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Abstract

Policy Optimization (PO) is a widely used approach to ad-
dress continuous control tasks. In this paper, we introduce
the notion of mediator feedback that frames PO as an online
learning problem over the policy space. The additional avail-
able information, compared to the standard bandit feedback,
allows reusing samples generated by one policy to estimate
the performance of other policies. Based on this observation,
we propose an algorithm, RANDomized-exploration policy
Optimization via Multiple Importance Sampling with Trun-
cation (RANDOMIST), for regret minimization in PO, that
employs a randomized exploration strategy, differently from
the existing optimistic approaches. When the policy space is
finite, we show that under certain circumstances, it is possible
to achieve constant regret, while always enjoying logarith-
mic regret. We also derive problem-dependent regret lower
bounds. Then, we extend RANDOMIST to compact policy
spaces. Finally, we provide numerical simulations on finite
and compact policy spaces, in comparison with PO and ban-
dit baselines.

1 Introduction
Policy Optimization (PO, Deisenroth, Neumann, and Peters
2013) is a family of Reinforcement Learning (RL, Sutton
and Barto 2018) algorithms based on the explicit optimiza-
tion of the policy parameters. It represents the most promis-
ing approach for learning large-scale continuous control
tasks and has already achieved marvelous results in video
games (e.g., Vinyals et al. 2019) and robotics (e.g., Peng
et al. 2020). These achievements, however, rely on massive
amounts of simulation rollouts. The efficient use of expe-
rience data is essential both to reduce computational costs
and to make learning online from real interaction possible.
This is still largely an open problem and calls for better the-
oretical understanding. Any online-learning agent must face
the exploration-exploitation dilemma: whether to leverage
on its current knowledge to maximize performance or con-
sider new alternatives. Fortunately, the Multi-Armed Ban-
dit (MAB) literature (Bubeck and Cesa-Bianchi 2012; Lat-
timore and Szepesvári 2018) provides a theoretical frame-
work for the problem of efficient exploration under bandit
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feedback, i.e., observing the effects of the chosen actions.
The dilemma is addressed by minimizing the cumulative re-
gret of the online performance w.r.t. the optimal one. The
most popular exploration strategies are based on the Opti-
mism in the Face of Uncertainty (OFU, Lai and Robbins
1985), of which UCB1 (Auer, Cesa-Bianchi, and Fischer
2002) is the prototypical algorithm, and on Thompson Sam-
pling (TS, Thompson 1933). Both suffer only sublinear re-
gret (Auer, Cesa-Bianchi, and Fischer 2002; Agrawal and
Goyal 2012; Kaufmann, Korda, and Munos 2012). TS typ-
ically performs better in practice (Chapelle and Li 2011),
but it is only computationally efficient in artificial set-
tings (Kveton et al. 2019b). More recent randomized algo-
rithms such as PHE (Perturbed History Exploration) (Kve-
ton et al. 2019a) are able to match the theoretical and practi-
cal advantages of TS without the computational burden, and
with no assumptions on the payoff distribution.

The OFU principle has been applied to RL (Jaksch, Or-
tner, and Auer 2010) and recently also to PO (Chowdhury
and Gopalan 2019; Efroni et al. 2020), at the level of ac-
tion selection. These methods are promising but limited to
finite actions. A different perspective is proposed by Pap-
ini et al. (2019), where the decision problem is not defined
over the agent’s actions but over the policy parameters. This
change of viewpoint allows exploiting the special structure
of the PO problem: for each policy, a sequence of states
and actions performed by the agent is collected, constituting,
alongside the rewards, a vastly richer signal than the simple
bandit feedback. In this paper, we call it mediator feedback
since this extra information acts as a mediator variable be-
tween the policy parameters and the return. OPTIMIST (Pa-
pini et al. 2019) is an OFU algorithm that uses Multiple Im-
portance Sampling (MIS, Veach and Guibas 1995) to exploit
the mediator feedback, so that the results of one policy pro-
vide information on all the others. This allows, in princi-
ple, to optimize over an infinite policy space with only fi-
nite samples and no regularity assumptions on the underly-
ing process. There are two important limitations in Papini
et al. (2019). First, the advantages of the mediator feedback
over the bandit feedback are not clear from a theoretical per-
spective since the regret of OPTIMIST is comparable with
that of UCB1 with finite policy space. Second, the policy
selection of OPTIMIST requires maximizing a non-convex
and non-differentiable index. In the continuous setting, this
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is addressed via discretization, with clear scalability issues.
In this work, we provide two major advancements. From

the theoretical side, we provide regret lower bounds for
the policy optimization problem with finite policy space,
and we show that OPTIMIST actually enjoys constant re-
gret under the assumptions made in (Papini et al. 2019).
In fact, mediator feedback is so special that, under strong-
enough assumptions, a greedy algorithm enjoys the same
guarantees. We also devise a PHE-inspired randomized al-
gorithm, called RANDOMIST (RANDomized-exploration
policy Optimization via Multiple Importance Sampling with
Truncation), with similar regret guarantees as OPTIMIST.
From the practical side, this allows replacing the unfea-
sible index maximization of OPTIMIST with a sampling
procedure. Although our regret guarantees apply to the fi-
nite setting only, we propose a heuristic version of RAN-
DOMIST for continuous problems, using a Markov Chain
Monte Carlo (MCMC, Owen 2013). We show the advan-
tages of this algorithm over continuous OPTIMIST in terms
of computational complexity and performance.

The structure of the paper is as follows. We start in Sec-
tion 2 with the basic background. In Section 3, we formalize
the mediator feedback in PO and derive two regret lower
bounds. We illustrate, in Section 4, a way to exploit medi-
ator feedback, based on importance sampling. Section 5 is
devoted to the discussion of deterministic algorithms, pro-
viding the improved regret guarantees for OPTIMIST. In
Section 6, we present RANDOMIST with its regret guar-
antees and the heuristic extension to the continuous case. In
Section 7, we compare empirically RANDOMIST with rele-
vant baselines on both illustrative examples and continuous-
control problems. In Section 8, we discuss relationships with
similar approaches from the bandit and RL literature. We
conclude in Section 9, discussing the obtained results and
proposing future research directions. The extended paper
can be found at https://arxiv.org/abs/2012.08225.

2 Preliminaries
In this section, we introduce some notation, the background
on Markov decision processes and policy optimization.

Mathematical Background Let pX ,F q be a measurable
space, we denote with PpX q the set of probability measures
over X . Let P,Q P PpX q such that P ! Q,1 for any β P
r0,8s the β-Rényi divergence (Rényi 1961) is defined as:2

DβpP }Qq “
1

β ´ 1
log

ż

X

ˆ

dP

dQ

˙β

dQ.

We denote with dβpP }Qq “ exp rDβpP }Qqs the exponen-
tiated Rényi divergence (Cortes, Mansour, and Mohri 2010).

Markov Decision Processes and Policy Optimization A
discrete-time Markov Decision Process (MDP, Puterman

1P is absolutely continuous w.r.t. Q, i.e., for every measurable
set Y Ď X we have QpYq “ 0ñ P pYq “ 0.

2In the limit, for β Ñ 1 we have D1pP }Qq “ DKLpP }Qq and
for β Ñ8 we have D8pP }Qq “ ess supX

dP
dQ

.

1994) is a 6-tuple M “ pS,A,P,R, γ, µq, where S is the
state space, A is the action space, P is the transition model
that for each ps, aq P S ˆ A provides the probability dis-
tribution of the next state Pp¨|s, aq P PpSq, Rps, aq P R
is the reward function, γ P r0, 1s is the discount factor, and
µ P PpSq is the initial-state distribution. In Policy Opti-
mization (PO, Peters and Schaal 2008), we model the agent’s
behavior by means of a policy πθp¨|sq P PpAq belong-
ing to a space of parametric policies ΠΘ “ tπθ : θ P

Θu. The interaction between an agent and an MDP gen-
erates a sequence of state-action pairs, named trajectory:
τ “ ps0, a0, s1, a1, . . . , sH´1, aH´1q where s0 „ µ, for
all h P t0, . . . ,H ´ 1u we have ah „ πθp¨|shq, sh`1 „

Pp¨|sh, ahq and H P N is the trajectory length. Each param-
eter θ P Θ determines a policy πθ P ΠΘ which, in turn, in-
duces a probability measure pθ P PpT q over the trajectory
space T . To every trajectory τ P T , we associate an index
of performance Rpτq “

řH´1
h“0 γ

hRpsh, ahq, called return.
Without loss of generality we assume that Rpτq P r0, 1s.
Thus, we can evaluate the performance of a policy πθ P ΠΘ

by means of its expected return: Jpθq “ Eτ„pθ rRpτqs. The
goal of the agent consists in finding an optimal parameter,
i.e., any θ˚ maximizing Jpθq.3

3 Online Policy Optimization and Mediator
Feedback

The online PO protocol works as follows. At each round
t P rns, we evaluate a parameter vector θt P Θ by run-
ning policy πθt

, collecting one (or more) trajectory τt P T
and observing the corresponding return Rpτtq. Then, based
on the history Ht “ tpθi, τi,Rpτiqquti“1, we update θt to
get θt`1. From an online learning perspective, the goal of
the agent consists in maximizing the sum of the expected
returns over n rounds or, equivalently, minimizing the cu-
mulative regret Rpnq:

max
θ1,...θnPΘ

n
ÿ

t“1

Jpθtq ô min
θ1,...θnPΘ

Rpnq “
n
ÿ

t“1

∆pθtq,

where ∆pθq “ J˚´Jpθq is the optimality gap of θ P Θ and
J˚ “ supθPΘ Jpθq. Thus, whenever policy πθt

is executed
the agent receives the trajectory-return pair pτt,Rpτtqq, that
we name mediator feedback (MF). The term “mediator”
refers to the side information, the trajectory τt, that medi-
ates between the parameter choice θt and the return Rpτtq.
By naı̈vely approaching PO as an online-learning problem
over policy space, we would only consider bandit feedback,
in which just the return Rpτtq is observable. In comparison,
the MF allows to better exploit the structure underlying the
PO problem (Figure 1).4 Indeed, while the return function R

3To simplify the presentation, we frame our results for the usual
action-based PO. Our findings directly extend to parameter-based
exploration (Sehnke et al. 2008), in which policies are indirectly
optimized by learning a hyperpolicy that outputs the policy param-
eters. Coherently with Papini et al. (2019), the empirical evaluation
of Section 7 is carried out in the parameter-based framework.

4In this paper, we employ the wording “bandit feedback” with a
different meaning compared to some provably efficient approaches
to PO (e.g., Efroni et al. 2020). See also Section 8.
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θt τt Rpτtq
pθt RMediator

Feedback

θt zt Rpτtq
pθt ˝R´1Bandit

Feedback

Figure 1: Graphical models comparing mediator and bandit
feedbacks.

is unknown, the trajectory distribution pθ is partially known:

pθpτq “ µps0q

H´1
ź

h“0

πθpah|shqP psh`1|sh, ahq. (1)

The policy factors πθ , that depend on θ, are known to the
agent, whereas the factors due to the environment (µ and P )
are unknown but do not depend on θ. Intuitively, if two poli-
cies πθ and πθ1 are sufficiently “similar”, given a trajectory
τ from policy πθ , the return Rpτq provides information on
the expected return of policy πθ1 too.

Regret Lower Bounds for Finite Policy Space We focus
on the intrinsic complexity of PO with finite policy space,
deriving two lower bounds to the regret. The results are
phrased, for simplicity, for the case of two policies, i.e.,
|Θ| “ 2, and the proof techniques are inspired to (Bubeck,
Perchet, and Rigollet 2013). We start showing that, with
enough structure between the policies, i.e., when the KL-
divergence between the trajectory distributions is bounded,
the best achievable regret is constant.
Theorem 3.1. There exist an MDP and a parameter space
Θ “ tθ1,θ2u with DKLppθ1}pθ2q ă 8, DKLppθ2}pθ1q ă

8 and Jpθ1q ´ Jpθ2q “ ∆ such that, for sufficiently large
n, all algorithms suffer regret ERpnq ě 1

32∆ .

Instead, the presence of policies that are uninformative of
one another, i.e., with infinite KL-divergence between the
trajectory distributions, leads to a logarithmic regret.
Theorem 3.2. There exist an MDP and a parameter space
Θ “ tθ1,θ2u with DKLppθ1}pθ2q“8 or DKLppθ2}pθ1q“

8, and Jpθ1q ´ Jpθ2q “ ∆ such that, for any n ě 1, all
algorithms suffer regret ERpnq ě 1

8∆ logp∆2nq.

4 Exploiting Mediator Feedback with
Importance Sampling

In this section, we illustrate how Importance Sampling tech-
niques (IS, Cochran 1977; Owen 2013) can be employed to
effectively exploit the mediator feedback in PO.5

Monte Carlo Estimation With the bandit feedback at
each round t P rns, the agent has access to the history of
parameter-return pairs Ht “ tpθi,Rpτiqut´1

i“1. Let Ttpθq “
řt´1
i“1 1tθi “ θu be the number of trajectories collected

with policy πθ P ΠΘ up to round t ´ 1. To estimate the

5We stress that IS is just one method, and not necessarily the
best one, to exploit the structure of the PO problem.

expected return Jpθq, if no additional structure is available,
we can only use the samples collected when executing πθ ,
leading to the Monte Carlo (MC) estimator:

pJMC
t pθq “

1

Ttpθq

t´1
ÿ

i“1

Rpτiq1tθi “ θu. (2)

pJMC
t is unbiased for Jpθq and its variance scales with

Varr pJMC
t pθqs ď 1{Ttpθq. Clearly, pJMC

t pθq can be computed
only for the policies that have been executed at least once.

Multiple Importance Sampling Estimation With the
mediator feedback, at each round t P rns we have ac-
cess to additional information, i.e., the history of parameter-
trajectory-return triples Ht “ tpθi, τi,Rpτiqqut´1

i“1. Thanks
to the factorization in Equation (1), we can compute the tra-
jectory distribution ratios without knowing P and µ:

pθpτq

pθ1pτq
“

H´1
ź

h“0

πθpah|shq

πθ1pah|shq
.

Thus, we can use all the samples to estimate the expected
return of any policy. Let Φt “

řt´1
j“1

1
t´1pθj be the mixture

induced by the policies executed up to time t ´ 1: if pθ !
Φt, we can employ a Multiple Importance Sampling (MIS,
Veach and Guibas 1995) estimator (with balance heuristic):6

pJtpθq “
1

t´ 1

t´1
ÿ

i“1

ωθ,tpτiqRpτiq, (3)

where ωθ,tpτiq “ pθpτiq{Φtpτiq is the importance weight.
Thus, for estimating the expected return Jpθq of policy πθ
we do not need to execute πθ , but just require the absolute
continuity pθ ! Φt (surely fulfilled if Ttpθq ě 1). The
statistical properties of the MIS estimator can be phrased
in terms of the Rényi divergence. We can prove that 0 ď
pJtpθq ď d8ppθ}Φtq and the variance can be bounded as
Varr pJtpθqs ď d2ppθ}Φtq{pt ´ 1q (Metelli et al. 2018; Pa-
pini et al. 2019; Metelli et al. 2020). Since the variance of
pJtpθq scales with d2ppθ}Φtq{pt ´ 1q instead of 1{Ttpθq, as
for pJMC

t pθq, we refer to ηtpθq :“ pt ´ 1q{d2ppθ}Φtq as
the effective number of trajectories. It is worth noting that
ηtpθq ě Ttpθq (Lemma C.4); thus, thanks to the structure in-
troduced by the mediator feedback, the MIS estimator vari-
ance is always smaller than the MC estimator variance.7

Truncated Multiple Importance Sampling Estimation
The main limitation of the MIS estimator is that the im-
portance weight ωθ,t displays a heavy-tail behavior, pre-
venting exponential concentration, unless d8ppθ}Φtq is fi-
nite (Metelli et al. 2018). A common solution consists in

6For an extensive discussion of importance sampling and
heuristics (e.g., balance heuristic) refer to (Owen 2013).

7The effective number of trajectories ηtpθq is, in fact, the effec-
tive sample size of pJtpθq (Martino, Elvira, and Louzada 2017).
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truncating the estimator (Ionides 2008) at the cost of in-
troducing a negative bias. Given a (time-variant and policy-
dependent) truncation threshold Mtpθq ă 8, the Truncated
MIS (TMIS) was introduced by Papini et al. (2019):

qJtpθq “
1

t´ 1

t´1
ÿ

i“1

qωθ,tpτiqRpτiq, (4)

where qωθ,tpτiq “ min tMtpθq, ωθ,tpτiqu. TMIS enjoys
more desirable theoretical properties than plain MIS. While
its variance scales similarly to pJtpθq since Varr qJtpθqs ď
d2ppθ}Φtq{pt ´ 1q, the range can be bounded as 0 ď

qJtpθq ď Mtpθq. Thus, the range is controlled by Mtpθq
and no longer by the divergence d8ppθ}Φtq, which may
be infinite. Similarly, the bias can be bounded as Jpθq ´
Eτi„pθi r qJtpθqs ď d2ppθ}Φtq{Mtpθq (see Papini et al.
(2019) and Lemma C.1 for details). If we are interested in
minimizing the joint contribution of bias and variance, this
suggests to increase Mtpθq progressively over the rounds.

5 Deterministic Algorithms
In this section, we consider finite policy spaces (|Θ| ă 8)
and discuss algorithms for PO that select policies determin-
istically, i.e., θt is a deterministic function of history Ht´1.

Follow The Leader The simplest algorithm accounting
for the mediator feedback is Follow The Leader (FTL).
It maintains a TMIS estimator qJtpθq and selects the pol-
icy with the highest estimated expected return, i.e., θt P
arg maxθPΘ

qJtpθq. This is a pure-exploitation algorithm,
unsuited for bandit feedback. Surprisingly, under a strong
form of mediator feedback, FTL enjoys constant regret.
Theorem 5.1. Let Θ “ rKs, vpθq “ maxθ1PΘ d2ppθ}pθ1q
for all θ P Θ and v˚pθq “ maxtvpθq, vpθ˚qu, where πθ˚
is an optimal policy. If v :“ maxθPΘ vpθq ă 8, then, for
any α ą 1, the expected regret of FTL using TMIS with

truncation Mtpθq “
b

td2ppθ}Φtq

α log t is bounded as:

ERpnq ď
ÿ

θPΘ:∆pθqą0

48αv˚pθq

∆pθq
log

24αv˚pθq

∆pθq2

`∆pθ1q `
2K

α´ 1
min

!

1,
a

2 log v
)

.

(5)

We refer to the condition when all pairwise Rényi diver-
gences are finite (i.e., v ă 8) as perfect mediator feed-
back. In such case, we have the remarkable property that
running any policy in ΠΘ provides information for all the
others. Indeed, the effective number of trajectories satis-
fies ηtpθq ě pt ´ 1q{v (Lemma C.4). Unfortunately, when
v “ 8, FTL degenerates to linear regret (Fact D.1).

UCB1 We can always apply an algorithm for standard
bandit feedback, like UCB1 (Lai and Robbins 1985; Auer,
Cesa-Bianchi, and Fischer 2002), to PO with finite pol-
icy space, ignoring the mediator feedback. UCB1 main-
tains the sample mean pJMC

t pθq of the observed returns for

Algorithm 1 OPTIMIST
Input: initial parameter θ1, α ą 1

Execute πθ1 , observe τ1 „ pθ1 and Rpτ1q
for t “ 2, . . . , n do

Compute expected return estimate qJtpθq
Compute index:

Btpθq “ qJtpθq ` p1`
?
2q
b

α log t
ηtpθq

Select θt P argmaxθPΘ Btpθq
Execute πθt , observe τt „ pθt and Rpτtq

end for

each θ P Θ and selects the one that maximizes pJMC
t pθq `

a

pα log tq{Ttpθq. The optimistic bonus favors policies that
have been selected less often, in accordance with the OFU
principle. Being designed for bandit feedback, UCB1 guar-
antees Op∆´1 log nq regret (Auer, Cesa-Bianchi, and Fis-
cher 2002) even if v “ 8, but it cannot exploit mediator
feedback when actually present.

In principle, we could employ FTL or UCB1 based on
whether v is finite or infinite. There are two reasons why this
approach might be inappropriate. First, we would disregard
the possibility to share information among pairs of policies
with finite divergence, losing possible practical benefits (not
captured by the current regret analysis). Second, even when
v ă 8, the regret of FTL is Opv∆´1 logpv∆´2qq that, at
finite time, might be worse than Op∆´1 log nq, especially
for large v. Note that deriving the conditions on v so that the
regret of UCB1 is smaller than that of FLT is not practical
since it would require the knowledge of the gap ∆.

OPTIMIST The difficulty in combining the advantages of
FTL and UCB1 is overcome by OPTIMIST (Algorithm 1),
an OFU-based algorithm introduced by Papini et al. (2019).8
It selects policies as to maximize an optimistic TMIS ex-
pected return estimate that favors policies with a lower ef-
fective number of trajectories. In the original paper (Papini
et al. 2019), OPTIMIST is only shown to enjoy sublinear
regret in high probability under perfect mediator feedback
(v ă 8). We show here that OPTIMIST actually enjoys
constant regret under perfect mediator feedback (like FTL)
without ever degenerating into linear regret (like UCB1).

Theorem 5.2. Let Θ “ rKs and vpθq “

maxθ1PΘ d2ppθ}pθ1q for all θ P Θ (vpθq can be infi-
nite). For any α ą 1, the expected regret of OPTIMIST with

truncation Mtpθq “
b

td2ppθ}Φtq

α log t is bounded as:
(a) if v :“ maxθPΘ vpθq ă 8:

ERpnq ď
ÿ

θPΘ:∆pθqą0

48αvpθq

∆pθq
log

24αvpθq

∆pθq2

8We consider here a slight variant of OPTIMIST with an ex-
plicit exploration parameter α in place of the original confidence
parameter δ from (Papini et al. 2019), since we focus on expected
regret rather than high-probability regret. α controls the repartition
of the regret between the constant and logarithmic parts.
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Algorithm 2 RANDOMIST
Input: initial parameter θ1, scale a ě 0, translation b ě 0, α ą 1

Execute πθ1 , observe τ1 „ pθ1 and Rpτ1q
for t “ 2, . . . , n do

Compute expected return estimate qJtpθq
Generate perturbation:

Utpθq “
1

ηtpθq
řaηtpθq
l“1 ζl ` b, with ζl „ Berp1{2q

Select θt P argmaxθPΘ qJtpθq ` Utpθq
Execute πθt , observe τt „ pθt and Rpτtq

end for

`∆pθ1q `
2K

α´ 1
min

!

1,
a

2 log v
)

;

(b) in any case:

ERpnq ď
ÿ

θPΘ:∆pθqą0

24α

∆pθq
log n`

α` 1

α´ 1
K,

with an instance-independent expected regret of ERpnq ď
4
?

6αKn log n` pα` 1qK{pα´ 1q.
Note also that the regret correctly goes to zero with the

divergence (when v “ 1, all the policies are equivalent). It is
an interesting open problem whether better regret guarantees
can be provided for the intermediate case, i.e., when some
(but not all) the Rényi divergences are finite.

6 Randomized Algorithms
In this section, we propose a novel algorithm for regret min-
imization in PO that selects the policies with a randomized
strategy. RANDOMIST (RANDomized-exploration policy
Optimization via Multiple Importance Sampling with Trun-
cation, Algorithm 2) is based on PHE (Kveton et al.
2019a) and employs additional samples to perturb the
TMIS expected return estimate qJtpθq, enforcing explo-
ration.9 Clearly, RANDOMIST shares the randomized na-
ture of exploration with the Bayesian approaches for bandits
(e.g., Thompson Sampling (Thompson 1933)) although no
prior-posterior mechanism is explicitly implemented and no
assumption (apart for boundedness) on the return distribu-
tion is needed. At each round t “ 2, . . . , n, we update the
TMIS expected return estimate for each policy qJtpθq and
we generate the perturbation Utpθq that is obtained through
aηtpθq pseudo-rewards sampled from a Bernoulli distribu-
tion Berp1{2q. Then, we play the policy maximizing the
perturbed estimated expected return, i.e., the sum of the es-
timated expected return qJtpθq and the perturbation Utpθq.
The two hyperparameters are the perturbation scale a ą 0
and the perturbation translation b ą 0. Informally, a and
b are responsible for the amount of exploration: a governs
the variance of the perturbation, while b (which is absent in
PHE) accounts for the negative bias introduced by the TMIS
estimator. We now present the properties of RANDOMIST
with finite parameter space and propose an extension to deal
with compact parameter spaces.

9In this sense, RANDOMIST, as well as PHE, resembles the
Follow the Perturbed Leader (Hannan 1957) strategy.

Finite Parameter Space If the policy space is finite, we
can show that RANDOMIST enjoys guarantees similar to
those of OPTIMIST on the expected regret.
Theorem 6.1. Let Θ “ rKs, vpθq “ maxx1PΘ d2ppθ}pθ1q
for all θ P Θ (vpθq can be infinite) and v˚pθq “

maxtvpθq, vpθ˚qu where πθ˚ is an optimal policy. For any
α ą 1, the expected regret of RANDOMIST with truncation

Mtpθq “
b

td2ppθ}Φtq

α log t is bounded as follows:

(a) if v :“ maxθPΘ vpθq ă 8, b ď
a

pα log tq{ηtpθq and
a ě 0:

ERpnq ď ∆pθ1q `
α` 3

α´ 1
min

!

1,
a

2 log v
)

K

`
ÿ

θPΘ:∆pθqą0

p188` 32aqαv˚pθq

∆pθq
log

p94` 16aqαv˚pθq

∆pθq2
;

(b) no matter the value of v, if a ą 8 and Jpθq´Er qJtpθqs ď
b ď

a

pα log tq{ηtpθq:

ERpnq ď
ÿ

θPΘ:∆pθqą0

p52` 110aqcα

∆pθq
log n` 2

α` 1

α´ 1
K,

where c “ 2 ` e2
?
a

?
2π

exp
“

16
a´8

‰

´

1 `
b

πa
a´8

¯

, with

an instance-independent expected regret of ERpnq ď

2
a

p52` 110aqcαKn log n` 2α`1
α´1K.

Under perfect mediator feedback RANDOMIST enjoys
constant regret, like OPTIMIST, although with a depen-
dence on v˚pθq, which involves the divergence w.r.t. an op-
timal policy. Moreover, in such case, since exploration is
not needed, we could even set a “ b “ 0 reducing RAN-
DOMIST to FTL. Similarly to OPTIMIST, when we allow
v “ 8, the regret becomes logarithmic and the hyperparam-
eters a and b must be carefully set to enforce exploration.

Compact Parameter Space When the parameter space is
a compact set, i.e., Θ “ r´M,M sd, the arg max in Algo-
rithm 2 cannot be explicitly computed. However, the random
variable θ P arg maxθ1PΘ

qJtpθq`Utpθq can be seen as sam-
pled from the distribution for θ of being the parameter in Θ
with the largest perturbed estimated expected return, whose
p.d.f. is given by (D’Eramo et al. 2017):

g˚t pθq “ g
´

qJtpθq ` Utpθq “ sup
θ1PΘ

qJtpθ
1q ` Utpθ

1q|Ht´1

¯

“

ż

R

gθpyq

Gθpyq R
Θ

Gθ1pyqdθ
1dy, (6)

where RΘ
Gθpyqdθ “ exp

`ş

Θ
logGθpyqdθ

˘

is the product
integral (Davis and Chatfield 1970), gθ andGθ are the p.d.f.
and the c.d.f. of the random variable qJtpθq ` Utpθq condi-
tioned to the history Ht´1. The computation of g˚t (even up
to a constant) is challenging as the product integral requires a
numerical integration over the parameter space Θ. Provided
that an approximation (up to a constant) g:t of g˚t is available,
we can use a Monte Carlo Markov Chain method (Owen
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Figure 2: Cumulative regret on the illustrative PO for four values of σ and λ. 20 runs, 95% c.i.

2013) to generate a sample θt „ g:t . As a practical approx-
imation, we consider the p.d.f. for θ of having a perturbed
estimated expected return larger than that of the previously
executed policies:10 g:tpθq9

ş

R gθpyq
śt´1
i“1 Gθi

pyqdy.
Since Opdq iterations of MCMC are sufficient to generate

a sample (Beskos and Stuart 2009), where d is the dimen-
sionality of Θ, and one evaluation of g:t can be performed
in time Opt3q, the per-round complexity of RANDOMIST
is Opdt3q. This can be further reduced to Opdt2q via clever
caching (see Appendix F). OPTIMIST (Papini et al. 2019)
can also be applied to continuous parameter spaces, with
an rOp

?
vdnq high-probability regret bound. However, it is

not clear how to perform the maximization step of OPTI-
MIST efficiently in this setting, since the optimistic index
is non-differentiable and non-convex in the parameter vari-
able. Discretization is adopted in (Papini et al. 2019), lead-
ing to Opt1`d{2q time complexity, that is exponential in d.
The RANDOMIST variant proposed here, although heuris-
tic, has only polynomial dependence on d, thus scaling more
favorably to high-dimensional problems.

7 Numerical Simulations
We present the numerical simulations, starting with an illus-
trative example and then moving to RL benchmarks. For the
RL experiments, similarly to Papini et al. (2019), the evalua-
tion is carried out in the parameter-based PO setting (Sehnke
et al. 2008), where the policy parameters θ are sampled from
a hyperpolicy νξ and the optimization is performed in the
space of hyperparameters Ξ (Appendix A). This setting is
particularly convenient since the Rényi divergence between
hyperpolicies can be computed exactly (at least for Gaus-
sians). Details and an additional experiment on the Cartpole
domain are reported in Appendix F.

Illustrative Problems The goal of this experiment is to
show the advantages of the additional structure offered by
the mediator feedback over the bandit feedback. We de-
sign a class of 5-policy PO problems, isomorphic to ban-
dit problems, in which trajectories are collapsed to a sin-
gle real action T “ R and Rpτq “ maxt0,mint1, τ{4uu.

10g:t can be seen as obtained from gt̊ applying a quadrature with
tθ1, . . . θt´1u as nodes for the inner integral.

The policies are Gaussians pN p0, σ2q, N p1, σ2q, N p2, σ2q,
N p2.95, λ2q, N p3, σ2qq defined in terms of the two values
σ, λ ą 0. The optimal policy is the fifth one and we have
a near-optimal parameter, the fourth, with a different vari-
ance. Intuitively, we can tune the parameters σ and λ to vary
the Rényi divergences. We compare RANDOMIST with
a “ 8.1 (as prescribed in Theorem 6.1) and a “ 1.1, and
b “

a

pα log tq{ηtpθq for both cases, with OPTIMIST (Pa-
pini et al. 2019), FTL, UCB1 (Auer, Cesa-Bianchi, and Fis-
cher 2002), PHE (Kveton et al. 2019a), and TS with Gaus-
sian prior (Agrawal and Goyal 2013). The cumulative re-
gret is shown in Figure 2 for four combinations of σ and
λ. In (a) and (d) we are in a perfect mediator feedback,
but in (a) log v » 2.25 and (d) log v » 900. Instead, in
(b) or (c), we have v “ 8. We notice that FTL displays a
(near-)linear regret in (a) as expected since v “ 8 but also
in (c) where v is finite but very large. RANDOMIST with
theoretical value of a “ 8.1 always displays a good be-
havior and better than OPTIMIST, except in (d) where the
latter shows a remarkable constant regret. We also note that
when the amount of information shared among parameters
is small, UCB1 performs better than OPTIMIST as well as
PHE over RANDOMIST. Furthermore, TS with Gaussian
prior performs very well across the tasks, although it con-
siders the bandit feedback. This can be explained since TS
assumes the correct return distribution. It also suggests that
RANDOMIST could be improved when coped with other
perturbation distributions (e.g., Gaussian). Finally, we ob-
serve that RANDOMIST with a “ 1.1, although violating
the conditions of Theorem 6.1, keeps showing a sublinear
regret even in (b) and (c) when v “ 8.

Linear Quadratic Gaussian Regulator The Linear
Quadratic Gaussian Regulator (LQG, Curtain 1997) is
a benchmark for continuous control. We consider the
monodimensional case and a Gaussian hyperpolicy νξ “
N pξ, 0.152q where ξ is the learned parameter. From νξ,
we sample the gain θ of a deterministic linear policy:
ah “ θsh. This experiment aims at comparing RAN-
DOMIST with UCB1 (Auer, Cesa-Bianchi, and Fischer
2002), GPUCB (Srinivas et al. 2010), and OPTIMIST (Pap-
ini et al. 2019) in a finite policy space by discretizing r´1, 1s
in K “ 100 parameters. In Figure 3, we notice that OPTI-
MIST and RANDOMIST outperform UCB1. While RAN-
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Figure 3: Cumulative regret in the LQG (30 runs, 95% c.i.)
and cumulative return in the Mountain Car (5 runs, 95% c.i.).

DOMIST with a “ 8.1 and OPTIMIST have similar perfor-
mance, RANDOMIST improves significantly when setting
a to 1.1. As in (Papini et al. 2019), the good performance of
GPUCB is paired with a lack of theoretical guarantees due
to the arbitrary choice of the GP kernel.

Mountain Car To test RANDOMIST in a continuous
parameter space, we employ the approximation described
above in the Mountain Car environment (Sutton and Barto
2018). We consider the setting of (Papini et al. 2019), em-
ploying PGPE (Sehnke et al. 2008) and PB-POIS (Metelli
et al. 2018) as baselines. We use a Gaussian hyperpol-
icy νξ “ N pξ, diagp0.15, 3q2q with learned mean ξ, from
which we sample the parameters of a deterministic policy,
linear in position and velocity. The exploration phase is per-
formed by sampling from the approximate density g:t , taking
10 steps of the Metropolis-Hastings algorithm (Owen 2013)
with Gaussian proposal qm “ N pθm, diagp0.15, 3q2q. Fig-
ure 3 shows that RANDOMIST outperforms both policy
gradient baselines and OPTIMIST, in terms of learning
speed and final performance.

8 Related Works
In this section, we revise the related literature, with attention
to bandits with expert advice and to provably efficient PO.
Additional comparisons are reported in Appendix B.

Mediator Feedback and Expert Advice A related for-
mulation are the Bandits with Expert Advice (BEA, Bubeck
and Cesa-Bianchi 2012, Section 4.2), introduced as an ap-
proach to adversarial contextual bandits. To draw a paral-
lelism with PO, let T be the set of arms and Θ “ rKs
the finite set of experts. At each step t, the agent receives
advice ptθ P PpT q from each expert θ P Θ, selects
one expert θt, and pulls arm τt „ ptθt

. The goal is to
minimize the in-class regret, competing with the best ex-
pert in hindsight. Differently from the trajectory distribu-
tions of PO, expert advice can change with time. A ma-
jor concern of BEA, also relevant to PO, is the depen-
dency of the regret on the number K of experts (resp.
policies). A naı̈ve application of Exp3 (Auer et al. 2002)
yields Op

?
nK logKq regret. Like our PO algorithms, this

is impractical when the experts are exponentially many.
Exp4 (Auer et al. 2002) achieves Op

a

n|T | logKq regret,
which scales well with K, but is vacuous in the case of in-
finite arms. McMahan and Streeter (2009) replace |T | with
the degree of agreement of the experts, which has interest-
ing similarities with our distributional-divergence approach.
Meta-bandit approaches (Agarwal et al. 2017; Pacchiano
et al. 2020) are so general that could be applied both to
continuous-arm BEA and PO, but also exhibit a superloga-
rithmic dependence on K. Beygelzimer et al. (2011) obtain
rOp
?
dnq regret competing with an infinite set of experts of

VC-dimension d, mirrored in PO by OPTIMIST on compact
spaces of dimension d (Papini et al. 2019, Theorem 3).

Provably Efficient PO Recently, a surge of approaches to
deal with PO in a theoretically sound way, with both stochas-
tic or adversarial environments, has emerged. These works
consider either full-information, i.e., the agent observes the
whole reward function tRpsh, aquaPA regardless the played
action (e.g., Rosenberg and Mansour 2019; Cai et al. 2019),
or the bandit feedback (with a different meaning compared
to the use we have made in this paper), in which only the
reward of the chosen action is observed Rpsh, ahq (e.g.,
Jin et al. 2019; Efroni et al. 2020). These methods are not
directly comparable with the mediator feedback, although
both settings exploit the structure of the PO problem. While
with MF we explicitly model the policy space ΠΘ, these
methods search in the space of all Markovian stationary poli-
cies. Furthermore, they are limited to tabular MDPs, while
MF can deal natively with continuous state-action spaces.

9 Discussion and Conclusions
We have deepened the understanding of policy optimiza-
tion as an online learning problem with additional feedback.
We believe that mediator feedback has potential applications
even beyond PO. Indeed, the problem of optimizing over
probability distributions also encompasses GANs and varia-
tional inference (Chu, Blanchet, and Glynn 2019) and, more
generally, MF emerges in any Bayesian network in which
we control the conditional distributions on some vertexes,
via parameters θ, while the other are fixed and indepen-
dent from θ. Furthermore, we have introduced a novel ran-
domized algorithm, RANDOMIST, and we have shown its
advantages both in terms of computational complexity and
performance. The algorithm could be improved by adopt-
ing a different perturbation, e.g., Gaussian, as already hinted
in (Kveton et al. 2019b). Further work is needed to match the
theoretical regret lower bounds. Currently, a major discrep-
ancy is the use of the KL-divergence in the lower bounds in-
stead of the larger Rényi divergence required by algorithms
based on IS. Moreover, the algorithm employs the ratio im-
portance weight and, thus, it might suffer from the curse of
horizon (Liu et al. 2018). Finally, the case of non-perfect me-
diator feedback could be related to graphical bandits (Alon
et al. 2017), where finite Rényi divergences are the edges
of a directed feedback graph, in order to capture the actual
difficulty of this intermediate case.
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