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Abstract

Resource usage of production workloads running on shared
compute clusters often fluctuate significantly across time.
While simultaneous spike in the resource usage between two
workloads running on the same machine can create perfor-
mance degradation, unused resources in a machine results
in wastage and undesirable operational characteristics for a
compute cluster. Prior works did not consider such temporal
resource fluctuations or their alignment for scheduling deci-
sions. Due to the variety of time-varying workloads and their
complex resource usage characteristics, it is challenging to
design well-defined heuristics for scheduling them optimally
across different machines in a cluster. In this paper, we pro-
pose a Deep Reinforcement Learning (DRL) based approach
to exploit various temporal resource usage patterns of time-
varying workloads as well as a technique for creating equiva-
lence classes among a large number of production workloads
to improve scalability of our method. Validations with real
production traces from Google and Alibaba show that our
technique can significantly improve metrics for operational
excellence (e.g. utilization, fragmentation, resource exhaus-
tion etc.) for a cluster compared to the baselines.

Introduction
In large production clusters, multiple workloads are co-
located on the same machine to achieve operational ef-
ficiency at scale. They share the underlying physical re-
sources of the machine such as CPU, cache, memory, disk,
network-bandwidth. Today, the standard practice is to de-
ploy these workloads as microservices inside containers that
are managed by various orchestration-engines (COEs) such
as Mesos (Hindman et al. 2011) and Kubernetes (Burns et al.
2016). These engines either use standard bin-packing al-
gorithms or custom heuristics (Ghodsi et al. 2011; Gare-
falakis et al. 2018; Verma et al. 2015) to place these work-
loads on the available machines in a multi-tenant cluster.
However, a very significant fraction, if not all, of these ser-
vices or applications show time-varying-workload (TVW)
characteristics, i.e. their resource usage vary significantly
over time (Tian, Zheng, and Wang 2019; Reiss et al. 2012;
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Mishra et al. 2010). This can happen because of algorith-
mic phases (Amvrosiadis et al. 2018; Reiss et al. 2012;
Mitra et al. 2017; Zhang et al. 2007), variations in load
or the number of users interacting with the workload. For
user-facing services, such temporal resource usages can
have daily and seasonal patterns due to fluctuations in user-
demands (Amvrosiadis et al. 2018; Mishra et al. 2010) (e.g.
some services are mostly used during working hours while
some are used during holiday seasons).

In a multi-tenant cluster, services are developed and de-
ployed by different engineering groups, where none, includ-
ing the cluster manager, usually have a detailed understand-
ing of the temporal resource-usage characteristics of each of
these services. (Garefalakis et al. 2018) reported that today
a substantial fraction of common clusters as well as dedi-
cated cluster in production are devoted to only long-running
workloads. When placing long-running workload contain-
ers, the cluster scheduler must also target operational ex-
cellence, such as improving overall cluster utilization, mini-
mizing performance degradation due to resource contention
(e.g. memory usage of two workloads on the same machine
spikes at the same time), service level objective (SLO) viola-
tions due to resource over utilization or exhaustion, resource
fragmentation and the number of machines used. Finding
optimum initial placement for these workloads are crucial
as later migration has a high overhead and causes degraded
user-experience (Garefalakis et al. 2018).
Problem Statement: In this paper we explore how we
can build a self-learning scheduler that can take historical
resource-usage characteristics for each service1 as a time-
series: rd(t) and attempt to optimize various components
of operational excellence in a cluster. Here rd(t) is the re-
source usage along the measurable resource dimension d
(CPU, Memory etc.) and t is a timestamp.

The absence of optimal co-location labels makes this an
unsupervised problem. Since the impacts of placement deci-
sions are not immediately observable, a cost-based heuristic
would be sub-optimal. While Reinforcement Learning is a
feasible solution, the large number of ways a variety of ser-
vices can be co-located over different machines in the clus-
ter, makes state-transition probability modeling infeasible.

1We use the terms TVWs, services, jobs, tasks or applications
interchangeably, to generally mean containerized microservices.
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Our proposed TVW-RL is a Deep Reinforcement Learn-
ing (DRL) based approach to make the cluster scheduler au-
tomatically learn temporal resource usage patterns for each
service and dependencies across different services using
deep neural network as function approximators. This learn-
ing helps the scheduler place the services in a shared cluster
without requiring any manually provided placement heuris-
tics in order to achieve operational excellence.

We make the following key contributions:

• We novelly use DRL approach to provide better place-
ment for time-varying-workloads (TVWs).

• We propose novel reward designs to improve operational
excellence for a cluster handling long-running TVWs.

• We present resource-usage based equivalence mapping of
workloads for robust learning and scalability.

• We present extensive evaluation using real workload
traces from Google and Alibaba production clusters and
show that our technique can improve resource utilization
by 30-100%, reduce resource fragmentation by 5-13%
and reduce the number of machines needed by 8-50% un-
der variable load conditions.

Background and Related Work
A cluster administrator targets to improve the Operational
Excellence on the following aspects.
Maximize Workload Performance: A scheduler should at-
tempt to minimize the probability of performance degrada-
tion through contention in poorly isolated resources (last-
level cache, memory bandwidth etc.). If the surge in the re-
source demand in two co-located services do not happen at
the same time, it is unlikely that they would contend each
other and hence their performance will be maximized.
Maximize Overall Cluster Utilization: Maximizing over-
all cluster utilization by efficient packing of workloads is
important to reduce computing cost for any organization.
Minimize Resource Overshoot: When the number of
workloads is large and/or load for the workloads is high,
some machines might experience periods of resource over-
shoot and exhaustion (sum of resource requests from co-
located applications shoots beyond the machine’s capacity).
Placement algorithms should avoid such situations.
Minimize Resource Fragmentation: If amounts of unuti-
lized resources remain spread across a large number of ma-
chines, those fragmented resources cannot be used to host
new workloads leading to undesirable resource wastage.
Minimize Number of Machines used: If same workloads
can effectively be run on a smaller number of machines, it
can significantly reduce operating cost as idle machines can
be stopped/hibernated. It is challenging to efficiently explore
this trade-off space for a mix of TVWs as several of these
aspects are naturally conflicting to each other.
Reinforcement Learning. In RL, at a high-level, an agent
interacts with a system and tries to learn an optimized pol-
icy. At each timestep t, the agent observes the state of the
system st, and chooses to take an action at that changes
the state to st+1 at timestep t + 1, and the agent receives

a reward rt. The goal of the agent is to learn the best pol-
icy to maximize its expected cumulative discounted reward:
E[

∑∞
t=0 γ

trt] where γ ∈ (0, 1) determines how much the
future rewards contribute to the total reward (Sutton, Barto
et al. 1998). In DRL, neural networks are used as agents
to handle large state and action spaces (Lillicrap et al. 2015;
Mnih et al. 2015). We used policy-gradient method with RE-
INFORCE algorithm (Sutton et al. 2000) with the neural net-
work as a function approximator.
Related works. Prior work related to scheduling and job
packing in multi-tenant clusters looked at multi-dimension
resource packing (Parkes et al. 2015; Joe-Wong et al.
2013; Ghodsi et al. 2011; Grandl et al. 2014), oppor-
tunistic scheduling for improving cluster utilization (Boutin
et al. 2014; Verma et al. 2015; Schwarzkopf et al. 2013),
performance-aware placement (Nathuji et al. 2010; Delim-
itrou and Kozyrakis 2013, 2014; Gog et al. 2016; Isard
et al. 2009) or cost-models for template workloads (Marcus
and Papaemmanouil 2016). None, handles time-varying re-
source usage aspects of the workloads. DeepRM (Mao et al.
2016) used DRL to schedule jobs that use constant amount
of resources, on a single monolithic machine. It neither con-
siders temporal variations in resource usage nor individual
machine-specific views that is necessary to understand and
optimize for job alignment to minimize resource interfer-
ence and resource fragmentation. (Mitra et al. 2019) can-
not handle real production workloads because of scalabil-
ity challenges. Other works applied DRL in video stream-
ing (Mao et al. 2017), routing (Mestres et al. 2017) and
device-placement (Mirhoseini et al. 2017). Tetris (Grandl
et al. 2014) uses heuristics to account multiple resource di-
mensions but does not consider the temporal resource usage
changes during runtime. Tetris assumes complete knowl-
edge of the resource requirements of tasks and resource
availability at machines. Recently proposed Decima (Mao
et al. 2019) used RL to learn optimized scheduling for DAG-
structured analytic jobs and is complementary to our work as
it does not handle TVWs.

Design of TVW-RL

TVW-RL represents the workload scheduler as an agent
where the scheduling policy is encoded in a neural network.
For an incoming scheduling request of a TVW, a trained
policy network takes actions: where that service should be
placed to optimize for the operational excellence.

We model the cluster environment as composed of N ma-
chines on which the TVWs are to be scheduled. Each ma-
chine has Cd amount of total physical resource capacity for
resource dimension d (e.g., CPU, memory). For a service j,
the agent observes the resource usages’ time-series denoted
as rdj

(t), where rd is the resource usage along the resource
dimension d and t is a timestamp. Along with the current
placement map of which services are running on which ma-
chines, the agent keeps track of the incoming scheduling re-
quests in the queue. The complete workflow of the TVW-RL
technique is shown in Fig. 1 and Algorithm 1 describes the
high-level online learning and placement logic.
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Figure 1: Workflow of TVW-RL

Figure 2: State representation
(For 2 machines with 4 resource
units, 2-slot waiting queue, and 3
types of jobs with resource varia-
tion over last 8 timesteps.)

Figure 3: Services showing simul-
taneous spikes in resource usages

State Space Representation for RL
We design the state-space such that it can capture the tem-
poral variations of resource usages as well as the degree of
competition among co-located services sharing the same un-
derlying resources within a machine.

Fig. 2 illustrates our input-space representation. State of
each machine in the cluster is represented as a 2D matrix
with h x Cd pixels for each of the resource dimension d,
where h is the number of previous logical timesteps. Within
each machine, one dimension of the matrix represents the
time axis and captures the utilization of TVWs for up to h
previous logical timesteps. Length of the history, i.e. h helps
the agent to learn the temporal characteristics of each TVW.
The value of h should be reasonably large enough w.r.t. the
scheduling time-scale so that it helps the agent to capture
a significant overlap among services. h can be configured
for different cluster deployments, depending on the typical
periodicity of their corresponding workloads.

For each machine, the number of pixels in the horizontal
direction (Cd) represents the quantized resource capacity of
that machine for resource dimension d. We use quantization
to map both - resource usage by TVWs and machine capaci-
ties to integer units of resources to aid fixed state-space rep-
resentation for DNN.Cd can be calibrated to adjust trade-off
between reducing resource wastage by reducing quantiza-
tion error vs. increase in of state-space size.

The pixels in this matrix representing machine-states are
labeled differently to denote different workloads. Empty la-
bel denotes unused resources as shown with different col-
ored pixel labels in Fig. 2. Our state-space representation
supports up to G labels. To make TVW-RL scalable, we
can map a large number of workloads to this G set of
equivalence-classes (EC).

Labels help TVW-RL to distinguish and learn resource
usage characteristics between different equivalence-class of
services. A waiting-queue captures the workloads waiting to
be scheduled. TVW-RL combines the state of individual ma-
chines and the waiting-queue into a cluster-level state repre-
sentation that is given as input to the policy-network.

Rewards Design for RL
We use negative rewards or penalty to teach the RL-agent
with the following components:
Resource contention penalty. To help the agent learn a pol-
icy that avoids placement of TVWs whose resource usages

are likely to spike at the same time, we use a penalty propor-
tional to the contention-score, which is a timeseries inner
product between two TVWs running on the same machine.

PC = −
∑
d

∑
m∈M

Kc ∗ Cr(m, d)

Contention-score (Cr) for a machine m, along resource
dimension d is calculated as:

Cr(m, d) =
∑

Wi∈mW

∑
Wj∈mW ,j>i

〈R(Wi, d), R(Wj , d)〉

where mW is the set of TVWs running in the machine m
in the increasing order of their starting time and R(Wi, d)
is a vector denoting the resource usage timeseries of work-
loadWi along resource dimension d, throughout its life time
on the machine. While taking the inner product of two re-
source usage vectors relative time shifting and appropri-
ate padding with zeros are done to ensure each vector is
of the same length and the overlap time is taken into ac-
count. M is the total number of machines in the cluster.
Kc is a constant that determines the weight of resource con-
tention penalty. The contention-score formula amplifies the
effect of simultaneous spike (see Fig. 3) in resource usage
among TVWs and thus would avoid resource contentions
among co-located services. We observed that such penalty
also helps the agent to learn better alignment w.r.t. resource
usage (or rather complementary of resource usage) among
different TVWs during placement – one of our target goals.
Under-utilization penalty. Since our goal is to improve
overall utilization of the cluster by helping the scheduler
learn how to achieve tighter packing and pack on less num-
ber of machines whenever possible, we add a penalty pro-
portional to the sum of unused resources in the used ma-
chines. A used machine is one with at least one workload
running. Empty pixels in our state-representation denote the
number of unused resources at any given time.

PU = −
∑
d

∑
m∈Mu

|Um(t, d)|Ku

Um(t, d) denotes the unused resource for machinem at time
t across resource dimension d. The constant term Ku which
also acts as a weighting factor, is an exponent here so that the
error gradient term has a direct component denoting amount
of unused resources. Mu denotes the set of used machines.
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Algorithm 1: Online Learning and Placement
Input: State-space parameters: M , h, d, Ccpu ,Cmem

Output: Machine to schedule Incoming Workloads
1 Initialize: Pretrained Policy Network with parameter θ;
2 for iteration i= 1 to MaxIteration do
3 Initialize: State Representation S;
4 for episode e=1 to MaxEpisode do
5 J ← Incoming Workload;
6 Z ← meta-information(J);
7 ec← ClassifyToEC(Z, resource usage = null);
8 UpdateECLabels();
9 S ← GetStateRepresentation();

10 m← PolicyNetwork.action(ec,S);
11 PlaceWorkload(J ,m);
12 S ← GetStateRepresentation();
13 r ← CalculatePenalty(S);
14 end
15 UpdatePolicyNetwork(θ, r);
16 end

Overshoot penalty. We teach the agent to prevent schedul-
ing of more tasks than that can be handled by a single
machine, as this would lead to TVWs not getting enough
CPU time-slices, memory thrashing etc. leading to undesir-
able performance or even SLA violations. We design high
penalty to the cases where any of the machines were not
able to meet the aggregate resource requirement of TVWs
scheduled in that machine, during any period of time. It is
calculated by adding a high value (Ko) each time a machine
is unable to provide appropriate resources to the running ser-
vices for the first time. An indicator function (I) keeps track
of whether a TVW running in machine m, overshooted.

PO = −
∑
d

∑
m∈M

Ko ∗ Im,d[First overshoot for the TVW]

Wait-time penalty. To prevent the scheduler from holding
scheduling requests for a long time in search of a better
placement, in each timestep we add a penalty that is equal
to the number of waiting requests in the queue (|Qt|) multi-
plied by a constant (Kw).

PW = −Kw ∗ |Qt|

The calibration of weight Kw in the penalty function also
helps in teaching the scheduler to switch between highly op-
timum placement mode (when less incoming TVW schedul-
ing requests are expected) to a less optimum placement
mode (when burst of scheduling requests are expected to hit
the cluster). TVW-RL can have different penalty coefficients
for different resource dimensions.

The agent receives the Wait-time and Under-utilization in-
stantly. But the Resource contention and Overshoot penal-
ties are delayed because resource contention can only be de-
tected at a later time, and hence the actions that caused it
should be penalized in future, but scheduling delay (Wait-
time) can be detected immediately.

Workload Equivalence-Class (EC) Mapping
Real production clusters need to handle a large number of
different workloads. It is not scalable to treat each TVW
differently. Too many distinct TVW-labels would make the
agent’s policy learning difficult, and less generalizable. We
explore how these numerous real production traces of TVWs
can be mapped to a much smaller number of equivalence-
classes (EC). Then we can assign a unique type-label to each
EC (rather to each individual TVW) helping the agent in its
policy learning. Note, the TVWs belonging to the same EC
will have similar shape in terms of temporal resource us-
age characteristics and thus can create higher contention (if
placed together), as compared to TVWs in different ECs.
We consider two different distance-metrics to capture the
temporal aspects described as follows. Temporal Features.
We extract temporal features such as auto-correlation, lin-
ear trend, agg. linear trend as well as aggregate features
like mean, mean absolute change and std. of the input time-
series. These features capture the aspects of shape, trend and
diurnal patterns. We normalize the obtained values of each
feature to [0,1] allowing for comparability between different
features. On the obtained feature vector, we define euclidean
as the distance metric.
Dynamic Time Warping (DTW). DTW (Ding et al. 2008)
gives a shape specific distance measure between two time-
series adjusting for any time shifts. We compute the dis-
tance metric by averaging the normalized DTW distances
along different resource dimensions. We use K-Means (K-
Medoids for DTW) clustering (MacQueen 1967) on the ob-
tained distance metrics. We perform selection of suitable
value of k, by plotting the Silhouette Score (Rousseeuw
1987) for different values of k and selecting k correspond-
ing to the maximum silhouette score. Characteristics of pro-
duction cluster workloads vary across different organiza-
tions (Amvrosiadis et al. 2018). Potentially the optimum
distance-metric and associated number of ECs can be dif-
ferent for different organizations. Training a policy-network
using RL is a computationally expensive task. Hence, it is
not practical to evaluate the goodness of the EC mapping by
training the RL agent for all different choices. We propose a
lower overhead proxy for evaluating the distance-metric and
goodness of EC creation by training a resource usage predic-
tion model (a multi-variate time-series prediction model (Lai
et al. 2018)) per EC. We choose most suitable combina-
tion of distance-metric and EC numbers by comparing the
prediction accuracy of this model. A reasonably good time-
series prediction model would also get similar benefit during
RL training from the chosen best combination.
Run-time Logic. Line #5-8 in Algorithm 1 describes the
steps for deciding the placement for an incoming workload.
Before probing the policy-network for the optimum ma-
chine (line #10), the state-representation is updated by re-
predicting the EC-labels for the already running workloads
(line #8). EC prediction is a multi-class classification prob-
lem. TVW-RL uses a fully connected network to classify it
to one of the ECs. It takes two inputs (1) featurized represen-
tation of meta-information (requested CPU/memory limits,
scheduling priority, etc.) and (2) a vectorized representation
of the partial resource usage.
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Evaluations
Real Production Workload Traces
Google traces (Wilkes 2011) contain production work-
load scheduling requests for a period of 29 days. Alibaba
traces (Alibaba 2018) contain production traces from 4k ma-
chines over 8 days. Both contains CPU/memory numbers
used by each workload at a granularity of 5 minutes, along
with scheduling details, e.g., priority, class and original re-
source request. We filtered the workload traces by discarding
the ones that were evicted, killed or failed. We also removed
the partially recorded traces. Since our focus is on optimal
placement of long running jobs, we filtered-in long-running
jobs that had at least 6000 continuous timestamped resource
usage records for Google traces and, at least 2000 times-
tamped resource usage records for Alibaba traces.

Implementation
EC Creation. For temporal features, we used
tsfresh (Christ et al. 2016) for feature extraction
and K-Means clustering algorithm (Pedregosa et al. 2011)
with ‘k-means++’ initialization for EC creation. For DTW,
we used K-Medoid algorithm (Kaufmann et al. 1987) with
random medoid initialization. The value of k ranged from 3
to 15 and k corresponding to maximum average silhouette
over 50 different initializations was selected.
EC Prediction. This model has two dense layers with ReLU
activation and output softmax layer. It was trained with
Adam optimizer and a categorical cross-entropy loss.
Policy Network. The policy network is implemented using
Theano. It consists of a single hidden layer of 20 neurons
followed by output neurons equal to the number of actions
(= number of machines in the cluster) and ReLU activa-
tion function for the hidden-layer. For the output layer we
use softmax activation. We use Adam optimizer and a learn-
ing rate (η) of 0.001. We train using REINFORCE algo-
rithm (Sutton et al. 2000) with the number of trajectories
(N ) set to 20 and in an episodic manner (Mnih et al. 2013)
for a total of 2000 iterations, with maximum episode length
(L) 200. In a given episode, a fixed number of jobs arrive
and are scheduled by the agent. The parameters for the state-
space are M = 10, h = 20, d = 2, C1 = C2 = 8. The
weights of the penalty parameters are chosen as Kc = 0.1,
Ku = 3, Ko = 30000, Kw = 50. Training and testing used
a batch size of 20 examples run in parallel on a 32 core Intel
Xeon CPU E5-2686 v4.

Distance Google Traces Alibaba Traces
k f Eff. % gain k f Eff. % gain

Aggregate 5 0.65 6.82 4 0.68 5.13
Temporal 6 0.58 9.83 4 0.54 8.14

DTW 3 0.55 9.3 3 0.25 5.73

Table 1: Different distance methods for Usage Prediction

Equivalence-class (EC) Analysis
For EC analysis, we compare the proposed Temporal Fea-
tures and DTW against an aggregate-features based base-
line inspired by (Zhang et al. 2011). The baseline is defined

as the euclidean distance on the job characteristic vector of
total and avg. CPU, total and avg. memory, job duration and
avg., std. and normalized std. of the memory-CPU ratio. Ta-
ble 1 shows the optimum k that maximizes the Silhouette
score for the distance-metric chosen. Optimum k can be dif-
ferent for other production environment traces.

Further, we evaluate the effect of different distance-
metrics and k on the goodness of EC mapping by training
and evaluating a resource-usage prediction model for each
EC. We compute a measure called effective prediction gain
(EG):

EG =
1

n

∑
e∈EC

max(0, G(e)) ∗ |e|

where n is the total number of jobs, e is an equivalence
class from the set of equivalence classes (ECs) and G(e) is
the percentage gain in the correlation between the predicted
and actual resource usages of a model trained on EC e with
respect to an EC-agnostic model that takes all the examples
into account irrespective of the EC. Table 1 shows the frac-
tion of the data (f ) and the effective prediction gain for both
Google and Alibaba data. We see that distance-metrics in-
corporating time-varying features (Temporal Features and
DTW) perform better than the aggregate features baseline.
Thus, the temporal features based method efficiently cap-
tures the temporal aspects of resource usage making it the
suitable choice for EC mapping for our RL-agent.

End-to-End Evaluation
Methodology. We simulate incoming workload placement
requests to the cluster as a Poisson process. The interarrival-
rate is calibrated to create three average cluster load scenar-
ios: 30%, 50% and 80%. Our evaluation runs with a clus-
ter setting of 10 machines. Each workload has 2 resource
dimensions: CPU and memory. From both Google and Al-
ibaba traces, we select a mix of production workloads with
50% of as long-running (>30 hrs), with approximately equal
number of them being CPU intensive and memory intensive.
For each trace, the training and test set consists of 100 and
30 such distinct job sequences, respectively. The resource
utilization values from the traces were mapped to our state-
space dimensions. The offline training time ranged from ap-
proximately 28-108 hrs depending on the load, state space
dimensions and the number of iterations.
Baselines. We compare TVW-RL with Tetris (Grandl et al.
2014), DeepRM (Mao et al. 2016), and Best-Fit heuris-
tic (Berkey and Wang 1987). Tetris has a setting for con-
trolling fairness in scheduling. Since our solution does not
use a notion of fairness, we turn off the fairness knob which
improves job performance in Tetris. To have a fair compar-
ison, we made the following modifications to DeepRM: (1)
Inputs: As DeepRM does not support temporal variations
in resource usage, we provide the peak resource used by
the job along CPU and memory resource dimensions as the
resource-limit. (2) State Space: As required by DeepRM, we
calculate the capacity of the compute cluster as monolithic
resource capacity by multiplying the capacity of each ma-
chine by the number of machines. (3) Rewards: To help op-
timize for cluster utilization, we added an additional penalty
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(a) Avg. CPU Util. (b) Avg. MEM Util. (c) Avg. CPU Frag. (d) Avg. MEM Frag. (e) Machines Used (f) Avg. Overshoot

Figure 4: Google Cluster Data

(a) Avg. CPU Util. (b) Avg. MEM Util. (c) Avg. CPU Frag. (d) Avg. MEM Frag. (e) Machines Used (f) Avg. Overshoot

Figure 5: Alibaba Data

proportional to the number of total unused resources. We
feed DeepRM’s action (“which job to schedule”) at a partic-
ular timestamp, through a Best-Fit heuristic to identify a ma-
chine for placement. Among the machines that have enough
resources to host the job, the Best-Fit heuristic chooses the
machine having the least units of the dominant resource of
the job available. We also compare against vanilla Best Fit
heuristic that selects the jobs in a FIFO (first-in-first-out)
manner and places in the machine with the least units of the
dominant resource of the job available at the current-time.
We use DeepRM to denote {DeepRM+Best-Fit} combina-
tion and Best-Fit to denote vanilla Best-Fit.
Metrics for Operational Excellence. We use the following
metrics (Garefalakis et al. 2018; Grandl et al. 2014) to cap-
ture improvements in operational excellence of the cluster.
T denotes the length of the observation period until all jobs
have finished running.
[Resource Utilization] Average utilization of the cluster
along each resource type:

Avg Util(d) =
∑T

t=0

∑
mR(m, t, d)

T ×maxtA(t)× Cd

Since the number of machines that are actively used varies
over time (A(t)), maximum # of machines used at any point,
shows up in the denominator as a normalizer. R(m, t, d) de-
notes the resource usage of machine m at time t across di-
mension d. Higher utilization is better.
[Resource Fragmentation] It measures what fraction of all
the unused resources in a cluster are concentrated.

Avg Frag(d) = 1−
T∑

t=0

maxm∈A(t) Um(t, d)

T ×
∑

m∈A(t) Um(t, d)

The lower the fragmentation, higher the ability of the cluster
to schedule unanticipated large jobs, which is desirable.
[Resource Overshoot %] It measures the total amount of
resource shortage in each machine across time t across di-
mension d, denoted as S(m, t, d), over the total resource ca-

pacity of the cluster.

Avg Overshoot % = 100×
T∑

t=0

∑
m

∑
d

S(m, t, d)

T ×m× Cd

[# of Machine Used] Total number of machines where at
least one TVW was placed at some point of time.
Improvements in Operational Excellence. Fig. 4 and 5 il-
lustrate using Google and Alibaba traces respectively, how
TVW-RL can improve the metrics for operational excel-
lence. TVW-RL provides a 30-300% increase in average
CPU and memory utilization compared to DeepRM. The
benefit is more apparent under low-load conditions as shown
in Fig. 4a/5a (and Fig. 4b/5b). We also achieved 68-100%
increase in average utilization compared to Tetris across dif-
ferent cluster-load conditions. This is primarily due to effi-
cient packing that requires significantly less number of ma-
chines than Tetris as shown in Fig. 4e/5e. Further, the gap
between TVW-RL and Tetris in terms of the number of ma-
chines required to accommodate the jobs increases with the
increase in cluster load. Notice, Best-Fit provides higher uti-
lization because it just packs the jobs into the machines with-
out any knowledge of peak or future resource usages. As
a consequence, Best-Fit suffers from huge over-utilization
of the resources as shown in Fig. 4f/5f. On the other hand,
over-utilization due to TVW-RL’s placement decisions are
almost negligible. Tetris and DeepRM already include peak
resource usage information in their placement decisions and
thus avoid over-utilization. We noticed DeepRM’s inability
to schedule all the jobs in the available machines at high
cluster loads because of excessive resource fragmentation
(Fig. 4c/4d and 5c/5d). TVW-RL provides 5-50% reduction
in resource fragmentation compared to DeepRM and 6-13%
reduction compared to Tetris on Google and Alibaba data.
Robustness Against Noisy Environment. There can be
some unknown background process activities (e.g. mainte-
nance process, system noise (Hoefler et al. 2010)) or some
TVWs can be noisy. We evaluate TVW-RL’s robustness
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Metric
Robustness Against Noisy Workloads Variation of Clustering Algorithms

Trained with Noise Not-trained with Noise Different Clustering algorithms
Noise [0-1] [0-2] [0-3] Noise [0-1] [0-2] [0-3] W/o EC Aggregate DTW Temporal

CPU Util 0.144 0.155 0.132 0.146 0.153 0.157 0.328 0.347 0.345 0.345
MEM Util 0.231 0.243 0.206 0.234 0.240 0.245 0.613 0.653 0.649 0.649
CPU Frag 0.679 0.671 0.706 0.684 0.678 0.677 0.795 0.776 0.779 0.777
MEM Frag 0.652 0.645 0.675 0.657 0.652 0.648 0.734 0.708 0.708 0.723

Machines Used 5.975 5.892 7.033 5.933 5.892 5.933 6.38 6.10 6.12 6.17
%age Overshoot 0.133 0.134 �0.055 0.108 0.118 0.132 0.051 0.284 0.24 0.52

Table 2: Robustness against unknown/noisy workloads and Variation of Clustering Algorithms

Different values of Ku

Metric Ku = 0 Ku = 1 Ku = 2 Ku = 3
CPU Util 0.103 0.117 0.130 0.179
MEM Util 0.171 0.195 0.216 0.298
CPU Frag 0.701 0.695 0.689 0.627
MEM Frag 0.646 0.64 0.635 0.581

Machines Used 8.967 7.867 7.1 5.167
%age Overshoot 0.0 0.0 0.0 0.145

Table 3: Effect of Ku

against such noisy environments using Google traces, keep-
ing the cluster under 50% load. First, we compare TVW-
RL’s scheduling capability in the presence of a random
workload (to simulate random background processes) un-
der two situations: (1) TVW-RL is trained in the presence
of another random workload vs. (2) trained without any ran-
dom workload (we call not-trained). The resource values
for the random workload are uniformly chosen between [0-
1], [0-2], [0-3] units. Recall, capacity of each machine is
8 units. Table 2 shows the comparisons of these two situa-
tions. The numbers are averaged over 5 runs (seeds). For [0-
1] and [0-2] units of noise, we observe that both the trained
and the not-trained versions are similar in most metrics, in
fact the not-trained version does slightly better considering
the fact that the % overshoot is less. Our hypothesis is that
inherent noise introduced by the initial EC creation work-
flow made TVW-RL’s learning robust against some degree
of noise. However, as shown in Table 2, not-trained TVW-
RL could not anticipate the larger amount of noise (in case of
[0-3]) while the trained version was able to spread schedul-
ing over more number of machines. Hence, the percentage of
overshoot for the not-trained version is 240% larger than the
trained version. This suggests, TVW-RL needs to be trained
in the presence of some noisy workloads if anticipated back-
ground noise level (defined as: {resource usage by unknown
background processes}/{machine capacity}) in the cluster
is high (in our case over 3×100

8 = 37.5%). Second, we per-
turbed the shape of the TVWs by adding discrete uniformly
distributed noise in the range of [-1,1] to the quantized and
scaled values of the workloads that ranged from 1-6 units
for both CPU and memory. Compared to the setup without
noise, CPU and memory utilization dropped by 2% and 7%
respectively.

Ablation Study
We performed ablation studies with cluster load of 50%. Ex-
tremely low or high loads are unusual in production clusters.
Impact of Distance Metric and EC Creation. We compare
the usefulness of creating ECs with different distance met-
ric on TVW-RL’s end-to-end performance against a baseline
with no EC (w/o EC) mapping in Table 2 (Google traces).
We see that EC creation results in better overall utilization
and less number of machines used compared to w/o EC
because grouping similar workloads helps in reducing the
number of labels aiding RL agent’s policy learning.
Sensitivity with Reward/Penalty Components. We per-
form a sensitivity study of the different penalty components,
by individually varying the coefficients of each penalty, and
observing TVW-RL’s ability to mimic the desired behavior.
We present selected tables in detail and summarize the rest.
Under-Utilization Penalty. Table 3 (Alibaba traces) shows
that TVW-RL can pack workloads more efficiently whenKu

is gradually increased in [0-3]. It schedules job on lesser
number of active machines (thus increasing avg. resource
utilization), while still managing to keep %overshoot low.
Resource Over-Utilization Penalty. We study the effect of
the overshoot penalty on TVW-RL by varying Ko as {0,
15000, 30000, 45000}. We found TVW-RL can bring down
overshoot level to 2.20, 0.20, 0.15, 0.09% respectively. This
is achieved by progressively increasing the # of machines
used from 2 to 6.2, on average. For Ko = 0, i.e. without the
penalty, overall (CPU,memory) utilization metrics are very
high (0.455,0.752) and %overshoot is also high as the sched-
uler packs more aggressively.
Resource Contention Penalty. We variedKc in {0, 0.1, 1.0,
10.0}. CPU and memory utilization decreased from 0.17 to
0.12 and 0.28 to 0.2 respectively, with most significant drop
at Kc = 10. To avoid the resource contention penalty, the
policy network learns to schedule TVWs sparsely, leading
to a higher machine usage and lower overall utilization.

Conclusion
We propose a deep reinforcement learning based approach
for scheduling time-varying workloads in a shared cluster
for optimal alignment of workloads based on their tempo-
ral resource-usage characteristics. Our evaluations with two
real production cluster traces show that our novel state-space
design along with reward formulation help our approach
achieve significant improvement in operational metrics for
shared clusters, compared to the state-of-the-art baselines.
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