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Abstract

We investigate to which extent one can recover class probabil-
ities within the empirical risk minimization (ERM) paradigm.
We extend existing results and emphasize the tight relations
between empirical risk minimization and class probability es-
timation. Following previous literature on excess risk bounds
and proper scoring rules, we derive a class probability esti-
mator based on empirical risk minimization. We then derive
conditions under which this estimator will converge with high
probability to the true class probabilities with respect to the
L1-norm. One of our core contributions is a novel way to
derive finite sample L1-convergence rates of this estimator
for different surrogate loss functions. We also study in de-
tail which commonly used loss functions are suitable for this
estimation problem and briefly address the setting of model-
misspecification.

Introduction
In binary classification problems, we try to predict a la-
bel y ∈ {−1, 1} = Y based on an input feature vector
x ∈ X . Since optimizing for the classification accuracy is
often computationally too complex, one typically measures
performance through a surrogate loss function. Such meth-
ods are designed to achieve good classification performance,
but often we are also interested in the classifier’s confidence
or a class probability estimate as such. For instance, we may
not only want to classify a tumor as benign or malignant, but
also estimate a probability that the predicted label is wrong.
Also various methods in active or semi-supervised learning
rely on such class probability estimates. For example, in ac-
tive learning, they are used in uncertainty based rules (Lewis
and Catlett 1994; Roy and McCallum 2001), while in semi-
supervised learning, they are needed in techniques like en-
tropy regularization (Grandvalet and Bengio 2004).

In this paper, we derive necessary and sufficient condi-
tions under which classifiers, obtained through the mini-
mization of an empirical loss function, allow us to estimate
the class probability in a consistent way. More precisely, we
present a general way to derive finite sample bounds based
on those conditions. While the use of class probability esti-
mates, as argued before, finds a broad audience, the neces-
sary tools to understand the behavior, especially the litera-
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ture on proper scoring rules, is not that broadly known. So
next to our contribution on finite sample behavior for class
probability estimation, we present a condensed introduction
to this, in our opinion, under-appreciated field.

A proper scoring rule is essentially a loss function that
can measure the class probability point-wise. We investigate
in which circumstances those loss functions make use of
this potential and lift this point-wise property to the com-
plete space. Next to proper scoring rules we use excess risk
bounds to come to our results. Excess risk bounds are essen-
tially inequalities that quantify how much an empirical risk
minimizer is off from the true risk. Interestingly, our work
does not need any specific excess risk bound and is thus
very flexible. Any progress in that theory may also translate
to this work. Furthermore, if one is willing to make assump-
tions on the underlying distributions that lead to stronger ex-
cess risk bounds, we immediately also get stronger bounds
for our results under the same assumptions.

Combining those two areas, our main contributions are
the following. Based on the existing literature, we define in
Equation (9) a class probability estimate η̂ derived from an
empirical risk minimizer. Based on this, we analyze to which
extent commonly used loss functions are suitable for the
task of class probability estimation. We then derive condi-
tions that ensure that the estimator η̂ converges in probabil-
ity, for an increasing sample size, to the true class probabil-
ities and we also analyze the rate at which this convergence
takes place. For ease of exposition all of the previous analy-
sis is done with a well-specification condition that we derive
in Theorem 1. We, however, also discuss how this analysis
is to be interpreted when this well-specification condition
does not hold. As a direct application of our theory we de-
rive error bounds when estimating the class probability with
a classification method trained with the squared or the lo-
gistic loss. We note already that the rate for the logistic loss
has, to the best of our knowledge, not been reported in the
literature. Finally we discuss how one can extend this work
to asymmetric loss functions and analyze their convergence
behavior per class label. To start with, however, the follow-
ing two sections cover related work and some preliminaries.

Related Work
Many results on class probability estimation in the context
of non-parametric regression can be found in Györfi et al.
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(2002). The main differences from our results to those type
of results is threefold. The first difference is conceptual.
While the results presented in Györfi et al. (2002) investigate
methods that are specifically designed for class probability
estimation, we ask the question if it is possible to obtain con-
sistent class probability estimates with classification meth-
ods. Second, to obtain meaningful convergence rate guaran-
tees, the results of Györfi et al. (2002) make assumptions
on the distribution. We shift this burden from the distribu-
tion to the hypothesis set used. The difference is, that while
we always have meaningful finite sample guarantees, our es-
timation procedure is not consistent in the case of model
misspecification. The methods used by Györfi et al. (2002)
are always consistent, but may have arbitrarily slow conver-
gence on some distributions. Third, as we assume that the
excess risk bounds we use are true with high probability over
drawn samples, our convergence results hold with high prob-
ability, while Györfi et al. (2002) makes those statements in
expectation over the sampling process.

The starting point of our analysis follows closely the
notation and concepts as described by Buja, Stuetzle, and
Shen (2005), Reid and Williamson (2010) and Reid and
Williamson (2011). While Buja, Stuetzle, and Shen (2005)
and Reid and Williamson (2010) deal with the inherent
structure of proper scoring rules, Reid and Williamson
(2011) make connections between the expected loss in pre-
diction problems and divergence measures of two distribu-
tions. In contrast to that we investigate under which circum-
stances proper scoring rules can make use of their full po-
tential in order to estimate class probabilities. Similar to our
work Reid and Williamson (2009) gather different sources,
in addition to the theory of proper scoring rules, and present
general results on regret bounds for class probability esti-
mation. Our work strongly differs in techniques used and
thus also in the type of result. Reid and Williamson (2009)
use an integral representation of the Bayes risk and derive
point-wise regret bounds on the Bregman divergence (as in
Theorem 3). We draw from the literature of learning theory
and excess risk bounds and derive high-probability L1 regret
bounds.

Telgarsky, Dudı́k, and Schapire (2015) perform an analy-
sis similar to ours as they also investigate convergence prop-
erties of a class probability estimator, their start and end
point are very different though. While we start with theory
from proper scoring rules, their paper directly adopts the
class probability estimator as found in Zhang (2004). The
problem is that Zhang (2004) does not evaluate this estima-
tor with respect to any convergence or consistency proper-
ties, and it therefore remains unclear if it is the correct choice
in any sense. This paper contributes to close this gap and an-
swers this questions They show that the estimator converges
to a unique class probability model. In relation to this one
can view this paper as an investigation of this unique class
probability model and we give necessary and sufficient con-
ditions that lead to convergence to the true class probabili-
ties. Note also that their paper uses convex methods, while
our work in comparison draws from the theory of proper
scoring rules.

Agarwal and Agarwal (2015) look at the problem in a

more general fashion. They connect different surrogate loss
functions to certain statistics of the class probability distri-
bution, e.g. the mean, while we focus on the estimation of
the full class probability distribution. This allows us to come
to more specific results, such as finite sample behavior.

Another general analysis can be found in Steinwart
(2007). He presents a general tool to relate convergence in
a surrogate risk to the convergence in a target risk, and also
presents finite sample rates. As we focus on class probability
estimation we are able to derive more specific results, and in
particular our Lemma 3 and Corollary 3 tell us when condi-
tion (12) of Theorem 2.13 from Steinwart (2007) is true for
class probability estimation.

The probability estimator we use also appears in Agarwal
(2014) where it is used to derive excess risk bounds, referred
to as surrogate risk bounds, for bipartite ranking. The meth-
ods used are very similar in the sense that these are also
based on proper scoring rules. The difference is again the
focus, the conditions used and the conclusions made. They
introduce the notion of strongly proper scoring rules which
directly allows one to bound the L2-norm, and thus the L1-
norm, of the estimator in terms of the excess risk. We show
that convergence can be achieved already under milder con-
ditions. We then use the concept of modulus of continuity, of
which strongly proper scoring rules are a particular case, to
analyze the rate of convergence for class probability estima-
tion. Agarwal (2014) on the other hand derives risk bounds
for the ranking error, which essentially measures the proba-
bility that a randomly drawn positive instance gets assigned
a lower value (called score in that context) than a randomly
drawn negative instance.

Preliminaries
We work in the classical statistical learning setup for binary
classification. We assume that we observe a finite i.i.d. sam-
ple (xi, yi)1≤i≤n drawn from a distribution P on X × Y .
Here X denotes a feature space and Y = {−1, 1} denotes
a binary response variable. We then decide upon a hypoth-
esis class F such that every f ∈ F is a map f : X → V
for some space V . Given the space V we call any function
l : {−1, 1} × V → [0,∞) a loss function. The interpreta-
tion of the loss function is that we incur the penalty l(y, v)
when we predicted a value v while we actually observed the
label y. Our goal is then to find a predictor fn ∈ F based
on the finite sample such that E[l(Y, fn(X)] is small, where
X × Y is a random variable distributed according to P . In
other words, we want to find an estimator fn that approx-
imates the true risk minimizer f0 well in terms of the ex-
pected loss, where

f0 := arg min
f∈F

E[l(Y, f(X))]. (1)

The estimator fn is often chosen to be the empirical risk
minimizer

fn = arg min
f∈F

n∑
i=1

l(yi, f(xi)). (2)

As we show in this paper, finding such an fn implicitly
means to find a good estimate for p(y | x) := P (Y = y |
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X = x) in many settings. Since we regularly deal with p(y |
x) and related quantities we introduce the following nota-
tion. To start with, we define η(x) := P (Y = 1 | X = x).
Depending on the context we drop the feature x and think of
η ∈ [0, 1] as a scalar. Accepting the small risk of overload-
ing the notation we sometimes also think of η as a Bernoulli
distribution with outcomes in Y and parameter η, as in the
following definition. We define the point-wise conditional
risk as

L(η, v) := EY∼η[l(Y, v)] = ηl(1, v)+(1−η)l(−1, v), (3)

the optimal point-wise conditional risk as

L∗(η) := min
v∈V

L(η, v), (4)

and we denote by v∗(η) the set of values that optimize the
point-wise conditional risk

v∗(η) := arg min
v∈V

L(η, v). (5)

Finally we define the conditional excess risk as

∆L(η, v) := L(η, v)− L∗(η). (6)

Proper Scoring Rules
If we chose V = [0, 1], we say that l : {−1, 1}×V → R is a
CPE loss, where CPE stands for class probability estimation.
The name stems from the fact that if V = [0, 1] it is already
normalized to a value that can be interpreted as a probability.
If l is a CPE loss we call it a proper scoring rule or proper
loss if η ∈ v∗(η) and we call it a strictly proper scoring rule
or strictly proper loss if v∗(η) = {η}. In other words, l is
a proper scoring rule if η is a minimizer of L(η, ·) and this
is strict if η is the only minimizer. In case l is strict we drop
the set notation of v∗, so that v∗(η) = η.

Link Functions
As we will see later strictly proper CPE losses are well suited
for class probability estimation. In general, however, we can-
not expect that V = [0, 1], but we may still want to use the
corresponding loss function for class probability estimation.
To do that we will use the concept of link functions (Buja,
Stuetzle, and Shen 2005; Reid and Williamson 2010). A link
function is a map ψ : [0, 1] → V , so a function that indeed
links the values from V to something that can be interpreted
as a probability. Combining such a link function with a loss
l : {−1, 1} × V → [0,∞) one can define a CPE loss lψ as
follows.

lψ : {−1, 1} × [0, 1]→ [0,∞)

lψ(y, q) := l(y, ψ(q))

We call the combination of a loss and a link function (l, ψ)
a (strictly) proper composite loss if lψ is (strictly) proper as
a CPE loss.

To distinguish between the losses l and lψ we subscript
the quantities (3)-(6) with a ψ if we talk about lψ instead
of l. For example we define Lψ(η, q) := L(η, ψ(q)) for
q ∈ [0, 1] and in the same way we define v∗ψ(η), L∗ψ(η) and
∆Lψ(η, q). Note that if (l, ψ) is a strictly proper compos-
ite loss, we know that v∗ψ(η) are single element sets, but the
same does not need to hold for v∗(η).

Degenerate Link Functions
To ask a composite loss (l, ψ) to be proper is not a strong re-
quirement, one can check that choosing ψ as constant func-
tion already fulfills this. This is because a composite loss
(l, ψ) is proper, iff the true class probability η is a mini-
mizer of the conditional risk Lψ(η, ·), i.e. η ∈ v∗ψ(η). If
ψ is constant, then so is the conditional risk Lψ(η, ·) and
then every value is a minimizer, so in particular η is a
minimizer. We want to avoid this degenerate behavior for
the task of probability estimation and will ask ψ to cover
enough of V in the following sense. We call a composite
loss (l, ψ) non-degenerate if for all η ∈ [0, 1] we have that
Imψ ∩ v∗(η) 6= ∅, where Imψ ⊂ V is the image of ψ on
[0, 1]. This does not directly exclude constant link functions
for example, but consider the following. If ψ is constant and
non-degenerate, then there is a single v = Imψ such that
v ∈ v∗(η) for all η. Thus v would always minimize the loss,
and we would, irrespectively of the input, always predict v.
This is of course a property that no reasonable loss function
should carry.

Behavior of Proper Composite Losses
For our convergence results we will need a loss function to
be a strictly proper CPE loss. In this section we investigate
how to characterize those loss functions.

We start by investigating proper CPE loss functions. Our
first lemma states that the link functions that turns the loss l
into a proper composite loss is already defined by the behav-
ior of v∗. As this lemma and Lemma 2 are straightforward
derivations from the definitions, and of no further interest,
we refer for the proofs to the supplementary material.
Lemma 1. Let l : {−1, 1} × V → [0,∞) be a loss function
and ψ be a link function. The composite loss function (l, ψ)
is then proper and non-degenerate if and only if ψ ∈ v∗,
meaning that ψ(η) ∈ v∗(η) for all η ∈ [0, 1].

This lemma gives thus necessary and sufficient condition
on our link ψ to lead to a proper loss function. The re-
sult is very similar to Corollary 12 and 14 found in Reid
and Williamson (2010). Their corollaries state necessary and
sufficient conditions on the link function, using the assump-
tion that the loss has differentiable partial losses, which is an
assumption we don’t require.

Later we show that strictly proper losses, together with
some additional assumptions, lead to consistent class prob-
ability estimates. So it is useful to know how to charac-
terize those functions. The following lemma shows that a
link function that turns a loss into strictly proper and non-
degenerate CPE loss can be characterized again by the be-
havior of v∗.
Lemma 2. Let l : {−1, 1} × V → [0,∞) be a loss function
and ψ a link function. A composite loss function (l, ψ) is
then strictly proper and non-degenerate if and only if ψ ∈ v∗
and v∗(η1) ∩ v∗(η2) ∩ Imψ = ∅ for all pairwise different
η1, η2 ∈ [0, 1].

So if (l, ψ) is a strictly proper composite loss it will fulfill
some sort of injectivity condition on the sets v∗(η). With this
we will be able to define an inverse ψ−1 on those sets, and
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Figure 1: The way we generally think of the mapping ψ,
ψ−1 and the sets v∗ if (l, ψ) is non-degenerate and strictly
proper. In those cases we can extend ψ−1 to the sets v∗. This
is well defined as the sets v∗(ηv) and v∗(ηw) have empty
intersection for different ηv, ηw ∈ [0, 1]. Note that Lemma 2
guarantees that ψ(ηv) ∈ v∗(ηv).

this will be essentially our class probability estimator. With
Lemma 2 we can connect every v ∈ V to a unique ηv by the
unique relation v ∈ v∗(ηv) if we assume that v∗ disjointly
covers V in the sense that⋃

η∈[0,1]

v∗(η) = V and (7)

v∗(η1) ∩ v∗(η2) = ∅ ∀ η1, η2 ∈ [0, 1], η1 6= η2. (8)

Note that we know from Lemma 2 that for strict properness
it is sufficient for (l, ψ) that the disjoint property (8) only
holds on Imψ, the image of ψ. This is merely a technicality
and we will assume from now on that every strictly proper
composite loss will satisfy (8). The covering property (7) on
the other hand can be violated. This happens for example
if we use the squared loss together with V = R. For the
squared loss v∗(η) = 2η − 1, so it only covers the space
[−1, 1].

If we assume, however, that the regularity properties (7)
and (8) hold for a strictly proper non-degenerate composite
loss (l, ψ) we can extend the domain of ψ−1 from Imψ to
the whole of V , see also Figure 1.
Definition 1. Let (l, ψ) be a strictly proper, non-degenerate
composite loss and assume that v∗ disjointly covers V . We
define, by abuse of notation, the inverse link function ψ−1 :
V → [0, 1] by ψ−1(v) = ηv , where ηv is the unique element
in [0, 1] such that v ∈ v∗(ηv).

The requirements from the previous definition is what we
consider the archetype of a composite loss that is suitable for
probability estimation, although not all of the requirements
are necessary. This motivates the following definition.
Definition 2. We call a composite loss (l, ψ) a natural CPE
loss ifψ is non-degenerate, v∗ fulfills the disjoint cover prop-
erty (7) and (8) and (l, ψ) is strictly proper.

We now have all the necessary work done to make the
following observation.

Loss l(v, y) v∗−1(v)

Sq (1− yv)2 v+1
2

Log ln(1 + e−vy) 1
1+e−v

SqH max(0, 1− vy)2 T ( v+1
2 )

Hinge max(0, 1− vy)



1
2 v ∈ (−1, 1)

(0, 12 ) v = −1

( 1
2 , 1) v = 1

1, v > 1

0, v < −1

0-1 I{sign(vy)6=1}


[ 12 , 1] if v ∈ (0,∞)

[0, 12 ], v ∈ (−∞, 0)
1
2 , v = 0

Table 1: The loss functions we consider in this paper.
The function v∗−1(v) is the function that transforms a
real output to a class probability estimate. Here T (x) :=
min(max(0, x), 1).

Corollary 1. If (l, ψ) is a natural CPE loss, then ψ−1 =
v∗−1.

The corollary tells us that we can optimize our loss func-
tion over V to get v∗(η) and then map this back with the in-
verse link ψ−1 to restore the class probability η. For this we
once more refer to Figure 1. Remember that the set v∗(ηv)
is the set of all v ∈ V that minimize the loss if the true class
probability was ηv . If we use a natural CPE loss (l, ψ) we
know then that ψ−1 maps all those points back to ηv .

Given a predictor f : X → V this motivates to define an
estimator of η(x) as

η̂ = η̂(x) = ψ−1(f(x)). (9)

Later we derive conditions under which η̂(x) converges
in probability towards η(x) when using an empirical risk
minimizer fn as a prediction rule. More formally; Given
any ε > 0 we show that under certain conditions η̂n(x) :=
ψ−1(fn(x)) satisfies

P (|η̂n(X)− η(X)| > ε)
n→∞−−−−→ 0, (10)

where the probability is measured with respect to P . In the
next section, however, we want to investigate first v∗ and
v∗−1 for some commonly used loss functions.

Analysis of Loss Functions
Throughout this paper we consider the following loss func-
tions: Squared loss (Sq), logistic loss (log), squared hinge
loss (SqH), Hinge loss and the 0-1 loss, see the first two
columns of Table 1 for specifications. Table 2 shows the link
function that turns the loss functions into a strictly proper
composite loss, if possible. Note that this can be decided
with the help of Lemma 2 and the functions v∗(η) which
are also shown in Table 2. We note that the behavior of the
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Loss ψ(η) v∗(η)

Sq 2η − 1 2η − 1
Log ln η

1−η ln η
1−η

SqH 2η − 1


2η − 1, η ∈ (0, 1)

[1,∞), η = 1

(−∞,−1], η = −1

Hinge -


sign(2η − 1), η ∈ (0, 1) \ 1

2

[−1, 1] η = 1
2

[1,∞), η = 1

(−∞,−1], η = −1

0-1 -


(0,∞), η ∈ ( 1

2 , 1]

(−∞, 0), η ∈ [0, 12 )

R, η = 1
2

Table 2: The different loss functions we consider in this pa-
per together with their link functions that turn them into CPE
losses (if possible).

squared and squared hinge loss seems to be very similar, ex-
pect that from Table 1 we can see that the class probability
estimate from the squared loss is not necessarily in [0, 1], and
in that sense clipping it to [0, 1], as proposed in Sugiyama
(2010), is actually wrong. Instead one would have to make
sure that v takes only values in [−1, 1].

As already noted by Buja, Stuetzle, and Shen (2005), also
Table 2 shows that the hinge loss is not suitable for class
probability estimation. We observe that the intersections of
v∗(η) for different η ∈ [0, 1] are not disjoint. By Lemma
2 we can conclude that there is no link ψ such that (l, ψ)
is strictly proper. One way to fix this, proposed by Duin
and Tax (1998) and similar by Platt (1999), is to fit a logis-
tic regressor on top of the support vector machine. Bartlett
and Tewari (2004) investigate the behavior of the hinge loss
deeper by connecting the class probability estimation task to
the sparseness of the predictor. The hinge loss is of course
classification calibrated (essentially meaning that we find
point-wise the correct label with it), so between our con-
sidered surrogate losses it is the only one that really directly
solves the classification problem without implicitly estimat-
ing the class probability.

Convergence of the Estimator
We now prove that the estimator η̂(x) as defined in Equa-
tion (9) converges in probability and in the L1-norm to the
true class probability η whenever we use an empirical risk
minimizer, for which we have excess risk bounds.

Using the True Risk Minimizer
Before we can investigate under which conditions an em-
pirical risk minimizer can (asymptotically) retrieve η(x) we
need to investigate under which conditions the true risk min-
imizer can retrieve it. In this subsection we formulate a the-

orem that gives necessary and sufficient conditions for that.
Not surprisingly we basically require that our hypothesis
class is rich enough so as to contain the class probability
distribution already. Bartlett, Jordan, and McAuliffe (2006)
and similar works often avoid problems caused by restricted
classes by assuming from the beginning that the hypothe-
sis class consists of all measurable functions. Having a re-
stricted hypothesis class, however, is crucial for our analysis
as that allows us to use the tools from learning theory.

In this setting we assume that we use a hypothesis class
F where f ∈ F are functions f : X → V . If we want to
do class probability estimation we rescale those functions
by composing them with the inverse link ψ−1 : V → [0, 1]
so that we effectively use the hypothesis class ψ−1(F) :=
{ψ−1 ◦ f | f ∈ F}. We then get the following theorem
about the possibility of retrieving the class probability with
risk minimization.
Theorem 1. Assume that (l, ψ) is a natural CPE loss func-
tion. Let

f0 = arg min
f∈F

E[l(Y, f(X)].

Then ψ−1(f0(x)) = η(x) almost surely if and only if η ∈
ψ−1(F).

Following Theorem 1 we need to assume that our hypoth-
esis class is flexible enough for consistent class probability
estimation. We formulate this assumption as follows.

Assumption A Given a natural CPE loss (l, ψ) we assume
that η ∈ ψ−1(F) = {ψ−1 ◦ f | f ∈ F}. Later we will deal
with the case of misspecification, i.e. when η /∈ ψ−1(F).

Using the Empirical Risk Minimizer
In the previous section we considered the possibility of re-
trieving class probability estimates with the true risk mini-
mizer. To move on to empirical risk minimizers we need the
notion of excess risk bounds.
Definition 3. Let fn : X → R be any estimator of f0 ∈ F ,
which may depend on a sample of size n. We call

BF (n, γ) : N→ [0,∞)

an excess risk bound for fn if for all γ > 0 we have
BF (n, γ) → 0 for n → ∞ and with probability of at least
1− γ over the n-sample we have

EX [∆L(η(X), fn(X))]

=EX,Y [l(Y, fn(X))− l(Y, f0)] ≤ BF (n, γ).

Excess risk bounds are typically in the order of(
comp(F)

n

)β
, where β ∈ [0.5, 1] and comp(F) is a notion of

model complexity. Common measures for the model com-
plexity are the VC dimension (Vapnik 1998), Rademacher
complexity (Bartlett, Bousquet, and Mendelson 2005) or ε-
cover (Benedek and Itai 1991). The existence of excess risk
bounds is tied to the finiteness of any of those complexity
notions. A lot of efforts in this line of research are made
to find relations between the exponent β and the statistical
learning problem given by F , the loss l and the underlying
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distribution P . Conditions that ensure β > 1
2 are often called

easiness conditions, such as the Tsybakov condition (Tsy-
bakov 2004) or the Bernstein condition (Audibert 2004). In-
tuitively those conditions often state that the variance of our
estimator gets smaller the closer we are to the optimal so-
lution. For a in-depth discussion and some recent results we
refer to the work of Grünwald and Mehta (2016).

Excess risk bounds allow us to bound ∆L(η(x), fn(x))
for a loss l, so in particular we can bound ∆Lψ(η(x), η̂(x))
for a composite loss (l, ψ). We will show L1-convergence
by connecting the behavior of ∆Lψ(η(x), η̂(x)) to |η(x) −
η̂(x)|. The following lemma introduces a condition that al-
lows us to draw this connection.

Lemma 3. Let (l, ψ) be a natural CPE loss. Assume that for
all η ∈ [0, 1] the maps

L0
ψ(η, ·) := Lψ(η, ·) �[0,η]: [0, η]→ R

and
L1
ψ(η, ·) := Lψ(η, ·) �[η,1]: [η, 1]→ R

are strictly monotonic, where Lψ(η, ·) �I refers to the re-
striction of the mapping Lψ(η, ·) to an interval I . This is the
case iff Lψ(η, ·) is strictly convex with η as its minimizer.
Then there exists for all ε > 0 a δ = δ(ε) > 0 such that for
all η, η̂ ∈ [0, 1]

|∆Lψ(η, η̂)| < δ ⇒ |η − η̂| < ε. (11)

Proof. With the assumptions on L0
ψ(η, ·) and L1

ψ(η, ·) we

know that L0
ψ
−1

(η, ·) and L1
ψ
−1

(η, ·) exist and are continu-
ous (Hoffmann 2015). By definition that means that for ev-
ery l, l̂ ∈ ImL0

ψ(η, ·) and for all ε > 0 there exists a δ > 0
such that

|l̂ − l| < δ ⇒ |L0
ψ
−1

(η, l̂)− L0
ψ
−1

(η, l)| < ε (12)

and similar for L1
ψ(η, ·). W.l.o.g assume now that η̂ < η so

that η̂ ∈ [0, η]. Plugging l = L0
ψ(η, η) and l̂ = L0

ψ(η, η̂) into
(12) we get the following relation.

|∆Lψ(η, η̂)| = |L0
ψ(η, η̂)− L0

ψ(η, η)| < δ

⇒|η̂ − η| = |L0
ψ
−1

(η, l̂)− L0
ψ
−1

(η, l)| < ε

The map L0
ψ(η, ·) captures the behavior of the loss when

η is the true class probability and we predict a class prob-
ability less than η. Similarly L1

ψ(η, ·) captures the behavior
when we predict a class probability bigger than η, see also
Figure 2. In Corollary 3, further below, we draw a connec-
tion between δ(ε) and the modulus of continuity of the in-
verse functions of L1

ψ(η, ·) and L0
ψ(η, ·). The function δ(ε)

plays an important role in the convergence rate of the esti-
mator η̂(x) as described in the next theorem.

Theorem 2. Let (l, ψ) be a natural CPE loss and assume
Assumption A holds. Furthermore letBF (n, γ) be an excess
risk bound for fn and assume that Lψ(η, ·) is strictly convex
for all η with η as its minimizer. Then there exists a mapping

(a) The map Lψ(η, ·) for
η = 0.2 and l being the
squared loss.

(b) The map Lψ(η, ·) for
η = 0.2 and l being the
logistic loss.

Figure 2: The map Lψ(η, ·) for the squared and the logistic
loss. The two maps L0

ψ(η, ·) and L1
ψ(η, ·) split it into the

parts left and right of η.

δ(ε) : [0, 1] → R such that for η̂n(x) := ψ−1(fn(x)) we
have with probability of at least 1− γ that

P (|η(X)− η̂n(X)| > ε) ≤ BF (n, γ)

δ(ε)
. (13)

Proof. Using Lemma 3 for the first inequality, Markov’s In-
equality for the second and the excess risk bound for the
third inequality it follows that

P (|η(X)− η̂n(X)| > ε) ≤ P (∆Lψ(η(X), η̂n(X)) > δ)

=P (∆L(η(X), fn(X)) > δ)

≤E[∆L(η(X), fn(X))]

δ(ε)
≤ BF (n, γ)

δ(ε)
.

This theorem gives us directly the earlier claimed asymp-
totic convergence result.
Corollary 2. Under the assumptions of Theorem 2 we have
that η̂n(x) = ψ−1(fn(x)) converges in probability and L1-
norm to η(x) with probability 1.

We do not have to restrict ourselves to asymptotic results
though. Theorem 2 can also be used to derive rate of conver-
gences as we will see later. But before that we briefly want
to address the case of misspecification, i.e. the case when
Assumption A does not hold.

Misspecification
For ease of exposition we chose to present the previous anal-
ysis under the well-specification of Assumption A. More
generally one may formulate Theorem 2 and Corollary 2 by
replacing η(x) with ψ−1(f0(x)), the two quantities that co-
incide under Assumption A. Moreover, if L∗ψ has a gradient
Reid and Williamson (2010) show the identity ∆Lψ(η, η̂) =
D−L∗

ψ
(η, η̂) where D−L∗

ψ
(η, η̂) is the with −L∗ψ associated

Bregman divergence between η and η̂. Excess risk bounds
on ∆Lψ(η, η̂) translate then into bounds on the Bregman di-
vergence between η and η̂, which means that in the misspec-
ified case we asymptotically approach the best class proba-
bility estimate in terms of this divergence.
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Rate of Convergence
For the rate of convergence it is crucial to investigate the
function δ(ε) from Inequality (13). One way to analyze this
is to study the modulus of continuity of the inverse functions
of L0

ψ(η, ·) and L1
ψ(η, ·):

Definition 4. Let ω : [0,∞] → [0,∞] be a monotonically
increasing function. Let I ⊂ R be an interval. A function
g : I → R admits ω as a modulus of continuity at x ∈ I if
and only if

|g(x)− g(y)| ≤ ω(|x− y|)
for all y ∈ I .

For example Hölder and Lipschitz continuity are particu-
lar moduli of continuity. This notion allows us a to draw the
following connection between ε and δ(ε).
Corollary 3. Let (l, ψ) be a natural CPE loss and let
ω : [0,∞] → [0,∞] be a monotonically increasing func-
tion. Assume that for all η ∈ [0, 1] the mappings L0

ψ
−1

(η, ·)
and L1

ψ
−1

(η, ·) admit ω as a modulus of continuity at η.
Then δ(ε) := ω−1(ε) is a mapping such that Implication
(11) holds.

Proof. W.l.o.g. assume that η̂ ∈ [0, η]. Let l̂ = L0
ψ(η, η̂)

and l = L0
ψ(η, η). By using that L0

ψ
−1

(η, ·) admits ω as a
modulus of continuity we have

|L0
ψ
−1

(η, l)− L0
ψ
−1

(η, l̂)| ≤ ω(|l − l̂|).

Plugging in the definition of l̂ and l this means that

|η̂ − η| ≤ ω(∆Lψ(η, η̂)).

Using the monotonicity of ω it follows that if ∆Lψ(η, η̂) ≤
δ(ε) = ω−1(ε), then

|η − η̂| ≤ ω(∆Lψ(η, η̂)) ≤ ω(ω−1(ε)) = ε.

This is exactly the Implication (11).

Note that it follows from the proof that finding a modulus
of continuity ω for L0

ψ
−1

(η, ·) and L1
ψ
−1

(η, ·) can be done
by showing the bound |η̂−η| ≤ ω(∆Lψ(η, η̂)). We will use
that in the following examples, where we analyze δ(ε) for
the squared (hinge) loss and the logistic loss. We show that
those loss functions lead to a modulus of continuity given
by the square root times a constant. Agarwal (2014) calls
loss functions that admit this modulus of continuity strongly-
proper loss functions. The following analysis can thus be
found there in more detail and for a few more examples. We
will use for simplicity versions of the losses that do not need
a link function, and are already CPE losses.

Example: Squared Loss and Squared Hinge Loss Let
l(y, η̂) be given by the partial loss functions l(1, η̂) = (1 −
η̂)2 and l(−1, η̂) = η̂2. We can derive that ∆L(η, η̂) = (η−
η̂)2. With this we can directly bound |η̂ − η| ≤

√
∆L(η, η̂)

and thus choose δ(ε) as the inverse of the square-root func-
tion, so that δ(ε) = ε2. The analysis for the squared hinge
loss is the same as this version of the squared loss is already
a CPE loss.

Example: Logistic Loss Let l(y, η̂) be given by the partial
loss functions l(1, η̂) = − ln(η̂) and l(−1, η̂) = − ln(1−η̂).
One can derive that ∆L(η, η̂) = −η ln( η̂η )−(1−η) ln( 1−η̂

1−η ).
In the supplementary we show the bound |η − η̂| ≤√

1
2∆L(η, η̂), as well as that 1

2 is the optimal constant, so

that we can choose δ(ε) = 2ε2.

Discussion and Conclusion
The starting point of this paper is the question if one can re-
trieve a class probability estimate based on ERM in a consis-
tent way. To answer this question, we draw from earlier work
on proper scoring rules and excess risk bounds. Lemmas 1
and 2, our first results, characterize strictly proper compos-
ite loss functions in terms of their link function. Based on
those lemmas, we subsequently derive fairly general nec-
essary and sufficient conditions for retrieving the true class
probability with ERM as formulated in Theorem 1. We show
that to retrieve the true probabilities we essentially need that
they are already part of our hypothesis class F .

We show that consistency arises whenever we use strictly
proper (composite) loss functions, our hypothesis class is
flexible enough, and we have excess risk bounds. This is the
case, for example, whenever one of the complexity notions
mentioned in this paper is finite. Additionally, we discuss
the relation between the finite sample size behavior of the
excess risk bound and the probability estimate and examine
this relation for two loss functions.

In Lemma 3, we introduce conditions under which a com-
posite loss function (l, ψ) leads to a consistent class proba-
bility estimator. In particular we have a condition on the con-
ditional riskLψ(η, ·), see also Figure 2. Based on that we de-
rive in Corollary 3 conditions which allow us to analyze the
convergence rate for different loss functions. In the corollary
we don’t distinguish between L0

ψ(η, ·) and L1
ψ(η, ·), which

leads to the same convergence rate for predicting values left
and right from η. But the modulus of continuity for those
two functions can be really different, especially when us-
ing asymmetric proper scoring rules (Winkler 1994). We be-
lieve that by analyzing L0

ψ(η, ·) and L1
ψ(η, ·) individually

one can extend our work to analyze the convergence behav-
ior of asymmetric scoring rules in more detail, meaning that
one could achieve different rates for over or underestimating
a certain class probability level.
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