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Abstract

We propose a novel framework that unifies and extends exist-
ing methods of transfer learning (TL) for regression. To bridge
a pretrained source model to the model on a target task, we
introduce a density-ratio reweighting function, which is esti-
mated through the Bayesian framework with a specific prior
distribution. By changing two intrinsic hyperparameters and
the choice of the density-ratio model, the proposed method
can integrate three popular methods of TL: TL based on cross-
domain similarity regularization, a probabilistic TL using the
density-ratio estimation, and fine-tuning of pretrained neural
networks. Moreover, the proposed method can benefit from its
simple implementation without any additional cost; the regres-
sion model can be fully trained using off-the-shelf libraries
for supervised learning in which the original output variable is
simply transformed to a new output variable. We demonstrate
its simplicity, generality, and applicability using various real
data applications.

Introduction
Transfer learning (TL) (Pan and Yang 2009; Yang et al. 2020)
is an increasingly popular machine learning framework that
covers a broad range of techniques of repurposing a set of
pretrained models on source tasks for another task of interest.
It is proven that TL has the potential to improve the predic-
tion performance on the target task significantly, in particular,
given a limited supply of training data in which the learning
from scratch is less effective. To date, the most outstanding
successes of TL have been achieved by refining and reusing
specific layers of deep neural networks (Yosinski et al. 2014).
One or more layers in the pretrained neural networks are re-
fined according to the new task using a limited target dataset.
The remaining layers are either frozen (frozen featurizer)
or almost unchanged (fine-tuning) during the cross-domain
adaptation.

In this study, we aim to establish a new class of TL, which
is applicable to any regression models. The proposed class
unifies different classes of existing TL methods for regres-
sion. To model the transition from a pretrained model to a
new model, we introduce a density-ratio reweighting func-
tion. The density-ratio function is estimated by conducting
a Bayesian inference with a specific prior distribution while
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keeping the given source model unchanged. Two hyperparam-
eters and the choice of the density-ratio model characterize
the proposed class. It can integrate and extend three popular
methods of TL within a unified framework, including TL
based on the cross-domain similarity regularization (Jalem
et al. 2018; Marx et al. 2005; Raina, Ng, and Koller 2006;
Kuzborskij and Orabona 2013, 2017), probabilistic TL us-
ing the density-ratio estimation (Liu and Fukumizu 2016;
Sugiyama, Suzuki, and Kanamori 2012), and the fine-tuning
of pretrained neural networks (Hinton, Vinyals, and Dean
2015; Kirkpatrick et al. 2017; Yosinski et al. 2014).

In general, the model transfer operates through a regulariza-
tion scheme to leverage the transferred knowledge between
different tasks. A conventional regularization aims to retain
similarity between the pretrained and transferred models.
This natural idea is what we referred to as the cross-domain
similarity regularization. On the other hand, the density-ratio
method operates with an opposite learning objective that we
call the cross-domain dissimilarity regularization; the dis-
crepancy between two tasks is modeled and inferred, and the
transferred model is a weighted sum of the pretrained source
model and the newly trained model on the discrepancy. These
totally different methods can be unified within the proposed
framework.

To summarize, the features and contributions of our
method are as follows:
• The method can operate with any kinds of regression mod-

els.
• The proposed class, which has two hyperparameters, can

unify and hybridize three existing methods of TL, includ-
ing the regularization based on cross-domain similarity
and dissimilarity.

• The two hyperparameters and a model for the density-ratio
function are selected through cross-validation. With this
unified workflow, an ordinary supervised learning with-
out transfer can also be chosen if the previous learning
experience interferes with learning in the new task.

• The proposed method can be implemented with no extra
cost. With a simple transformation of the output variable,
the model can be trained using off-the-shelf libraries for re-
gression that implement the `2-loss minimization with any
regularization scheme. In addition, the method is applica-
ble in scenarios where only the source model is accessible
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but not the source data, for example, due to privacy rea-
sons.
Practical benefits of bridging totally different methods in

the unified workflow are tested on a wide range of prediction
tasks in science and engineering applications.

Proposed Method
We are given a pretrained model y = fs(x) on the source
task, which defines the mapping between any input x to a real-
valued output y ∈ R. The objective is to transform the given
fs(x) into a target model y = ft(x) by using n instances
from the target domain, D = {(xi, yi)}ni=1.

Inspired by (Liu and Fukumizu 2016), we apply the proba-
bilistic modeling for the transition from fs(x) to ft(x). With
the conditional distribution ps(y|x) of the source task, the
one on the target can be written as

pt(y|x) = w(y, x)ps(y|x)
where w(y, x) = pt(y|x)/ps(y|x). Consider that the source
distribution is modelled by ps(y|x, fs) which involves the
pretrained fs(x). In addition, the density-ratio function
w(y, x) is separately modeled as w(y, x|θw) with an un-
known parameter θw, which will be associated with a re-
gression model fθw(x). The target model pt(y|x, θw) is then

pt(y|x, θw) = w(y, x|θw)ps(y|x, fs) (1)

such that ∀x :

∫
w(y, x|θw)ps(y|x, fs)dy = 1,

where the normalization constraint is due to the fact that the
conditional probability needs to be normalized to 1 over its
domain.

We employ Bayesian inference to estimate the unknown
θw in the density-ratio model w(y, x|θw). The target model
pt(y|x, θw) is used as the likelihood for Bayesian inference,
and a prior distribution p(θw|fs) is placed on θw, which
depends on the given fs. The posterior distribution is then

p(θw|D) ∝
n∏
i=1

pt(yi|xi, θw)p(θw|fs). (2)

We adopt Gaussian models for the likelihood function as

w(y, x|θw) ∝ exp

(
− (y − fθw(x))2

σ

)
, (3)

ps(y|x, fs) ∝ exp

(
− (y − fs(x))2

η

)
, (4)

where σ > 0 and η > 0. The normalization constant for the
product of the two expressions on the right-hand side of Eq. 3
and Eq. 4 is given as exp

(
−(σ + η)−1(fs(x)− fθw(x))2

)
,

which depends on the proximity of fθw(x) to fs(x). In ad-
dition, we regularize the training based on the discrepancy
of the two models fθw(x) and fs(x), which can belong to
different classes of regression models. In order to do so, we in-
troduce a prior distribution that implements a function-based
regularization as

p(θw|fs) ∝ exp

(
−

m∑
i=1

(fs(ui)− fθw(ui))2

λ

)
, (5)

where λ ∈ R\{0}. The discrepancy is measured by the sum
of their squared distances over m input values U = {ui}mi=1.
Hereafter, we use the n observed inputs in D for U . The pos-
terior distribution involves three hyperparameters (σ, η, λ).
Note that λ can be either positive or negative and controls the
degree of discrepancy, positively or negatively. As described
below, this Gaussian-type modeling leads to an analytic work-
flow that can benefit from less effort on the implementation.

We consider the Maximum a Posteriori (MAP) estima-
tion of θw and a class of prediction functions ŷ(x) that are
characterized by two hyperparameters τ and ρ:

θ̂w= arg min
θw

n∑
i=1

{
(yi−fθw (xi))

2−τ(fs(xi)−fθw (xi))
2},
(6)

ŷ(x)=argmaxy pt(y|x, θ̂w)=(1− ρ)fθ̂w (x) + ρfs(x), (7)

τ =
σ

σ + η
− σ

λ
∈ (−∞, 1), ρ =

σ

σ + η
∈ (0, 1).

In the training objective Eq. 6, the first term measures the
goodness-of-fit with respect to D. The second term is de-
rived from the normalization term in Eq. 1 and the prior
distribution Eq. 5. It regularizes the training through the
discrepancy between fθw(x) and the pretrained fs(x). The
prediction function Eq. 7 corresponds to the mode of the plug-
in predictive distribution Eq. 1. Note that the original three
hyperparameters are reduced to τ ∈ (−∞, 1) and ρ ∈ (0, 1).
By varying (τ, ρ) and different models on fθw(x) coupled
with the learning algorithms, the resulting method can bridge
various methods of TL as described later.

Implementation Cost
By completing the square of Eq. 6 with respect to fθw(x),
the objective function can be rewritten as a residual sum of
squares on a transformed output variable z:

θ̂w=arg min
θw

n∑
i=1

(zi−fθw(xi))2, zi =
yi−τfs(xi)

1− τ
.

Once the original output yi is simply converted to zi with
a given fs(x) and τ , the model can be trained by using a
common `2-loss minimization library for regression. Any reg-
ularization term, such as `1- or `2-regularization, can also be
added. Therefore, the proposed method can be implemented
at essentially no cost. In the applications shown later, we uti-
lized ridge regression, random forest regression, and neural
networks as fθw(x). We simply used the standard libraries
of the R language (glmnet, ranger, and MXNet) without any
customization or additional coding.

Furthermore, as no source data appear in the objective func-
tion, the model is learnable by using only training instances
in a target domain as long as a source model is callable. This
separately learnable property will be a great advantage in
cases, for example, where training the source model from
scratch is time-consuming, or the source data can not be
disclosed.

Relations to Existing Methods
By adjusting (τ, ρ) coupled with the choice of fθw(x), our
method can represent the different types of TL as described
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below. The relationship between different methods are visu-
ally overviewed in Figure 1.

Regularization Based on Cross-Domain Similarity
One of the most natural ideas for model refinement is to
use the similarity to the pretrained fs(x) as a constraint con-
dition. Many studies have been made so far to incorporate
such cross-domain similarity regularization to TL or other
related machine learning tasks such as avoiding catastrophic
forgetting in continual learning (Kirkpatrick et al. 2017),
knowledge distillation to compress complex neural networks
to simpler models (Hinton, Vinyals, and Dean 2015).

Here, this type of regularization is described in a Bayesian
fashion. We consider a posterior distribution in Eq. 2,
but impose the Gaussian distribution on the likelihood
pt(y|x, θw) = N (y|fθw(x), σ) and the same prior to Eq. 5
is imposed to p(θw|fs). Then, the MAP estimator for θw
and the mode of the plug-in predictive distribution are of the
following form

θ̂w= arg min
θw

n∑
i=1

{
(yi−fθw (xi))

2 +
σ

λ
(fs(xi)−fθw (xi))

2},
(8)

ŷ(x) = fθ̂w (x). (9)

The objective function of our method Eq. 6 can represent
the MAP estimation with the objective function in Eq. 8 by
restricting the hyperparameter τ (or λ) to be negative, i.e.,
τ = −σ/λ < 0. The prediction function in Eq. 9 corresponds
to ρ = 0 in our method. With a negative τ , the model fθw(x)
is estimated to be closer to the pretrained source model. Such
a newly trained model fθ̂w(x) is directly used as the predic-
tion function without using the source model.

Transfer Learning Based on Neural Networks
To our best knowledge, the most powerful and widely used
method of TL relies on deep neural networks (Yosinski et al.
2014). When neural networks are put on both fθw(x) and
fs(x) in the objective function Eq. 8, the pretrained fs(x) is
fine-tuned to fθw(x) by retaining the cross-domain similarity
between their output layers.

Transfer Learning Based on the Density-Ratio
Estimation
The density-ratio TL of (Liu and Fukumizu 2016) was de-
signed to minimize the conditional Kullback-Leibler diver-
gence Ex∼q(x)[KL(q(y|x)||pt(y|x, θw))] between the true
density q(y|x) and the transferred model pt(y|x, θw) based
on the density-ratio reweighting as in Eq. 1. As detailed in
Supplementary Note A1, if the transfer model is paramterized
in the same way as Eq. 3, the learning objective derived from
an empirical risk on the training set D takes the form

θ̂w= arg min
θw

n∑
i=1

{
(yi−fθw (xi))

2 − ρ(fs(xi)−fθw (xi))
2
}
,

(10)

ρ =
σ

σ + η
∈ (0, 1).

1All supplementary notes can be found in the arXiv version of
the paper.

𝜌𝜌

𝜏𝜏

Figure 1: Existing methods mapped onto the hyperparameter
space (τ, ρ). The cross-domain similarity regularization cor-
responds to τ < 0 and ρ = 0 (black line). If neural networks
are put on both fθw(x) and fs(x), this region corresponds
to the fine-tuning of neural networks. If τ = ρ (blue line),
the class represents the density-ratio TL. The region with
τ = ρ = 0 (black dot) or ρ = 1 (red line) represents an
ordinal regression without transfer or the case where a source
model is directly used as the target, respectively.

The second term represents the discrepancy between the
density-ratio model and the source model in which the de-
gree of regularizaion is controlled by ρ ∈ (0, 1). For the
prediction function, as with Eq. 7, we consider ŷ(x) =
(1− ρ)fθ̂w(x) + ρfs(x) that corresponds to the plug-in esti-
mator argmaxy pt(y|x, θ̂w).

In terms of the proposed class of TL, the method in (Liu
and Fukumizu 2016) can be considered as a specific choice of
τ = ρ ∈ (0, 1) (the blue line in Figure 1). This corresponds
to the case where λ in Eq. 5 is sufficiently large, i.e., the
prior distribution for the parameters of the density-ratio func-
tion is uniformly distributed and non-informative. It is noted
that the objective function in Eq. 10 resembles Eq. 8 in the
cross-domain similarity regularization. These two methods
are regularized based on the discrepancy between fθw(x) and
fs(x), but their regularization mechanisms work in the oppo-
site directions: the regularization parameter τ takes a positive
value for the method in (Liu and Fukumizu 2016), which
we call cross-domain dissimilarity regularization, while a
negative value for cross-domain similarity regularization.

Learning without Transfer
The proposed family of methods contains two learning
schemes without transfer. If the hyperparameters are selected
to be τ = 0 and ρ = 0 (the black dot in Figure 1), the
density-ratio model f̂θw(x) is estimated without using the
source model, and the resulting prediction model becomes
ŷ(x) = fθ̂w(x). This corresponds to an ordinary regression
procedure. When negative transfer occurs i.e., the previous
learning experience interferes with learning in the new task,
the desirable hyperparameters would be around τ = 0 and
ρ = 0 . In addition, setting ρ = 1 (the red line in Fig-
ure 1), the source model alone gives the prediction model
as ŷ(x) = fs(x) regardless of fθw(s). By cross-validating
the hyperparameters, the proposed framework will automati-
cally determine when not to transfer without using a separate
pipelines.
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Selection of Hyperparameters and Preference
to Bias and Variance

As described above, our method can hybridize various mech-
anisms of TL by adjusting τ and ρ. The values of the hy-
perparameters are adjusted through cross-validation. Clearly,
the optimal combination of the hyperparameters will differ
depending on between-task relationships and the choice for
the target model.

Here, we show an expression of the mean squared error
(MSE) based on the bias-variance decomposition. For sim-
plicity, we restrict fθ̂w(x) to be in the set of all linear pre-
dictions taking the form of fθ̂w(x) = xTSz. The n × n
smoothing matrix S depends on n samples of p input feature
φ(xi) ∈ Rp (i = 1, . . . , n) with a predefined basis set φ, and
z is a vector of n transformed outputs zi (i = 1, . . . , n). For
example, this class of prediction includes the kernel ridge
regression.

We assume that y follows y = ft(x) + ε where ft(x)
denotes the true model and the observation noise ε has mean
zero and variance σ2

ε . For the prediction function ŷ(x) =
(1−ρ)fθ̂w(x)+ρfs(x), MSE(ŷ(x)) = Ey|x[y− ŷ(x)]2 can
be expressed as:

MSE(ŷ(x))=

[
ρ−τ
1−τ D(x) +

1−ρ
1−τ B1(x)−

τ(1−ρ)
1−τ B2(x)

]2
+

(
1−ρ
1−τ

)2

V(x) + σ2
ε , (11)

where

D(x) = ft(x)− fs(x),
B1(x) = ft(x)− xTSft,
B2(x) = fs(x)− xTSfs,
V(x) = σ2

εx
TSSTx.

The first term is the squared bias, which consists of three
building blocks. D(x) represents the discrepancy between
ft(x) and fs(x). B1(x) is a bias of the linear estimator xTSft
with respect to the true model ft(x), assuming that n observa-
tions ft = (ft(x1), . . . , ft(xn))

T for the unknown ft(x) are
given. Likewise, B2(x) is the bias of xTSfs with respect to
fs(x). The second term corresponds to the variance of ŷ(x).
This is proportional to V(x) = σ2

εx
TSSTx. The third term is

the variance of the observation noise.
The relative magnitudes of Ex[D(x)2], Ex[B1(x)

2],
Ex[B2(x)

2], and Ex[V(x)] determine the optimal hyperpa-
rameters to the cross-domain similarity regularization, the
density-ratio TL, and the learning without transfer. Let D =
D(x), B1 = B1(x), B2 = B2(x), and V = V(x), respec-
tively. Consider the expectation of the MSE in Eq. 11 with
respect the marginal distribution of x: Ex∼q(x)[MSE(ŷ(x))].
Because the expected MSE is quadratic with respect to ρ
for any τ , the minimum under the inequality constraint
0 ≤ ρ ≤ 1 is achieved by

ρ(τ) =

{
0 ρ∗(τ) ≤ 0
ρ∗(τ) 0 < ρ∗(τ) < 1
1 ρ∗(τ) ≥ 1

where ρ∗(τ) denotes the solution for the unconstrained min-
imization. Taking the derivative of the expected MSE with
respect to ρ, we have an equation as

1

(1− τ)2E[((ρ−τ)D+(1−ρ)B1−τ (1−ρ)B2))(D−B1+τB2)]

− 1− ρ
(1− τ)2E[V] = 0. (12)

Assuming that τ 6= 1, this leads to an expression for the
unconstrained solution as

ρ∗(τ) =
E[(τD− B1 + τB2)(D− B1 + τB2)] + E[V]

E[D− B1 + τB2]2 + E[V]
. (13)

Likewise, taking the derivative of the expected MSE with
respect to τ , we have
1− ρ

(1− τ)3E[((ρ−τ)D+(1−ρ)B1− τ (1−ρ)B2))(D−B1+B2)]

− (1− ρ)2

(1− τ)2E[V] = 0. (14)

Combining Eq. 12 and Eq. 14 where τ 6= 1 and ρ 6= 1, we
obtain an equation

(1− τ)E[τ(D + (1− ρ)B2)B2 − (1− ρ)B1B2 +ρDB2]

= 0,

then yielding an expression for the solution

τ(ρ) =
(1− ρ)E[B1B2] + ρE[DB2]

(1− ρ)E[B2
2] + E[DB2]

. (15)

According to the two expressions in Eq. 13 and Eq. 15, we
can investigate the preference in the hyperparameter selection
in regard to the bias and variance components in the data
generation process.

Consider a case where the source and target models are
significantly different by taking the limit E[D2] → ∞. For
the expectation of E[DX] for the product of D and any X, it
holds that E[DX]/E[D2] → 0 as E[D2] → ∞. This can be
seen by considering the Cauchy-Schwarz inequality:

−E[D2]
1
2E[X2]

1
2 ≤ E[DX] ≤ E[D2]

1
2E[X2]

1
2

⇔ −E[X2]
1
2

E[D2]
1
2

≤ E[DX]

E[D2]
≤ E[X2]

1
2

E[D2]
1
2

.

In the second line, the upper- and the lower-bounds go to zero
as E[D2]→∞. Thus, in Eq. 13, all terms except those hav-
ing E[D2], which appear in its numerator and denominator,
approach asymptotically to zero, which results in

ρ∗(τ)→
τE[D2]

E[D2]
= τ as E[D2]→∞.

Furthermore, noting that E[DX] = O(E[D2]
1
2 ), it can been

seen that τ(ρ) in Eq. 15 approaches asymptotically ρ:

τ(ρ)→ ρE[DB2]

E[DB2]
= ρ as E[D2]→∞.

Therefore, when E[D2] dominates the other three quantities,
the density-ratio TL (τ = ρ) is preferred. This fact accounts
for the experimental observations presented above.

8995



𝜌𝜌

𝜏𝜏

𝜎𝜎𝜖𝜖2 = 0.01 𝜎𝜎𝜖𝜖2 = 1 𝜎𝜎𝜖𝜖2 = 10 𝜎𝜎𝜖𝜖2 = 50 𝜎𝜎𝜖𝜖2 = 100

𝛼𝛼
=

0
𝛼𝛼

=
0.

25
𝛼𝛼

=
0.

5
𝛼𝛼

=
0.

75
𝛼𝛼

=
1

Figure 2: Heatmap display of the MSE landscape on the hyperparameter space (τ , ρ) that changes as a function of the bias (α)
and variance (σε). With given τ and ρ, the linear ridge regression was used to train fθw(x) on the artificial data. The black dot
denotes the lowest MSE.

On the other hand, if the source and target models are
completely the same (E[D2] = 0), it holds that ρ∗(τ) = 1.
Alternatively, if E[V] → ∞, ρ∗(τ) = 1. The direct use of
the source model as a prediction function tends to be optimal
as the source and target tasks get closer or the variance E[V]
becomes larger. It has not yet been clear when the cross-
domain similarity regularization would be preferred, either
theoretically or experimentally.

Results
Illustrative Example
Some intrinsic properties of the proposed method are illus-
trated by presenting numerical examples using artificial data.
According to our experience, there is a link between the
bias and variance magnitudes and the hyperparameters that
minimize the MSE. This will be demonstrated.

We assumed the true functions on the source and target
tasks to be linear as ft(x) = xTθt and fs(x) = xTθs where
x ∈ R300. The true parameters were generated as θt =
αθs+(1−α)θw where θs ∼ N (0, I) and θw ∼ N (0, I). The
output variable was assumed to follow y = ft(x) + ε where
x ∼ N (0, I) and ε ∼ N (0, σ2

ε ). With the given θw and θs,
we generated {xi, yi}ni=1 with the sample size set to n = 50
by randomly sampling x and ε. The discrepancy between the
source and target models is controlled by the mixing rate
α ∈ [0, 1] for any given θw. In particular, if α is set to zero,
the source and target models are the same (∀x: D(x) = 0 in
Eq. 11). The variance σ2

ε of the observational noises affects
the magnitude of the variance E[V] in the model estimation.

We used the linear ridge regression to estimate fθw with
the hyperparameter on the `2-regularization that was fixed at
λ = 0.0001. The true source model was used as fs(z). We
then investigated the change of the MSE landscape as a func-
tion of the bias α and the variance σε, which are summarized
in Figure 2. For any given values of τ and ρ, the MSE was
approximately evaluated by averaging the `2-loss over addi-
tionally generated 1,000 samples on (x, y) and rescaled to the
range in [0, 1]. For α = 0 where the source and target models
are the same, the MSE became small in the region along
ρ = 1 that corresponds to the use of the pretrained source

model as the target model with no modification. As α in-
creased while keeping σε at smaller values, the region where
the MSE becomes small was concentrated around τ = ρ,
indicating the dominant performance of the density-ratio TL.
On the other hand, as both α and σε became larger, the region
with τ < 0 and ρ = 0 tended to be more favored. This re-
gion corresponds to the TL with the cross-domain similarity
regularization. It was confirmed that the pattern of the MSE
landscape varies continuously with respect to the bias and
variance components.

In many other applications, we have often observed the
same trend on the preference of τ and ρ with respect to the
relative magnitude of the bias and variance. Another example
assuming nonlinear models for fs(x) and ft(x), and random
forests for fθw(x) is shown in Supplementary Note B.

Real Data Applications
Task, Data and Analysis Procedure The proposed method
was applied to five real data analyses in materials science
and robotics applications: (i) multiple properties of organic
polymers and inorganic compounds (Yamada et al. 2019), (ii)
multiple properties of polymers (Kim et al. 2018) and low-
molecular-weight compounds (monomers, unpublished data),
(iii) properties of donor molecules in organic solar cells (Paul
et al. 2019) obtained from experiments (Lopez et al. 2016)
and quantum chemical calculations (Pyzer-Knapp, Li, and
Aspuru-Guzik 2015), (iv) formation energies of various in-
organic compounds and crystal polymorphisms of SiO2 and
CdI2 (Jain et al. 2013), and (v) the feed-forward torques re-
quired to follow a desired trajectory at seven joints of a SAR-
COS anthropomorphic robot arm (Williams and Rasmussen
2006). The model transfers were conducted exhaustively be-
tween all task pairs within each application, which resulted
in a total of 185 pairs of the source and target tasks with 9
different combinations of fs(x) and fθw(x) (a total of 1,665
cases).

For each task pair, we used three machine learning algo-
rithms; Ridge regression using a linear model (LN), random
forests (RF), and neural networks (NN) to estimate fs(x) and
fθw(x). In the source task, the entire dataset was used to train
fs(x) under default settings of software packages without
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Direct use of source models

Regression without transfer

𝜌𝜌
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Figure 3: Distribution of (τ, ρ) that delivered the lowest MSE in 1,665 cases (185 task pairs and 32 combinations of models for
fs(x) and fθw(x)). The number in each pixel denotes the count of cases.

Source task Target task fs(x)
fθw (x) Selected hyperparameters

LN RF NN LN RF NN

Monomer
- Dielectric constant

Monomer
- HOMO-LUMO gap

LN 0.8292 0.7435 0.8823 (-0.1, 0.1) ( 0.6, 0.4) ( 0.1, 0.3)
RF 0.8302 0.7139 0.7421 (-0.1, 0.2) ( 0.5, 0.3) ( 0.8, 0.8)
NN 0.8250 0.7372 0.7644 (-0.2, 0.2) ( 0.2, 0.3) ( 0.4, 0.4)

Monomer
- Refractive index

LN 0.0436 0.0424 0.0439 ( 0.8, 0.9) ( 0.8, 0.9) ( 0.8, 0.9)
RF 0.0463 0.0415 0.0415 ( 0.9, 0.9) ( - , 1.0) ( - , 1.0)
NN 0.0365 0.0355 0.0505 ( 0.8, 0.9) ( 0.8, 0.9) ( 0.4, 0.7)

Polymer
- Band gap

LN 1.0881 0.7862 0.8936 ( 0.3, 0.1) ( 0.0, 0.1) ( 0.6, 0.6)
RF 0.8594 0.7477 0.7130 (-0.2, 0.4) ( 0.4, 0.3) ( 0.8, 0.8)
NN 0.8654 0.8598 0.8908 (-0.5, 0.1) ( 0.3, 0.5) ( 0.6, 0.5)

Polymer
- Dielectric constant

LN 0.6031 0.5358 0.6376 (-0.4, 0.2) ( 0.3, 0.2) (-0.5, 0.0)
RF 0.5988 0.5786 0.6678 (-0.2, 0.2) ( 0.3, 0.2) ( 0.0, 0.4)
NN 0.6143 0.5478 0.7563 (-0.1, 0.2) ( 0.2, 0.3) (-0.2, 0.1)

Polymer
- Refractive index

LN 0.3269 0.3906 0.3442 ( 0.0, 0.0) (-0.4, 0.0) ( 0.2, 0.4)
RF 0.3269 0.3574 0.3312 ( 0.0, 0.0) ( 0.1, 0.1) ( 0.1, 0.2)
NN 0.3269 0.3845 0.4254 ( 0.0, 0.0) (-0.1, 0.1) (-1.7, 0.0)

Table 1: Selected hyperparameters (the last three columns, representing hyperparameters τ and ρ) and their corresponding MSEs
(the 4-6th columns) for the TL from one source task to five target tasks. Three different models (LN: linear, RF: random forests,
and NN: neural networks) were applied to fs(x) and fθw(x). Supplementary Note C provides full results for all the 1,665 cases.

adjusting hyperparameters. In all cases, 50 randomly selected
samples were used to train fθw(x). We choose the best model
based on the 5-fold cross validation. The resulting model
was used to predict all the remaining data, and the MSE was
evaluated. Details of the datasets and analysis procedure are
presented in Supplementary Note C.

Results Throughout all the 1,665 cases, we investigated
how the hyperparameters selected by the cross-validation
are distributed (Figure 3). In many cases, the distribution of
the selected hyperparameters was concentrated in the neigh-
boring areas of the density-ratio TL (τ = ρ) and the cross-
domain similarity regularization (τ < 0, ρ = 0). The density-
ratio TL was selected for 609 cases (36.6%) and the cross-
domain similarity regularization was selected for 176 cases
(10.6%). In particular, there was a significant bias toward the
neighbors of τ = ρ.

The selected hyperparameters and the MSEs for the 1,665

cases are presented in Tables S1-S5 of the Supplementary
Note. As an illustrative example, Table 1 shows the result
of the TL from one source task (prediction of a dielectric
property of small molecules) to five target tasks (prediction
of two properties of small molecules and three properties
of polymers). This result also indicates the presence of bias
toward τ and ρ. It was also observed that in some cases the
choice of the density-ratio model significantly affects the
prediction performance and in other cases it does not.

We speculate that the four quantities Ex[D2], Ex[B2
1],

Ex[B2
2] and Ex[V] or their counterparts in general regres-

sion, determine the preference of τ and ρ. Figure 4 shows
the MSE mapped on the hyperparameter space and the four
quantities for four task pairs. They were selected as the typi-
cal cases where the four different learning schemes are pre-
ferred. The proposed method exhibited the preference to
direct use of source models when the difference between
the source and target domains (Ex[D2]) was small. When
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(a) Best transferability: direct use of source model (b) Best transferability: density-ratio TL

(c) Best transferability: cross-domain similarity regularization (d) Best transferability: regression without transfer

Figure 4: The MSE landscapes of the hyperparameter space for four different cases that exhibited the best transferability in
different hyperparameter sets. Sample estimates on three bias-related quantities (Ex[D2], Ex[B1

2], and Ex[B2
2]) and the mean

variance (Ex[V]) are shown on each plot.

Ex[D2] was large, the relative magnitude of Ex[D2] and the
other three quantities Ex[B1

2], Ex[B2
2] and Ex[V] would

determine the choice; if Ex[V] was small, the density-ratio
TL was preferred, and if Ex[V] was large, the cross-domain
similarity regularization was preferred. Furthermore, when
both Ex[B1

2] and Ex[V] were small, training without trans-
fer was preferred. Such relationships were often observed in
other cases as well. However, these are only views derived
from partial observations, and there would be more complex
factors to work in the learning mechanism. Supplementary
Note C shows the results of investigating the magnitudes of
the bias and variance and the selected hyperparameters for
all cases.

Concluding Remarks
We proposed a new class of TL that is characterized by two
hyperparameters which in turn control training and predic-
tion procedure. This new class of TL unifies two different
types of existing methods that are based on the cross-domain
similarity regularization and the density-ratio estimation. If
we use neural networks on the source and target models, the
class represents the fine tuning of neural networks. In addi-
tion, some specific selection of hyperparameters offers the
choice of ordinary regression without transfer or the direct
use of a pretrained source model as the target. According to
the choice of hyperparameters and models, we can derive
various learning methods in which these two methods are
hybridized.

The cross-domain similarity regularization and the density-
ratio TL follow opposite learning objectives. In the former
case, the target model is regularized as being closer to the

source model. In the latter case, the difference between the
source and target models is estimated to be far away from
the source model. Most of the widely used techniques have
adopted the former approach that leverages the proximity of
the target model to the source model. Interestingly, in many
cases, the cross-domain similarity regularization rarely exhib-
ited the best transferability according to our empirical study,
and often, the density-ratio estimation or its neighboring ar-
eas in the hyperparameter space showed better performances.
Although the idea of the cross-domain similarity regulariza-
tion is more widely adopted, our results indicate that we
should further explore the direction based on the opposite
idea, such as the density-ratio estimation.

This study focused on the regression setting. In addition,
in the Bayesian framework, we assumed the specific type
of the likelihood and prior distribution. The empirical risk
derived from this assumption takes the sum of the squared
loss. With this formulation, we could perform the model
training simply by using an existing library for regression.
This allows us to keep the implementation cost to practically
zero. However, there are also limitations of using the squared
loss. We should consider a wide range of loss functions and
learning tasks. The treatment of more general loss functions
and discriminant problems is one of the future issues.

Acknowledgments
Ryo Yoshida acknowledges the financial support received
from a Grant-in-Aid for Scientific Research (A) 19H01132
from the Japan Society for the Promotion of Science (JSPS),
JST CREST Grant Number JPMJCR19I1, JPNP16010 com-
missioned by the New Energy and Industrial Technology
Development Organization (NEDO), and JSPS KAKENHI

8998



Grant Number 19H05820. Stephen Wu acknowledges the
financial support received from JSPS KAKENHI Grant Num-
ber JP18K18017. This work was supported by The Alan
Turing Institute under the EPSRC grant EP/N510129/1

References
Hinton, G.; Vinyals, O.; and Dean, J. 2015. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531 .
Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.;
Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G.;
and Persson, K. A. 2013. The Materials Project: A ma-
terials genome approach to accelerating materials innova-
tion. APL Materials 1(1): 011002. ISSN 2166532X. doi:
10.1063/1.4812323. URL http://link.aip.org/link/AMPADS/
v1/i1/p011002/s1\&Agg=doi.
Jalem, R.; Kanamori, K.; Takeuchi, I.; Nakayama, M.; Ya-
masaki, H.; and Saito, T. 2018. Bayesian-driven first-
principles calculations for accelerating exploration of fast
ion conductors for rechargeable battery application. Scien-
tific Reports 8(1): 1–10.
Kim, C.; Chandrasekaran, A.; Huan, T. D.; Das, D.; and
Ramprasad, R. 2018. Polymer Genome: A data-powered
polymer informatics platform for property predictions. The
Journal of Physical Chemistry C 122(31): 17575–17585.
Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Des-
jardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ramalho, T.;
Grabska-Barwinska, A.; Demis, H.; Claudia, C.; Dharshan,
K.; and Raia, H. 2017. Overcoming catastrophic forgetting
in neural networks. Proceedings of the National Academy of
Sciences 114(13): 3521–3526.
Kuzborskij, I.; and Orabona, F. 2013. Stability and hypothesis
transfer learning. In International Conference on Machine
Learning, 942–950.
Kuzborskij, I.; and Orabona, F. 2017. Fast rates by transfer-
ring from auxiliary hypotheses. Machine Learning 106(2):
171–195.
Liu, S.; and Fukumizu, K. 2016. Estimating Posterior Ra-
tio for Classification: transfer Learning from Probabilistic
Perspective. In Proceedings of the 2016 SIAM International
Conference on Data Mining, 747–755.
Lopez, S. A.; Pyzer-Knapp, E. O.; Simm, G. N.; Lutzow, T.;
Li, K.; Seress, L. R.; Hachmann, J.; and Aspuru-Guzik, A.
2016. The Harvard organic photovoltaic dataset. Scientific
Data 3(1): 1–7.
Marx, Z.; Rosenstein, M. T.; Kaelbling, L. P.; and Dietterich,
T. G. 2005. Transfer learning with an ensemble of back-
ground tasks. In NIPS Workshop on Inductive Transfer.
Pan, S. J.; and Yang, Q. 2009. A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engineering
22(10): 1345–1359.
Paul, A.; Jha, D.; Al-Bahrani, R.; Liao, W.-k.; Choudhary,
A.; and Agrawal, A. 2019. Transfer learning using ensemble
neural networks for organic solar cell screening. In 2019
International Joint Conference on Neural Networks, 1–8.

Pyzer-Knapp, E. O.; Li, K.; and Aspuru-Guzik, A. 2015.
Learning from the Harvard clean energy project: the use of
neural networks to accelerate materials discovery. Advanced
Functional Materials 25(41): 6495–6502.
Raina, R.; Ng, A. Y.; and Koller, D. 2006. Constructing
informative priors using transfer learning. In Proceedings
of the 23rd International Conference on Machine Learning,
713–720.
Sugiyama, M.; Suzuki, T.; and Kanamori, T. 2012. Density
Ratio Estimation in Machine Learning. Cambridge Univer-
sity Press.
Williams, C. K.; and Rasmussen, C. E. 2006. Gaussian
Processes for Machine Learning. MIT Press.
Yamada, H.; Liu, C.; Wu, S.; Koyama, Y.; Ju, S.; Shiomi, J.;
Morikawa, J.; and Yoshida, R. 2019. Predicting materials
properties with little data using shotgun transfer learning.
ACS Central Science 5(10): 1717–1730.
Yang, Q.; Zhang, Y.; Dai, W.; and Pan, S. J. 2020. Transfer
Learning. Cambridge University Press.
Yosinski, J.; Clune, J.; Bengio, Y.; and Lipson, H. 2014.
How transferable are features in deep neural networks? In
Advances in Neural Information Processing Systems, 3320–
3328.

8999


