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Abstract

We study the problem of inferring causal graphs from ob-
servational data. We are particularly interested in discovering
graphs where all edges are oriented, as opposed to the partially
directed graph that the state-of-the-art discover. To this end
we base our approach on the algorithmic Markov condition.
Unlike the statistical Markov condition, it uniquely identifies
the true causal network as the one that provides the simplest—
as measured in Kolmogorov complexity—factorization of the
joint distribution. Although Kolmogorov complexity is not
computable, we can approximate it from above via the Mini-
mum Description Length principle, which allows us to define a
consistent and computable score based on non-parametric mul-
tivariate regression. To efficiently discover causal networks in
practice, we introduce the GLOBE algorithm, which greedily
adds, removes, and orients edges such that it minimizes the
overall cost. Through an extensive set of experiments we show
GLOBE performs very well in practice, beating the state-of-
the-art by a margin.

Introduction
Discovering causal dependencies from observational data
is one of the most fundamental problems in science (Pearl
2009). We consider the problem of recovering the causal
network over a set of continuous-valued random variables X
based on an iid sample from their joint distribution. The state-
of-the-art does so by first recovering an undirected causal
skeleton—which identifies the variables that have a direct
causal relation—and then uses conditional independence tests
to orient as many edges as possible. By the nature of these
tests this can only be done up to Markov equivalence classes,
which means that these methods in practice return networks
where only few edges are oriented. In contrast, we develop
an approach that discovers fully directed causal graphs.

We base our approach on the algorithmic Markov condition
(AMC), a recent postulate that states that the factorization
of the joint distribution according to true causal network co-
incides with the one that achieves the lowest Kolmogorov
complexity (Janzing and Schölkopf 2010). As an example,
consider the case where X causes Y . Whereas the tradi-
tional statistical Markov condition cannot differentiate be-
tween P (X)P (Y |X) and P (Y )P (X|Y ) as both are valid
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factorizations of joint distribution P (X,Y ), the algorithmic
Markov condition takes the complexities of these distribu-
tions into account: in this case, the simplest factorization of
P (X,Y ) is K(P (X)) +K(P (Y |X)) as only this factoriza-
tion upholds the true independence between the marginal and
conditional distribution—any competing factorization will be
more complex because of inherent redundancy between the
terms. As Kolmogorov complexity can capture any physical
process (Li and Vitányi 2009) the AMC is a very general
model for causality. However, Kolmogorov complexity is not
computable, and hence we need a practical score to instan-
tiate it. Here we do so through the Minimum Description
Length principle (Grünwald 2007), which provides a statis-
tically well-founded approach to approximate Kolmogorov
complexity from above.

We develop an MDL-based score for directed acyclic
graphs (DAGs), where we model the dependencies between
variables through non-parametric multivariate regression.
Simply put, the lower the regression error of the discov-
ered model, the lower its cost, while more parameters mean
higher complexity. We show this score is consistent: given
sufficiently many samples from the joint distribution, we can
uniquely identify the true causal graph if the causal relations
are nearly deterministic. To efficiently discover causal net-
works directly from data we introduce the GLOBE algorithm,
which much like the well-known GES (Chickering 2002)
algorithm greedily adds and removes edges to optimize the
score. Unlike GES, however, GLOBE traverses the space of
DAGs rather than Markov equivalence classes—orienting
edges during its search based on the AMC—and hence is
guaranteed to result in a fully directed network.

Through extensive empirical evaluation we show that
GLOBE performs well in practice and outperforms the state-
of-the-art conditional independence and score based causal
discovery algorithms. On synthetic data we confirm GLOBE
does not discover spurious edges between independent vari-
ables, and overall achieves the best scores on both the struc-
tural hamming distance and the structural intervention dis-
tance. Last, but not least, on real-world data we show that
GLOBE even works well when it is unlikely that our mod-
elling assumptions are met.

For reproducibility we provide detailed pseudo-code in
technical appendix, and make all code and data available.
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Preliminaries
First, we introduce the notation for causal graphs and the
main information theoretic concepts that we need later on.

Causal Graph We consider data over the joint distri-
bution of m continuous valued random variables X =
{X1, . . . , Xm}. As is common, we assume causal sufficiency.
That is, we assume that X contains all random variables that
are relevant to the system, or in other words, that there ex-
ist no latent confounders. Under the assumptions of causal
sufficiency and acyclicity, we can model causal relationships
over X using a directed acyclic graph (DAG). A causal DAG
G over X is a graph in which the random variables are the
nodes and edges identify the causal relationship between a
pair of nodes. In particular, a directed edge between two
nodes Xi → Xj indicates that Xi is a direct cause or parent
of Xj . We denote the set of all parents of Xi with Pa(Xi).

When working on causal DAGs, we assume the common
assumptions, the causal Markov condition and the faithful-
ness condition, to hold. Simply put, the combination of both
assumptions implies that each separation present in the true
graph G implies an independence in the joint distribution P
over the random variables X and vice versa (Pearl 2009).

Identifiability of Causality A causal relationship is said
to be identifiable if it is possible to unambiguously recover it
from observational data alone. In general, causal dependen-
cies are not identifiable without assumptions on the causal
model. The common assumptions for discovering causal
DAGs allow identification up to the Markov equivalence
class (Pearl 2009). Given additional assumptions, such as
that the relation between cause and effect is a non-linear
function with additive Gaussian noise (Hoyer et al. 2009),
it is possible to identify causal directions within a Markov
equivalence class (Glymour, Zhang, and Spirtes 2019). This
is the causal model we investigate.

Kolmogorov Complexity The Kolmogorov complexity of
a finite binary string x is the length of the shortest binary
program p∗ for a universal Turing machine U that outputs
x and then halts (Kolmogorov 1965; Li and Vitányi 2009).
Simply put, p∗ is the most succinct algorithmic description of
x, and therewith Kolmogorov complexity of x is the length of
its ultimate lossless compression. Conditional Kolmogorov
complexity, K(x | y) ≤ K(x), is then the length of the
shortest binary program p∗ that generates x, and halts, given
y as input.

The Kolmogorov complexity of a probability distribution
P , K(P ), is the length of the shortest program that outputs
P (x) to precision q on input 〈x, q〉 (Li and Vitányi 2009).
More formally, we have

K(P ) = min

{
|p| : p ∈ {0, 1}∗, |U(p, x, q)− P (x)| ≤ 1

q

}
.

The conditional, K(P | Q), is defined similarly except that
the universal Turing machine U now gets the additional in-
formation Q. For more details on Kolmogorov complexity
see Li and Vitányi (2009).

Minimum Description Length Principle Although Kol-
mogorov complexity is not computable, we can approxi-
mate it from above through lossless compression (Li and
Vitányi 2009). The Minimum Description Length (MDL)
principle (Rissanen 1978; Grünwald 2007) provides a sta-
tistically well-founded and computable framework to do so.
Conceptually, instead of all programs, ideal MDL considers
only those programs for which we know that they output x
and halt, i.e., lossless compressors. Formally, given a model
classM, MDL identifies the best model M ∈ M for data
D as the one minimizing L(D,M) = L(M) + L(D | M),
where L(M) is the length in bits of the description ofM , and
L(D | M) is the length in bits of the description of data D
given M . This is known as two-part, or crude MDL. There
also exists one-part, or refined MDL. Although refined MDL
has theoretically appealing properties, it is efficiently com-
putable for a small number of model classes. Asymptotically,
there is no difference between the two (Grünwald 2007).

To use MDL in practice we need to define a model class,
and how to encode a model, resp. the data given a model,
into bits. Note that we are only concerned with optimal code
lengths, not actual codes—our goal is to measure the com-
plexity of a dataset under a model class, after all (Grünwald
2007). Hence, all logarithms are to base 2, and we use the
common convention that 0 log 0 = 0.

Theory
In this section, we will first introduce the algorithmic model
of causality which is based on Kolmogorov complexity. To
put it into practice, we need to introduce a set of modelling
assumptions that allow us to approximate it using MDL. We
conclude this section by providing consistency guarantees.

Algorithmic Model of Causality
Here we introduce the main concepts of algorithmic causal
inference as introduced by Janzing and Schölkopf (Janzing
and Schölkopf 2010), starting with the causal model.
Postulate 1 (Algorithmic Model of Causality). Let G be
a DAG formalizing the causal structure among the strings
x1, . . . , xm. Then, every xj is computed by a program qj with
constant length from its parents Pa(xj) and an additional
input nj . That is

xj = qj(Pa(xj), nj) ,

where the inputs nj are jointly independent.
As any mathematical object x can be described as a bi-

nary string, and a program qj can model any physical pro-
cess (Deutsch 1985) or possible function hj (Li and Vitányi
2009), this is a particularly general model of causality. Equiv-
alent to the statistical model, we can derive that the algo-
rithmic model of causality fulfils the algorithmic Markov
property (Janzing and Schölkopf 2010), that is

K(x1, . . . , xm)
+
=

m∑
j=1

K(xj | Pa∗(xj)) ,

where +
= denotes equality up to an additive constant. Mean-

ing, to most succinctly describe all strings, it suffices to know
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what are the parents and additional inputs nj for each string
xj . Unlike its statistical counterpart which can only identify
the causal network up to Markov equivalence, the algorithmic
Markov property can identify a single DAG as the most suc-
cinct description of all strings. As any mathematical object,
including distributions, can be described by a binary string,
Janzing and Schölkopf (2010) define the following postulate.
Postulate 2 (Algorithmic Markov Condition). A causal DAG
G over random variables X with joint density P is only
acceptable if the shortest description of P factorizes as

K(P (X1, . . . , Xm))
+
=

m∑
j=1

K(P (Xj | Pa(Xj))) . (1)

Hence, under the assumption that the true causal graph
can be modelled by a DAG, it has to be the one minimizing
Eq. (1). As K is not computable we cannot directly compute
this score. What we can however, restrict our model class
from allowing all possible functions to a subset of these and
then approximate K using MDL.

Causal Model
As causal model we consider a rich class of structural equa-
tion models (Pearl 2009) (SEMs) where the value of each
node is determined by a linear combination of functions over
all possible subsets of parents and additional independent
noise. Formally, for all Xi ∈X we have

Xi :=
∑

Sj∈P(Pa(Xi))

hj(Sj) +Ni , (2)

where hj is a non-linear function of the j-th subset over the
power set,P(Pa(Xi)), of parents ofXi, andNi is an indepen-
dent noise term. We assume that all noise variables are jointly
independent, Gaussian distributed and that Ni⊥⊥ Pa(Xi).

MDL Encoding of the Causal Model
Next, we specify our MDL score for DAGs. Given an iid
sample Xn drawn from the joint distribution P over X , our
goal is to approximate Eq. (1) using two-part MDL, which
means we need to define a model class M for which we
can compute the optimal code length. Here, we defineM to
include all possible DAGs over X and their corresponding
parametrization according to our causal model. That is, for
each node Xi a model M ∈M contains an index indicating
the parents of Xi, which is equivalent to storing the DAG
structure, and the corresponding functional dependencies.

Building upon Eq. (1), we want to find that model M∗ ∈
M such that

M∗ = argmin
M∈M

L(Xn,M)

= argmin
M∈M

(
L(M) +

m∑
i=1

L(Xn
i | Pa(Xi),M)

)

= argmin
M∈M

(
L(M) +

m∑
i=1

L(εi)

)
where Pa(Xi) are the parents of Xi according to the model
M . In the last line, we replace L(Xn

i | Pa(Xi),M) with

L(εi) to clarify that encoding a node given M and its parents
comes down to encoding the residuals εi.

Encoding the Model The model complexity L(M) for a
model M ∈ M, comprises of the parameters of the func-
tional dependencies and the graph structure. The total cost is
simply the sum of the code lengths of the individual nodes

L(M) =
m∑
i=1

L(Mi) .

To encode the individual nodes Xi, we need to transmit its
parents, the form of the functional dependency, and the bias
or mean shift µi. We encode the model Mi for a node Xi as

L(Mi) = LN(k) + k logm+ LF (fi) + Lp(µi) ,

where we first encode the number of parents using LN, the
MDL-optimal encoding for integers z ≥ 0 (Rissanen 1983).
It is defined as LN(z) = log∗ z + log c0, where log∗ z =
log z + log log z + . . . and we consider only the positive
terms, and c0 is a normalization constant to ensure the Krafft-
inequality holds (Kraft 1949). Next, we identify which out of
them random variables these are, and then proceed to encode
the function fi over these parents, where fi represents the
summation term on the right hand side of Eq. (2). Last, we
encode the bias term using Lp, defined later in Eq.(3).

Encoding the Functions We will instantiate the frame-
work using non-parametric functions hi that also allow for
non-linear transformations of the parent variables. To this
end, we fit non-parametric Multivariate Adaptive Regression
Splines (Friedman 1991). In essence, we estimate Xi as

X̂i :=

|H|∑
j=1

hj(Sj) ,

where hj is called a hinge function that is applied to a subset
of the parents, Sj , with size |Sj |, that is associated with the
j-th hinge. A hinge takes the form

h(S) =
T∏
i=1

ai ·max(0, gi(si)− bi) ,

where T denotes the number of multiplicative terms in h,
si ∈ S is the parent associated with the i-th term, gi is a
non-linear transformation applied to si where gi belongs
to the function class F , e.g. the class of all polynomials
up to a certain degree. We specify F in more detail in the
supplementary section, but the encoding can be very general
and can include any regression function as long as we can
describe the parameters and |F| <∞. If T = 1 for all hinges,
the above definition simplifies to an additive model over
individual parents. We encode a hinge function as follows

LF (h) = LN(|H|) +
∑
hj∈H

[
LN(Tj) + log

(|S|+ Tj − 1

Tj

)

+ Tj log(|F|) + Lp(θ(hj))
]
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First, we use LN to encode the number of hinges and the num-
ber of terms per hinge. We then transmit the correct assign-
ment of terms Tj to parents in S, and finally need log(|F|)
bits to identify the specific non-linear transformation that is
used for each of the Tj terms in the hinge.

Encoding Parameters To encode the bias we use the pro-
posal of Marx and Vreeken (2017) for encoding parameters
up to a user specified precision p. We have

Lp(θ) = |θ|+
|θ|∑
i=1

LN(si) + LN(dθi · 10sie) , (3)

where si is the smallest integer such that |θi| · 10si ≥ 10p.
Simply put, p = 2 implies that we consider two digits of the
parameter. We need one bit to store the sign of the parameter,
then we encode the shift si and the shifted parameter θi.

Encoding Residuals Last, we need to encode the residual
term, L(εi). Since we use regression functions, we aim to
minimize variance of the residual—and hence should encode
the residual ε as Gaussian distributed with zero-mean (Marx
and Vreeken 2017; Grünwald 2007)

L(ε) =
n

2

(
1

ln 2
+ log 2πσ̂2

)
,

where we can compute the empirical variance σ̂2 from ε.
Combining the above, we now have a lossless MDL score

for a causal DAG.

Consistency
Since MDL can only upper bound Kolmogorov complex-
ity, but not compute it, it is not possible to directly derive
strict guarantees from the AMC. We can, however, derive
consistency results. We first show that our score allows for
identifying the Markov equivalence class of the true DAG
i.e. the partially directed network for which each collider is
correctly identified. Then, we show that under slightly stricter
assumptions, we can orient the remaining edges correctly.

The main idea for the first part is to show that our score is
consistent—simply put, the likelihood term dominates in the
limit. For a score with such properties e.g. BIC (Haughton
1988), Chickering (2002) showed that it is possible to identify
the Markov equivalence class of the true DAG. To show that
our score behaves in the same way, we need to make two
light weight assumptions for n→∞:

1. the number of hinges of |H| is bounded by O(log n), and
2. the precision of the parameters θ is constant w.r.t. to n and

hence Lp(θ) ∈ O(1).
Based on these assumptions, we can show that our score is
consistent as it asymptotically behaves like BIC, meaning that
the penalty term for the parameters only grows withO(log n)
complexity, while the likelihood term grows linearly with n
and hence is the dominating term as n→∞.
Theorem 1. Given a causal model as defined in Eq. (2) and
corresponding data Xn drawn iid from joint distribution P .
Under Assumptions (1) and (2), L(Xn,M) asymptotically
behaves like BIC.

Algorithm 1: The GLOBE Algorithm
Data: Data Xn over X
Result: Causal DAG G

1 Q ← EDGESCORING(Xn)
2 G← FORWARDSEARCH(Q ,Xn)
3 G← BACKWARDSEARCH(G)
4 return G

With the above, we know that given sufficient data our
score will identify the correct Markov equivalence class.

To infer the complete DAG, we need to be able to infer
the direction for those edges that cannot be inferred using
collider structures—i.e. single edges like X − Y . Closest to
our approach is the work of Marx and Vreeken (2019) who
showed that it is possible to distinguish between X → Y
and Y → X using any L0 regularized score—e.g. BIC,
if we assume that the underlying causal function is near
deterministic i.e. Y := f(X) + αN , where f is a non-linear
function and N is an unbiased, unit-variance noise regulated
by a small constant α > 0. Since our score in the limit
behaves like an L0-based score (ref. Theorem 1), we can
distinguish between Markov equivalent DAGs under these
stricter assumptions. For a detailed discussion, readers are
directed to the proof of Theorem 1 in technical appendix.

Although our score is consistent and can be used to distin-
guish Markov equivalent DAGs, these guarantees only hold
if we were to score all DAGs over X . Since this is infeasible
for large graphs, we propose a modified greedy DAG search
algorithm to minimize L(Xn,M).

The GLOBE Algorithm
We now present GLOBE, a score-based method for discover-
ing directed acyclic causal graphs from multivariate continu-
ous valued data. GLOBE consists of three steps: edge scoring,
forward and backward search, as shown in Algorithm 1.1

Edge Scoring To improve the forward search where we
greedily add the edge that provides the highest gain, we
first order all potential edges in a priority queue by their
causal strength. We measure the causal strength of an edge,
using the absolute gain in bits for orienting an edge in either
direction in our model. Formally, let e = (Xi, Xj) be an
undirected edge between Xi and Xj , and further let ~e refer
to the directed edge Xi → Xj and ~e the directed edge in the
reverse direction. Now, let M be the current model. We write
M ⊕ ~e to refer to the model where we add edge ~e, and M ⊕~e
for the model where we add ~e. We define the gain in bits, δ,
associated with edge ~e as

δ( ~e ) = max {0, L(Xn,M)− L(Xn,M ⊕ ~e)}
where L(Xn,M) is defined according to the causal model
specified in the theory section, and define δ( ~e ) analogously.
Based on δ( ~e ) and δ( ~e ), we define the directed gain Ψ( ~e)
for a given edge as

Ψ( ~e) = δ( ~e)− δ(~e) ,
1We provide detailed pseudocodes in the technical appendix
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where Ψ( ~e) = −Ψ(~e). The higher the value of Ψ( ~e), the
higher edge ~e is ranked. Intuitively, the larger the difference
between the edge direction, the more certain we are that we
inferred the correct direction. The algorithm for this step is
straightforward, we pick each undirected edge e, calculate δ
and Ψ for ~e and ~e, and add the edges to a priority queue.

Forward Search For forward search phase, we use the
priority queue obtained from the edge ranking step to build
the causal graph by iteratively adding the highest ranked
edge. We reject edges that would introduce a cycle. After
adding an edge Xi → Xj we need to update the score of all
edges pointing towards Xj and re-rank them in the priority
queue. Due to the greedy nature of the algorithm, we may add
edges in the wrong direction when we do not yet know all
the parents of a node. Hence, after adding edge Xi → Xj to
the current model—i.e. discovering a new parent forXj—we
check for all children of Xj , whether flipping the direction of
the edge improves the overall score. If so, we delete that edge
~e from our model, re-calculate δ and Ψ for ~e and ~e, and push
them again to the priority queue (see Fig. 1). The forward
search stops when the priority queue is empty.

To avoid spurious edges, we check for significance of
the gain. Let k = δ( ~e), based on the no-hypercompression
inequality (Grünwald 2007), the probability to gain k bits
over the null model is smaller or equal to 2−k. If for an edge
the gain k is not significant—i.e. 2−k > α, where α is a user
defined significance threshold, we disregard the edge.

Backward Search To further refine the graph discovered
in the forward search, we iteratively remove superfluous
edges. In particular, for each nodeXj with |Pa(Xj)| = k ≥ 2
we score all graphs for which we only use a subset of the
parents of size k−1. If any of these graphs provides a gain in
compression, we select the one that provides the largest gain
and update the model accordingly. We continue this process
until we cannot find such a subset for any node and output
the current graph as our predicted causal DAG.

Complexity Analysis
The edge ranking does one pass over the edges, it has a
runtime of O(|V |2). In the forward search, each edge can
lead to at most (|V | − 1) ranking updates due to edge flips.
Resulting in a total complexity in O(|V |3). The backwards
search has a loose upper bound ofO(|V |3), that results when
the forward search returns a fully connected graph and we
delete each of those edges in the backwards search. Hence,
the overall complexity of GLOBE is in O(|V |3). In practice,
GLOBE is fast enough for networks as large as 500 nodes.

Instantiation
We instantiate GLOBE 2 using the open-source implementa-
tion in R of Multivariate Adaptive Regression Splines frame-

2GLOBE stems from discovering fully, rather than locally, ori-
ented networks, as well as from it being based on Multivariate
Adaptive Regression Splines (MARS), of which the public imple-
mentation is known as EARTH.

I

J

K I

J

K I

J

K I

J

K

Figure 1: Edge reversal in the forward search: We start with
the graph where we wrongly added edge Xj → Xk, then we
add the correct edge Xi → Xj . Revisiting the children of Xj

we see that flipping Xj → Xk improves our score and hence
delete the edge. In the next step we add the correct edge.

work (Friedman 1991). Since we could face issues like multi-
collinearity (Farrar and Glauber 1967) and unrealistic run
times if we allow for arbitrary many interactions between
parents, we restrict the maximum number of interaction terms
to 2 for experiments.

Related Work
Causal discovery on observational data has drawn more at-
tention in recent years (Bühlmann et al. 2014; Huang et al.
2018; Hu et al. 2018; Margaritis and Thrun 2000) and is still
an open problem. To give a succinct overview, we focus on
the most related methods, ones that aim to recover a DAG or
its Markov equivalence class from continuous valued data.
We exclude methods that aim at weakening assumptions such
as causal sufficiency or acyclicity (Spirtes et al. 2000), or
methods for discrete data (Budhathoki and Vreeken 2017).

Most approaches can be classified as constraint based or
score based. Both rely on the Markov and faithfulness con-
ditions to recover Markov equivalence classes of the true
DAG. Constraint based methods such as the PC and FCI
algorithm (Spirtes et al. 2000), their extensions (Colombo
and Maathuis 2014; Pearl, Verma et al. 1991) as well as the
Grow-Shrink algorithm (Margaritis and Thrun 2000) rely
on conditional independence (CI) tests to first recover the
undirected causal graph and then infer edge directions only
up to the Markov equivalence class using additional edge
orientation rules (Meek 1995). The main bottleneck for those
approaches is the CI test. The standard choice is the Gaussian
CI test (Kalisch and Bühlmann 2007). However, it cannot
capture non-linear correlations. The current state-of-the-art
uses kernel based tests such as HSIC (Gretton et al. 2005),
which can capture non-linear dependencies.

Score based methods define a scoring function, S(G,Xn),
that evaluates how well a causal DAG G fits the provided
data Xn. If the true causal graph G∗ is a DAG, then given
infinite data the highest scoring DAG is part of the equiva-
lence class of G∗ (Chickering 2002). Score based approaches
start with an empty graph and greedily traverse to the high-
est scoring Markov equivalence class that is reachable by
adding, deleting or reversing an edge. Well-known algo-
rithms in this category include the greedy equivalence search
(GES) (Chickering 2002; Hauser and Bühlmann 2012), its
extensions (Ramsey et al. 2017), and the current state-of-the-
art, generalized-GES (GGES) (Huang et al. 2018) which
uses kernel regression to capture complex dependencies.

In contrast, additive noise models (ANMs) aim to discover
the fully directed graph (Hoyer et al. 2009). The primary as-
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sumption is that the effect can be written as a function of the
cause plus additive noise that is independent of the cause. Un-
der this assumption, the function is only admissible in causal
direction and not vice-versa (Hoyer et al. 2009). Methods
range from linear non-Gaussian (LINGAM) (Shimizu et al.
2006), non-linear functions (RESIT) (Peters et al. 2014) to
mixtures of non-linear additive noise models (Hu et al. 2018).
The main caveat of ANMs is also the CI test. Fitting a non-
linear function that maximizes the independence between
the cause and noise is a slow process which restricts ANMs
application to small networks (Hoyer et al. 2009).

Most related to our work are methods based on regression
error. Those methods have been shown to successfully decide
between Markov equivalent DAGs under the assumption
of having a non-linear function and low noise (Marx and
Vreeken 2017; Blöbaum et al. 2018; Marx and Vreeken 2019)
or proven to correctly identify the causal ordering of all nodes
(CAM) (Bühlmann et al. 2014). Directly comparing a causal
ordering to a DAG is, however, not straightforward.

In this paper, we combine the advantages of score based
methods and methods based on regression error by discover-
ing the fully oriented graph and allowing for complex non-
linear dependencies, while being fast in practice.

Experiments
We evaluate GLOBE on both synthetic and real-world data
with known ground truth. GLOBE is implemented in Python
and both the source code, as well as the synthetic data are
made available for reproducibility.3 We compare GLOBE to
the state-of-the-art from different classes of algorithms. We
compare to RESIT (Peters et al. 2014) and LINGAM (Shimizu
et al. 2006) as representative ANM-based methods, to GGES
as the best score-based method (Huang et al. 2018), and to
PC with the Hilbert Schmidt Independence Criteria, short
PCHSIC (Colombo and Maathuis 2014; Gretton et al. 2005),
as the state-of-the-art constraint-based method for causal
discovery. Comparison with FASTGES (Ramsey et al. 2017)
is ommitted since its performance was significantly worse
than the other methods. We provide details on experimental
setup as well as additional experiments, involving a case-
study in the technical appendix. GLOBE finished within ten
minutes for each experimental instance except one real-world
dataset with 500 nodes, on which it took 3 days. While the
competitors could not handle this data.

Evaluation Metrics We evaluate the predicted and the
ground truth graphs on the basis of their structural, as well as
their causal similarity. We justify using our proposed evalua-
tion metrics in the technical appendix.

The Structural Hamming Distance (SHD) (Kalisch and
Bühlmann 2007), between two partially directed acyclic
graphs (PDAGs) G and Ĝ is the the total number of edges
where the two graphs differ. Denoting the edge adjacency
matrix of G and Ĝ with X resp. X̂ we have

3http://eda.mmci.uni-saarland.de/globe/
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Figure 2: [Lower is better] SHD (left) and SID (right) for
increasing number of parents.

SHD(G , Ĝ) :=
∑

1≤i<j≤m
I((Xij ⊕ X̂ij) ∨ (Xji ⊕ X̂ji)) ,

where ⊕ denotes an XOR operation and I(x) is 1 when the
expression x is true and 0 otherwise.

However, SHD tells us nothing about the causal similarity
between two graphs. Hence, we use the Structural Interven-
tion Distance (SID) (Peters and Bühlmann 2015) pre-metric.
SID counts the pairs of nodes u and v such that the effect
of intervention from u to v is falsely estimated by Ĝ with
respect to G. In case of a PDAG, SID is an interval, with
smallest and largest scores indicating the best resp. worst
scores for the DAGs in a given Markov equivalence class.

Synthetic Data
We start with a sanity check to ensure that GLOBE can reliably
avoid false positives and build up to the case of varying
sample sizes over a more complex network. We generated
100 instances each with 1 000 observations for the discussed
structures, unless stated otherwise. We standardized the data
to have zero mean and unit variance.

Independent Data As a sanity check, we test the methods
on instances of a graph containing 10 independent nodes
where the value of each node is sampled independently from
a Gaussian distribution. We expect all the methods to re-
port empty sets of edges for the instances in this experi-
ment. GLOBE did not report a single spurious edge on any of
the instances. On the other hand, LINGAM reported at least
one spurious edge for 38%, RESIT for 42% and PCHSIC and
GGES for half resp. 10% of the instances.

Effect of Multiple Parents Next we test GLOBE on a sim-
ple case of a collider where we vary the number of parents
from 2 up to 10. The collider node is calculated as a linear
combination of non-linear parent functions given as

Xj =
∑

Xi∈Pa(Xj)

ai · (Xi + bi)
ci . (4)

Since it is possible to identify a collider structure using con-
ditional independence tests, we expect GGES and PCHSIC

to discover a fully directed network. The results for both
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n GLOBE RESIT LINGAM GGES PCHSIC

100 0.28 0.45 0.47 [0.18 , 0.48] [0.28 , 0.54]
500 0.26 0.43 0.43 [0.17 , 0.48] [0.21 , 0.55]

1000 0.26 0.42 0.42 [0.17 , 0.48] [0.20 , 0.54]
1500 0.27 0.40 0.43 [0.17 , 0.48] [0.19 , 0.53]
2000 0.26 0.40 0.40 [0.18 , 0.49] [0.19 , 0.54]

Table 1: [Lower is Better] Averaged normalized SID for the
methods. Interval for GGES and PCHSIC indicates the best,
resp. worst possible intervention distance for the DAGs in
the discovered Markov equivalence class.

SHD and SID are shown in Figure 2. In case of SID , we
compare favorably to both GGES and PCHSIC by only re-
porting the best possible achievable score for their predicted
graphs’ Markov equivalence class. Even with this favorable
comparison, GLOBE outperforms the competition.

Data Sampled from a Causal Network Next, we show
GLOBE’s effectiveness in finding the causal relationships in
a more general setting. We consider multiple instances of the
graph that contains all possible connections that could exist in
a DAG. In this setting, each child node, Xj can alternatively
be calculated using more complex multiplicative interactions
between the parents given by

Xj = aj ·
∏

Xi∈Pa(Xj)

Xi
ci + bj . (5)

We generate data where we choose between Eq. (4) and (5)
with probability 0.7 resp. 0.3 and report results over varying
sample sizes. We report the values for SID in Table 1. Overall
we see that GLOBE outperforms RESIT and LINGAM by
a margin. The causal networks predicted by GLOBE have
SID closer to the better end of the range of scores possible
for PCHSIC and GGES. In terms of SHD , all the methods
were found to be consistent over varying sample sizes, with
GLOBE slightly outperforming the competition.

Real World Data

For real world data with known ground truth, we consider
three distinct networks of sizes 5, 15 and 500 nodes from the
reged dataset (Statnikov et al. 2015), each containing 1 000
rows. Looking at the results shown in Figure 3, we see that
GLOBE is closest to the true causal network for both the 5
node (REGED5) and the 15 node (REGED15) network. For
REGED15, GLOBE reports a better SID than all the competi-
tors. We see that for the REGED15 network, GGES fails to
orient most of the edges, which results in a graph where both
extremes of the SID are possible.

For the 500 node network, GLOBE was the only algorithm
to produce any kind of result in reasonable time (3 days),
with a reported normalized SID and SHD of 0.1 resp. 0.01.
While GGES failed to terminate within one month, all other
methods could not process the data.
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Figure 3: [Closer to Origin is Better] Comparison of Normal-
ized SHD and Normalized SID for real world networks.

Discussion and Future Work

Instantiating GLOBE using the MARS framework is just one
of the many realizations of the algorithm. Other regression
approaches, as long as we define a consistent lossless en-
coding for them, can also be incorporated into GLOBE and
may give better results based on the application domain. For
proof of concept, we show how to instantiate GLOBE using
parametric regression in the technical appendix.

Due to computational reasons, we only traverse the space
of DAGs and not the Markov equivalence classes, which
could result in a locally optimal solution. We try to mitigate
this using the edge flipping step during the forward search.
However, by incorporating a more complex search strategy,
like the beam search, we could both expand our search space,
and eliminate the need for the edge flip.

Our score is specifically defined for continuous valued
data. An extension of GLOBE would be to discover causal re-
lationships over discrete and mixed type data. As MDL-based
scores have been proposed for inference on discrete (Bud-
hathoki and Vreeken 2017) and mixed (Marx and Vreeken
2018) data, but only for pairs of variables, it would be inter-
esting to extend GLOBE to handle both cases.

Conclusion

We considered discovering fully directed causal graphs from
observational data. To tackle this problem, we built upon the
algorithmic Markov condition that is based on Kolmogorov
complexity. Since the latter cannot be computed directly, we
proposed a score based on MDL to approximate it from above.
We showed that for non-linear mixture models with additive
noise, our score allows for discovering the Markov equiva-
lence class of the true DAG and if the noise term is assumed
to have a low variance, we can discover the fully directed
causal graph. To minimize our score, we proposed GLOBE, a
greedy DAG search algorithm that iteratively builds a DAG
to find a locally optimal solution. We modeled functional
dependencies using non-parametric regression functions.

Through an extensive set of experiments, we showed that
GLOBE beats the state-of-the-art by a margin, reliably ori-
ents the edges in the presence of multiple parents, discovers
graphs that are structurally and causally similar to the ground
truth and is fast enough to infer networks up to 500 nodes.
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Bühlmann, P.; Peters, J.; Ernest, J.; et al. 2014. CAM: Causal
additive models, high-dimensional order search and penalized
regression. Annals Stat. 42(6): 2526–2556.

Chickering, D. M. 2002. Optimal structure identification
with greedy search. JMLR 3(Nov): 507–554.

Colombo, D.; and Maathuis, M. H. 2014. Order-independent
constraint-based causal structure learning. JMLR 15(1): 3741–
3782.

Deutsch, D. 1985. Quantum Theory, the Church-Turing
Principle and the Universal Quantum Computer. R. Statist.
Soc. A 400(1818): 97–117.

Farrar, D. E.; and Glauber, R. R. 1967. Multicollinearity in
regression analysis: the problem revisited. The Review of
Economic and Statistics .

Friedman, J. H. 1991. Multivariate adaptive regression
splines. The annals of statistics 1–67.

Glymour, C.; Zhang, K.; and Spirtes, P. 2019. Review of
causal discovery methods based on graphical models. Fron-
tiers in Genetics .

Gretton, A.; Bousquet, O.; Smola, A.; and Schölkopf, B.
2005. Measuring statistical dependence with Hilbert-Schmidt
norms. In ALT. Springer.

Grünwald, P. 2007. The Minimum Description Length Prin-
ciple. MIT Press.

Haughton, D. M. 1988. On the choice of a model to fit
data from an exponential family. Annals Math. Stat. 16(1):
342–355.
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Li, M.; and Vitányi, P. 2009. An Introduction to Kolmogorov
Complexity and its Applications. Springer.
Margaritis, D.; and Thrun, S. 2000. Bayesian network induc-
tion via local neighborhoods. In NIPS, 505–511.
Marx, A.; and Vreeken, J. 2017. Telling Cause from Effect
using MDL-based Local and Global Regression. In ICDM,
307–316. IEEE.
Marx, A.; and Vreeken, J. 2018. Causal inference on mul-
tivariate and mixed-type data. In Joint European Confer-
ence on Machine Learning and Knowledge Discovery in
Databases, 655–671. Springer.
Marx, A.; and Vreeken, J. 2019. Identifiability of Cause and
Effect using Regularized Regression. In KDD. ACM.
Meek, C. 1995. Causal Inference and Causal Explanation
with Background Knowledge. In UAI, 403–410. Morgan
Kaufmann Publishers Inc.
Pearl, J. 2009. Causality: Models, Reasoning and Inference.
Cambridge University Press, 2nd edition.
Pearl, J.; Verma, T.; et al. 1991. A theory of inferred causation.
KR 91: 441–452.
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