ICR start-up funds.

Appendix
A Proof of Theorem 2
Proof. It is sufficient to show that γu = Θ(

√
m+ n). But

showing such a constant exists is equivalent to showing that
there is a neighborhood N = B(c, r) around the cost vector
or objective function c of radius r > 0 such that the opti-
mal values of any two cost c1, c2 ∈ N coincide i.e., there

exists x∗ ∈ P such that cT1 x
∗ = cT2 x

∗. To see that this is
sufficient for our purposes, note that we can add small but
positive constant to all the coordinates in c that correspond
to auxiliary/slack variables. Now, it is easy to see that As-
sumptions 1 and 2 guarantee that the optimal solution set is
a bounded polyhedral multifunction. Hence, we can use the
Sticky Face lemma (Robinson 2018) to guarantee that such
a nonzero r exists. To conclude, we observe from the proof
of the Sticky Face lemma, that r can be upper bounded by
1/M , where M corresponds to the the diameter of P which
is Θ(

√
m).

B Proof of Convergence of `1-SVM
Since the SVM formulation is always feasible, by the sep-
arating hyperplane theorem, there exists a κ > 0 such
that the when we add cost of κ to each coordinate of
α1, α2, b1, b2, p, q, r, then the (cost) perturbed linear pro-
gram and the original LP ((6) in the main paper), have the
same optimal solution. Then, it is easy to see that Cs of this
perturbed problem is quadratic in n,C and κ. By scaling the
data points, we can assume that

‖xi‖2 ≤ 1. (8)
We now bound the magnitude of sub-determinant D of the
perturbed SVM LP. First note that the slack variables are di-
agonal, hence, the contribution to the determinant will be at
most 1. Hence, to bound D, we need to bound the determi-
nant of the kernel matrixK(X,X). Using Fischer’s inequal-
ity (Thompson 1961), we have that,

D ≤ (K (xi, xi))
n
. (9)

For a linear kernel, we have that, D = ‖xi‖n ≤ 1 (by as-
sumption (8)). For a Gaussian kernel scale σ, we have that,
D = O(σ) with high probability. We can easily extend this
to any bounded kernel K.

More baseline results on the meta-learning experiments
are shown in Table 6.

8947

References
Agrawal, A.; Amos, B.; Barratt, S.; Boyd, S.; Diamond, S.;
and Kolter, Z. 2019. Differentiable Convex Optimization
Layers. arXiv preprint arXiv:1910.12430 .

Ahmed, A.; Recht, B.; and Romberg, J. 2013. Blind decon-
volution using convex programming. IEEE Transactions on
Information Theory 60(3): 1711–1732.

Amari, S.-i.; Karakida, R.; Oizumi, M.; and Cuturi, M. 2019.
Information geometry for regularized optimal transport and
barycenters of patterns. Neural computation 31(5): 827–
848.

Amos, B.; and Kolter, J. Z. 2017. Optnet: Differentiable
optimization as a layer in neural networks. In Proceedings
of the 34th ICML-Volume 70, 136–145. JMLR. org.

Amos, B.; Xu, L.; and Kolter, J. Z. 2017. Input convex neu-
ral networks. In Proceedings of the 34th ICML-Volume 70,
146–155. JMLR. org.

Arbelaez, P.; Maire, M.; Fowlkes, C.; and Malik, J. 2010.
Contour detection and hierarchical image segmentation.
IEEE TPAMI 33(5): 898–916.

Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein
gan. arXiv preprint arXiv:1701.07875 .

Arsham, H. 1997. Initialization of the Simplex Algorithm:
An Artificial-Free Approach. SIAM Review .

Barvinok, A. 2013. A bound for the number of vertices of a
polytope with applications. Combinatorica .

Belanger, D.; and McCallum, A. 2016. Structured prediction
energy networks. In ICML, 983–992.

Berthet, Q.; Blondel, M.; Teboul, O.; Cuturi, M.; Vert, J.-P.;
and Bach, F. 2020. Learning with differentiable perturbed
optimizers. arXiv preprint arXiv:2002.08676 .

Bertinetto, L.; Henriques, J. F.; Torr, P. H.; and Vedaldi,
A. 2018. Meta-learning with differentiable closed-form
solvers. arXiv preprint arXiv:1805.08136 .

Bojarski, M.; Del Testa, D.; Dworakowski, D.; Firner, B.;
Flepp, B.; Goyal, P.; Jackel, L. D.; Monfort, M.; Muller, U.;
Zhang, J.; et al. 2016. End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316 .

Bousquet, O.; Gelly, S.; Tolstikhin, I.; Simon-Gabriel, C.-J.;
and Schoelkopf, B. 2017. From optimal transport to gen-
erative modeling: the VEGAN cookbook. arXiv preprint
arXiv:1705.07642 .

Charikar, M.; and Chatziafratis, V. 2017. Approximate hier-
archical clustering via sparsest cut and spreading metrics. In
Proceedings of the Twenty-Eighth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, 841–854. SIAM.

Chen, T. Q.; Rubanova, Y.; Bettencourt, J.; and Duvenaud,
D. K. 2018. Neural ordinary differential equations. In
NeurIPS, 6571–6583.

Crammer, K.; and Singer, Y. 2001. On the algorithmic im-
plementation of multiclass kernel-based vector machines.
Journal of machine learning research 2(Dec): 265–292.

Cui, Y.; Morikuni, K.; Tsuchiya, T.; and Hayami, K. 2019.
Implementation of interior-point methods for LP based on
Krylov subspace iterative solvers with inner-iteration pre-
conditioning. Computational Optimization and Applications
doi:10.1007/s10589-019-00103-y. URL https://doi.org/10.
1007/s10589-019-00103-y.

Dave, A.; Tokmakov, P.; Schmid, C.; and Ramanan, D.
2019. Learning to Track Any Object. arXiv preprint
arXiv:1910.11844 .

de Roos, F.; and Hennig, P. 2017. Krylov Subspace Recy-
cling for Fast Iterative Least-Squares in Machine Learning.
arXiv preprint arXiv:1706.00241 .

Ferber, A.; Wilder, B.; Dilkina, B.; and Tambe, M. 2020.
MIPaaL: Mixed Integer Program as a Layer. In AAAI, 1504–
1511.

Finn, C.; Abbeel, P.; and Levine, S. 2017. Model-agnostic
meta-learning for fast adaptation of deep networks. In Pro-
ceedings of the 34th ICML-Volume 70, 1126–1135. JMLR.
org.

Frerix, T.; Cremers, D.; and Nießner, M. 2019. Linear In-
equality Constraints for Neural Network Activations. arXiv
preprint arXiv:1902.01785 .

Gondzio, J. 2012. Interior point methods 25 years later. Eu-
ropean Journal of Operational Research .

Goodfellow, I.; Mirza, M.; Courville, A.; and Bengio, Y.
2013. Multi-prediction deep Boltzmann machines. In
NeurIPS, 548–556.

Grady, L. 2008. Minimal surfaces extend shortest path seg-
mentation methods to 3D. IEEE TPAMI 32(2): 321–334.

Guo, C.; Pleiss, G.; Sun, Y.; and Weinberger, K. Q. 2017.
On calibration of modern neural networks. In Proceedings
of the 34th ICML-Volume 70, 1321–1330. JMLR. org.

Hess, E. J.; and Brooks, J. P. 2015. The support vector
machine and mixed integer linear programming: Ramp loss
SVM with L1-norm regularization. In 14th Informs Com-
puting Society Conference, 226–235.

Johannson, A.; and Zou, J. 2012. A slime mold solver
for linear programming problems. In Conference on Com-
putability in Europe, 344–354. Springer.

John, E.; and Yıldırım, E. A. 2008. Implementation of
warm-start strategies in interior-point methods for linear
programming in fixed dimension. Computational Opti-
mization and Applications doi:10.1007/s10589-007-9096-
y. URL https://doi.org/10.1007/s10589-007-9096-y.

Lee, K.; Maji, S.; Ravichandran, A.; and Soatto, S. 2019.
Meta-learning with differentiable convex optimization. In
CVPR, 10657–10665.

Lee, Y. T.; and Sidford, A. 2014. Path finding methods for
linear programming: Solving linear programs in O (vrank)
iterations and faster algorithms for maximum flow. In 2014
IEEE 55th Annual Symposium on Foundations of Computer
Science. IEEE.

8948

Liang, G.; Zhang, Y.; Wang, X.; and Jacobs, N. 2020.
Improved trainable calibration method for neural net-
works on medical imaging classification. arXiv preprint
arXiv:2009.04057 .

Liu, C.; Arnon, T.; Lazarus, C.; Barrett, C.; and Kochen-
derfer, M. J. 2019. Algorithms for Verifying Deep Neural
Networks. arXiv preprint arXiv:1903.06758 .

Mauro, M.; Riemenschneider, H.; Signoroni, A.; Leonardi,
R.; and Van Gool, L. 2014. An integer linear programming
model for view selection on overlapping camera clusters. In
2014 2nd International Conference on 3D Vision, volume 1,
464–471. IEEE.

Mena, G.; Belanger, D.; Linderman, S.; and Snoek, J. 2018.
Learning latent permutations with gumbel-sinkhorn net-
works. arXiv preprint arXiv:1802.08665 .

Mensch, A.; and Blondel, M. 2018. Differentiable dynamic
programming for structured prediction and attention. arXiv
preprint arXiv:1802.03676 .

Metz, L.; Poole, B.; Pfau, D.; and Sohl-Dickstein, J. 2016.
Unrolled generative adversarial networks. arXiv preprint
arXiv:1611.02163 .

Nixon, J.; Dusenberry, M.; Zhang, L.; Jerfel, G.; and Tran,
D. 2019. Measuring calibration in deep learning. arXiv
preprint arXiv:1904.01685 .

O’Donoghue, B.; Chu, E.; Parikh, N.; and Boyd, S. 2016.
Conic Optimization via Operator Splitting and Homoge-
neous Self-Dual Embedding. Journal of Optimization The-
ory and Applications 169(3): 1042–1068. URL http://
stanford.edu/∼boyd/papers/scs.html.

O’Donoghue, B.; Chu, E.; Parikh, N.; and Boyd, S. 2019.
SCS: Splitting Conic Solver, version 2.1.2. https://github.
com/cvxgrp/scs.

Oreshkin, B.; López, P. R.; and Lacoste, A. 2018. Tadam:
Task dependent adaptive metric for improved few-shot
learning. In NeurIPS, 721–731.

Ravi, S. N.; Dinh, T.; Lokhande, V. S.; and Singh, V. 2019.
Explicitly imposing constraints in deep networks via con-
ditional gradients gives improved generalization and faster
convergence. In AAAI, volume 33, 4772–4779.

Ravi, S. N.; Venkatesh, A.; Fung, G. M.; and Singh, V.
2020. Optimizing Nondecomposable Data Dependent Reg-
ularizers via Lagrangian Reparameterization Offers Signif-
icant Performance and Efficiency Gains. AAAI 34: 5487–
5494. URL https://ojs.aaai.org/index.php/AAAI/article/
view/5999.

Ravikumar, P.; and Lafferty, J. 2006. Quadratic program-
ming relaxations for metric labeling and markov random
field map estimation. In Proceedings of the 23rd ICML,
737–744. ACM.

Robinson, S. M. 2018. A short proof of the sticky face
lemma. Mathematical Programming 168(1-2): 5–9.

Roos, C. 2006. A full-Newton step O (n) infeasible interior-
point algorithm for linear optimization. SIAM Journal on
Optimization 16(4): 1110–1136.

Sabour, S.; Frosst, N.; and Hinton, G. E. 2017. Dynamic
routing between capsules. In NeurIPS, 3856–3866.
Salimans, T.; Zhang, H.; Radford, A.; and Metaxas, D. 2018.
Improving GANs using optimal transport. arXiv preprint
arXiv:1803.05573 .
Sanjabi, M.; Ba, J.; Razaviyayn, M.; and Lee, J. D. 2018.
On the convergence and robustness of training GANs with
regularized optimal transport. In NeurIPS, 7091–7101.
Sattigeri, P.; Hoffman, S. C.; Chenthamarakshan, V.; and
Varshney, K. R. 2018. Fairness gan. arXiv preprint
arXiv:1805.09910 .
Schmidt, U.; and Roth, S. 2014. Shrinkage fields for effec-
tive image restoration. In CVPR, 2774–2781.
Snell, J.; Swersky, K.; and Zemel, R. 2017. Prototypical
networks for few-shot learning. In NeurIPS, 4077–4087.
Straszak, D.; and Vishnoi, N. K. 2015. On a natu-
ral dynamics for linear programming. arXiv preprint
arXiv:1511.07020 .
Sung, F.; Yang, Y.; Zhang, L.; Xiang, T.; Torr, P. H.; and
Hospedales, T. M. 2018. Learning to compare: Relation net-
work for few-shot learning. In CVPR, 1199–1208.
Tavakoli, A.; and Pourmohammad, A. 2012. Image denois-
ing based on compressed sensing. International Journal of
Computer Theory and Engineering 4(2): 266.
Tero, A.; Kobayashi, R.; and Nakagaki, T. 2007. A mathe-
matical model for adaptive transport network in path finding
by true slime mold. Journal of theoretical biology 244(4):
553–564.
Thompson, R. C. 1961. A Determinantal Inequality for Pos-
itive Definite Matrices. Canadian Mathematical Bulletin
4(1): 57–62. doi:10.4153/CMB-1961-010-9.
Toshiyuki, N.; Hiroyasu, Y.; and Ágota, T. 2000. Maze-
solving by an amoeboid organism. Nature 407: 470.
Trillos, N. G. 2017. Gromov-Hausdorff limit of Wasserstein
spaces on point clouds. arXiv preprint arXiv:1702.03464 .
Tsuda, K.; and Rätsch, G. 2004. Image reconstruction by
linear programming. In NeurIPS, 57–64.
Vlastelica, M.; Paulus, A.; Musil, V.; Martius, G.; and
Rolı́nek, M. 2019. Differentiation of blackbox combinato-
rial solvers. arXiv preprint arXiv:1912.02175 .
Wright, S. J. 1997. Primal-dual interior-point methods, vol-
ume 54. Siam.
Yang, H. H.; and Amari, S.-i. 1998. The efficiency and
the robustness of natural gradient descent learning rule. In
NeurIPS.
Zeng, X.; Liao, R.; Gu, L.; Xiong, Y.; Fidler, S.; and Ur-
tasun, R. 2019. DMM-Net: Differentiable Mask-Matching
Network for Video Object Segmentation. In ICCV, 3929–
3938.
Zhang, H.; and Sra, S. 2016. First-order methods for
geodesically convex optimization. In Conference on Learn-
ing Theory.

8949

