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Abstract

One key element behind the progress of machine learning in
recent years has been the ability to train machine learning
models in large-scale distributed shared-memory and message-
passing environments. Most of these models are trained em-
ploying variants of stochastic gradient descent (SGD) based
optimization. In this paper, we introduce a general consistency
condition covering communication-reduced and asynchronous
distributed SGD implementations. Our framework, called elas-
tic consistency, decouples the system-specific aspects of the
implementation from the SGD convergence requirements, giv-
ing a general way to obtain convergence bounds for a wide
variety of distributed SGD methods used in practice. Elas-
tic consistency can be used to re-derive or improve several
previous convergence bounds in message-passing and shared-
memory settings, but also to analyze new models and distri-
bution schemes. In particular, we propose and analyze a new
synchronization-avoiding scheme for distributed SGD, and
show that it can be used to efficiently train deep convolutional
models for image classification.

Introduction
Machine learning models can match or surpass humans on
specialized tasks such as image classification (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2016), speech recogni-
tion (Seide et al. 2014), or complex games (Silver et al. 2016).
One key tool behind this progress is the stochastic gradient
descent (SGD) family of methods (Robbins and Monro 1951),
which are by and large the method of choice for training large-
scale machine learning models. Essentially, SGD can serve
to minimize a d-dimensional function f : Rd → R, assumed
to be differentiable. We commonly assume that we are given
access to (possibly noisy) gradients of this function, denoted
by G̃. Sequential SGD will start at a randomly chosen point
~x0, say 0d, and converge towards a minimum of the function
by iterating the following procedure:

~xt+1 = ~xt − αG̃(~xt) (1)

where ~xt is the current estimate of the optimum, also called
the parameter and α is the learning rate. If the function is
convex, this procedure is known to converge to the mini-
mum of the function (Bubeck et al. 2015), whereas in the
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non-convex case, it will converge towards a point of zero
gradient (Ghadimi and Lan 2013). In supervised learning, f
is usually the total error of a given parameter ~x on a given
dataset D. For each sample s in D, the classification error is
encoded via the loss `(s, ~x). Training minimizes the function
f(~x) = 1

m

∑
s∈D `(s, ~x), where m is the size of the dataset,

and the gradient at a randomly chosen datapoint G̃ is an
unbiased estimator of∇f .

Due to the size of datasets, it is common to distribute the
optimization process across multiple processors. A standard
way of parallelizing SGD is to process a batch of samples in
parallel, dividing the computation of gradient updates among
processors. Assume for simplicity that each processor is al-
lotted one sample, whose corresponding gradient it computes
with respect to the current parameter ~xt. Processors then sum
their stochastic gradients, and update their local parameters
by the resulting sum, leading to the following global iteration:

~xt+1 = ~xt −
α

p

p∑
i=1

G̃i(~xt), (2)

where G̃i is the stochastic gradient obtained at the processor i
at the given step, and p is the batch size, equal to the number
of processors. Since this sum is the same at every processor,
this procedure yields the same, perfectly consistent, parame-
ter at each processor at the end of every parallel iteration. The
average (1/p)

∑p
i=1 G̃

i(~xt) is still a stochastic gradient, but
with lower variance than gradients at single samples, which
can lead to better convergence (Bubeck et al. 2015). Since
samples are now processed in parallel, the number of samples
processed per second should in theory be multiplied by p.

However, in practice, maintaining perfect consistency of
the parameter ~xt can negate the benefits of parallelization.
Keeping the parameters perfectly consistent has a commu-
nication cost: since the size of gradient updates is linear in
the size of the parameter, the resulting communication may
easily become a system bottleneck for models with millions
of parameters (Krizhevsky, Sutskever, and Hinton 2012; Alis-
tarh et al. 2017). Consistency also induces a synchronization
cost, since processors need to synchronize in a barrier-like
fashion upon each iteration update, which can occur every
few milliseconds. For this reason, there have been several pro-
posals for relaxing the consistency requirements of SGD-like
iterations, under various system constraints. These proposals
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can be broadly categorized as follows:
• Asynchronous Methods: Such implementations (Recht

et al. 2011; Lian et al. 2015) allow processors to forgo
the barrier-like synchronization step performed at each
iteration, or even across parameter components, and move
forward with computation without waiting for potentially
slow straggler processors.

• Communication Compression: These methods aim to re-
duce the bandwidth cost of exchanging the gradients. This
usually entails performing (possibly lossy) compression
of the gradients before transmission, followed by efficient
encoding and reduction/summation, and decoding on the
receiver end. This can be either via bit-width reduction
(quantization), e.g. (Seide et al. 2014; Alistarh et al. 2017),
or via structured sparsification of the updates (Lin et al.
2018b; Aji and Heafield 2017; Alistarh et al. 2018; Stich
and Karimireddy 2019).
Additional approaches exist, for instance to reduce the fre-

quency of communication via large-batch methods or local
steps, e.g. (Goyal et al. 2017; Lin et al. 2018a; Stich 2018).
Another axis controls parameter maintenance: centralized
methods such as the parameter server (Li et al. 2014) main-
tain the parameter at a single entity, whereas decentralized
methods (Lian et al. 2017; Lu, Li, and Sa 2020) have each
processor maintain their own version of the model.

The question of providing convergence bounds for dis-
tributed optimization goes back to the foundational work of
Bertsekas and Tsitsiklis (1989), and has recently risen to
prominence (Dean et al. 2012; Ho et al. 2013; Chilimbi et al.
2014; Recht et al. 2011; Ho et al. 2013; Sa et al. 2015; Lian
et al. 2015; Chaturapruek, Duchi, and Ré 2015; Leblond, Pe-
dregosa, and Lacoste-Julien 2017). However, many of these
proofs are often specialized to the algorithm and models, and
do not generalize to different settings. It is therefore natu-
ral to ask: are there generic conditions covering all natural
consistency relaxations for SGD, under which one can prove
convergence?

Contribution. In this paper, we introduce a convergence
criterion for SGD-based optimization called elastic consis-
tency, which is independent of the system model, but can be
specialized to cover various model consistency relaxations.

In a nutshell, elastic consistency says that, for SGD to con-
verge, it is sufficient that the distance between the view of the
parameter perceived by a processor, with respect to which
the gradient is taken, and the “true” view of the system, cor-
responding to all the updates to the parameter generated up
to that point by all processors, be uniformly bounded across
iterations, and decreasing proportionally to the learning rate.
Intuitively, in this case, the perturbed iterates do not stray
“too far” from eachother, and can still globally converge. To
our knowledge, elastic consistency is satisfied in most set-
tings where asynchronous or communication-reduced meth-
ods have been analyzed so far, although proving this property
for some systems is not always immediate.

Elastic consistency provides a unified analysis framework
for all the method types discussed above. Consequently, we
are able to re-prove or improve convergence bounds for sev-

eral methods, and to tackle new models and consistency
relaxations. Our contributions are as follows:

1. Under standard smoothness assumptions on the loss, elas-
tic consistency is sufficient to guarantee convergence rates
for inconsistent SGD iterations for both convex and non-
convex objectives. This condition is also necessary for
SGD convergence: we provide simple worst-case instances
where SGD convergence is linear in the elastic consistency
parameter, showing that the iterations will diverge if elas-
tic consistency is regularly broken.

2. We show that elastic consistency is satisfied by both asyn-
chronous message-passing and shared-memory models,
centralized or decentralized, with or without faults, and
by communication-reduced methods. This implies new
convergence bounds for SGD in the classic asynchronous
and semi-synchronous message-passing models (Attiya
and Welch 2004) and extends previous analyses for the
shared-memory model (Sa et al. 2015; Alistarh, De Sa,
and Konstantinov 2018).

3. This convergence condition inspires a new scheduling
mechanism for parallel SGD, called elastic scheduling,
which controls communication-compression and asyn-
chrony guided by our consistency condition in order to
reduce synchronization overhead, while maintaining ac-
curacy. Its implementation provides non-trivial speedup
upon BytePS (Peng et al. 2019), the state-of-the-art sched-
uler for training deep neural networks, while maintaining
accuracy.

Elastic Consistency
Distributed Model and Adversarial Scheduling. We
consider distributed systems consisting of p processors:
{1, 2, . . . , p}, some of which may be faulty, where commu-
nication happens either by message-passing, or via shared-
memory. For simplicity, we will specify the system and fault
models in the corresponding sections. We assume that the
scheduling of steps (e.g. reads/writes in shared-memory, or
message delivery in message-passing) is controlled by an
oblivious adversarial entity. This means that scheduling deci-
sions may be adversarial, but are independent of the random-
ness in the algorithm, and in particular of the data sampling.
Practically, this implies that the conditioning on any random
event involving previous SGD iterations s < t does not im-
pact choices made at iteration t.

Distributed Optimization. We assume that each of the p
processors is given access to random samples coming from
an unknown d-dimensional data distribution D, and collab-
orates to jointly minimize f : X → R over the distribution
D, where Rd is a compact subset of Rd. In practice, nodes
optimize over a finite set of samples S = {S1, S2, . . . , Sm},
and the function f is defined as

f(~x) =
1

m

m∑
i=1

`(Si, ~x) (3)

where ` is the loss function at a sample s. The goal is to find
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~x∗ ∈ Rd, which minimizes the expected loss over samples,
defined as: ~x∗ = argmin~xf(~x) = argmin~x Es∼D[`(s, ~x)].

Properties of Stochastic Gradients. Let G̃ be a stochastic
gradient. We make the following standard assumptions (Sa
et al. 2015):

1. Unbiasedness. The i.i.d. stochastic gradients are unbi-
ased estimators of the true gradient of the function f :

∀~x ∈ Rd, E
[
G̃(~x)

]
= ∇f(~x). (4)

2. Bounded Variance. The stochastic gradients have
bounded variance:

∀~x ∈ Rd, E
[
‖G̃ (~x)−∇f(~x)‖2

]
≤ σ2. (5)

3. Bounded Second Moment. It is sometimes assumed that
the second moment of the stochastic gradients over the
sample space is bounded:

∀~x ∈ Rd, E
[
‖G̃ (~x) ‖2

]
≤M2. (6)

Elastic consistency does not require the second mo-
ment bound to ensure convergence—the variance bound
is sufficient. However, in e.g. asynchronous shared-
memory (Sa et al. 2015), this stronger assumption is
common, and we will use it to bound the elastic consis-
tency constant.

Properties of the Objective Function. We will make use
of the following standard definitions regarding the objective
function f : ∀ ~x, ~y ∈ Rd,

1. Smoothness. The function f : Rd → R is smooth iff:

‖∇f (~x)−∇f (~y) ‖≤ L‖~x− ~y‖ for L > 0. (7)

2. Strong convexity. Problems such as linear regression
have a strongly convex objective:

(~x− ~y)T (∇f(~x)−∇f(~y)) ≥ c ‖x− y‖2 for c > 0.
(8)

For such functions, the bound over second moment of
stochastic gradients does not hold ∀ ~x ∈ Rd (Nguyen
et al. 2018). Therefore, we restrict f : X → R for a
convex set X ⊂ Rd, such that ∀x ∈ X , (6) is satisfied.
For simplicity, we omit the projection step onto X , in the
case when ~xt does not belong to X for some iteration t.

3. Lower bound for non-strongly-convex functions. In
many settings, such as training of neural networks, the
objective function is not necessarily strongly-convex. In
such “non-strongly-convex” settings, it is necessary to
assume that f is bounded from below:

∃f∗ finite s.t. ∀ ~x ∈ Rd, f(~x) ≥ f∗. (9)

Elastic Consistency Definition
An Abstract Consistency Model. We assume that we
have p processors, which share a parameter oracle O. In
each iteration, each processor i invokes this oracle, and re-
ceives a local view at of the parameter at step t, which we
denote ~vit. The processor then uses this view of the parameter
to generate a new update (stochastic gradient) G̃(~vit), which
it applies to the shared model.

The key question is how to express the consistency of
the local views across processors. For this, we introduce an
auxiliary variable ~xt, which we call the global parameter.
Initially we have that ~x0 = ~v10 = ... = ~vp0 .

We consider two cases, depending on how data-parallel
SGD is implemented. The first is the single steps case, where
the gradient generated locally by each processor is directly
applied to the model. This is done in asynchronous shared-
memory (Sa et al. 2015) or some message-passing implemen-
tations (Lian et al. 2015), and is modelled as:

~xt+1 = ~xt − αG̃(~vit). (10)

The second is the parallel steps case, where processors’
gradients are aggregated before they are applied to the shared
model, for instance via averaging. This is common in syn-
chronous message-passing settings, e.g. (Li et al. 2014). For-
mally, we are given a set It ⊆ {1, 2..., p}, of gradients to be
averaged, such that p/2 ≤ |It|≤ p. Each processor i ∈ It
calculates a stochastic gradient based on its local view at
step t, and the global model is updated by aggregating all the
gradients in It:

~xt+1 = ~xt −
α

p

∑
i∈It

G̃(~vit). (11)

Then, elastic consistency says the following:
Definition 1 (Elastic Consistency). A distributed system pro-
vides elastic consistency for the SGD iteration defined in (10)
or (11), if there exists a constant B > 0, which, for every
time t, bounds the expected norm difference between the true
parameter ~xit , and the view ~vit returned by the oracle at pro-
cessor i at iteration t. Importantly, B should be independent
of the iteration count t, but possibly dependent on the system
definition. Formally,

E
[
‖~xt − ~vit‖2

]
≤ α2B2, (12)

where B > 0, α is the learning rate at iteration t, and the
expectation is taken over the randomness in the algorithm.
We call B the elastic consistency constant.

Discussion. First, please note that, in the above, time t
counts each time step at which a stochastic gradient is gener-
ated at a node, in sequential order. Intuitively, the auxiliary
parameter ~xt is defined as the sum of generated gradients
up to t, multiplied by the corresponding learning rate. In the
analysis, we need to define ~xt precisely for each application;
please see Table 1 for example bouunds, or the full version
of the paper (Nadiradze et al. 2020) for carefully worked-out
examples, for different system models.

Generally, the process for deriving the elastic consistency
bound B for a given system is as follows. We assume a
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fixed, given LR sequence, which ensures convergence w.r.t.
the sequential iteration (1). We then examine the distributed
system specification to bound ‖~xt − ~vt‖2. Crucially, for all
the systems and consistency relaxations we analyze, this
bound separates cleanly into the LR part (α2), and a constant
part (B2) which is independent of time or LR. (Please see
(Nadiradze et al. 2020) for a step-by-step example.) This
holds for all t. Finally, the learning rate sequence used by
the algorithm may need to be adjusted (e.g. normalized) to
satisfy certain convergence constraints.

Later, we show that virtually all known models and consis-
tency relaxations satisfy this condition (see Table 1). Elastic
consistency gives wide latitude to the parameter oracle about
which exact values to return to the processor: the returned
view can contain random or even adversarial noise, or up-
dates may be delayed or missing, as long as their relative
weight is bounded and independent of time.

Elastic Consistency and SGD Convergence
We now show that this notion of consistency implies non-
trivial convergence guarantees for SGD for different types
of objective functions, and that this notion is in some sense
necessary for convergence. The complete proofs are available
in the full version of the paper (Nadiradze et al. 2020).

Elastic Consistency is Sufficient for Convergence
The Non-Convex Case. We begin with the more general
case where the objective function is not necessarily convex.
In this case, since convergence to a global minimum is not
guaranteed for SGD, we will only require convergence to a
point of vanishing gradients, as is standard, e.g. (Wangni et al.
2018). Specifically, assuming elastic consistency, we prove
the following theorems:

Theorem 2. Consider SGD iterations defined in (10) and
satisfying elastic consistency bound (12). For a smooth non-
convex objective function f , whose minimum x∗ we are trying
to find and the constant learning rate α = 1√

T
, where T ≥

36L2 is the number of iterations:

min
t∈[T−1]

E‖∇f(~xt)‖2≤
4(f(~x0)− f(x∗))√

T
+

2B2L2

T
+

6Lσ2

√
T

+
6L3B2

T
√
T
.

Assuming that L,B, σ and f(~x0) − f(x∗) are constant,
we get a convergence rate of O(1/

√
T ). This result can be

specialized to parallel iterations (11), yielding the theorem
which ensures

√
p parallel speedup in the number of nodes p

(Please see (Nadiradze et al. 2020)).

The Strongly Convex Case. We can provide improved
guarantees under strong convexity: If the total number of
SGD iterations is T , then for iterations defined in (10),
E‖~xT − x∗‖2≤ Õ(1/T ) and for iterations defined in (11),
E‖~xT − x∗‖2≤ Õ(1/pT ). Here, Õ notation hides factors
which are polynomial in log T and log p, and all parameters
except T and p are treated as constants. We refer the reader
to (Nadiradze et al. 2020) for the details and proofs.

Discussion. The parameter B abstracts the distributed-
system specific parameters to provide a clean derivation of
the convergence theory. In turn, depending on the system
setting, B might depend on the second-moment bound M2

or variance bound σ2, but also on system parameters such as
the maximum delay τ , on the number of failures f , or on the
characteristics of the compression scheme.

Later, we exhibit natural distribution schemes for which
the bound on B does not require a second-moment bound on
gradients.

Elastic Consistency is Necessary for Convergence
We can also show that elastic consistency can be directly
linked to convergence; in particular, in the worst case, an
adversarial parameter oracle can slow down convergence
linearly in B. The intuition is that once the algorithm is close
to the minimum, an adversarial oracle can force it to evaluate
gradient at point which is distance B away and this will
cause the algorithm to overshoot the minimum The argument
is similar to that of (Alistarh, De Sa, and Konstantinov 2018).
Lemma 3 (Convergence Lower Bound). There exists a con-
vex (quadratic) function f and an adversarial oracle O s.t.
the algorithm with elastic consistency bound converges B
times slower than the exact algorithm (B=0).

Distributed System Models and their Elastic
Consistency Bounds

Fault-Tolerant Message-Passing Systems
We consider a message-passing (MP) system of p nodes
P = {1, 2, . . . , p} executing SGD iterations, which are con-
nected to each other by point-to-point links. To simplify the
description, we will focus on the case where the system is
decentralized: in this case, each node i acts both as a worker
(generating gradients) and as a parameter server (PS) (main-
taining a local parameter copy). (The only difference is that,
in the centralized PS case, a single designated node would
maintain a global parameter copy.) Without loss of generality,
all nodes start with the same parameter ~vi0 = ~0. The system
proceeds in global iterations, indexed by t. In each iteration,
workers generate a stochastic gradient based on its current
model copy ~vit, and broadcasts it to all other nodes.

Consistency Relaxations: Consider node i, and recall that
it acts as a parameter server, in addition to being a worker it-
self. Let Lit ⊆ {1, . . . , p} denote the set of nodes from which
i receives stochastic gradients at iteration t. By convention,
i ∈ Lit. In the synchronous failure-free case, all nodes would
receive exactly the same set of messages, and the execution
would be equivalent to a sequential batch-SGD execution.
In a real system, not all nodes may have the same view of
each round, due to failures or asynchrony. Specifically, we
consider the following distinct consistency relaxations:

(a) Crash faults. A node i ∈ P may crash during com-
putation or while sending messages. In this case, the
node will remain inactive for the rest of the execution.
Importantly, node i’s crash during broadcasting may
cause other nodes to have different views at the iteration,
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as some of them may receive i’s message while others
may not, resulting in inconsistent updates of parameter
~x across the nodes. We will assume that f ≤ p/2 nodes
may crash in the message-passing system.

(b) Message-omission failures. In practical systems, each
node could implement iteration t by waiting until an
interval Υt

max in terms of clock time has elapsed: if
the message from peer j is not received in time, node
i moves on, updating its local parameter ~xit only w.r.t.
received messages. However, node i will include j’s
message into its view if received in a later iteration, al-
though some messages may be permanently delayed. We
assume a parameter f which upper bounds the number
of messages omitted at any point during the execution.
We note that this model is stronger than the Crash-fault
model considered above, as we can simulate a node’s
failure by discarding all its messages after the crash.

(c) Asynchrony. The two above models assume that nodes
proceed synchronously, in lock-step, although they may
have inconsistent views due to node or message failures.
An alternative relaxation (Lian et al. 2015) is if nodes
proceed asynchronously, i.e. may be in different itera-
tions at the same point in time. Specifically, in this case,
we assume that there exists a maximum delay τmax such
that each message/gradient can be delayed by at most
τmax iterations from the iteration when it was generated.

(d) Communication-Compression. Another way of reduc-
ing the distribution cost of SGD has been to compress
the stochastic gradients communicated at each round. In
this context, sparsification with memory (Strom 2015;
Seide et al. 2014; Aji and Heafield 2017; Alistarh et al.
2018; Karimireddy et al. 2019) has proven to be par-
ticularly effective. This process can be modelled as fol-
lows. We assume that each node maintains a local ver-
sion of the parameter ~vit, and an error/memory vector
~εit, initially ~0. In each iteration, each node computes
a new gradient G̃

(
~vit
)

based on its local parameter. It
then adds the current error vector ~εit to the gradient,
to obtain its full proposed update ~∇it. However, be-
fore transmitting this update, it compresses it by us-
ing a (lossy) compression function Q. The compressed
update Q(~∇it) is then transmitted, and the error vec-
tor is updated to ~εit+1 ← ~∇it − Q(~∇it). Our analy-
sis will only require that Q satisfies ‖Q(~∇) − ~∇‖2≤
γ‖~∇‖2, ∀~∇ ∈ Rd, for some 1 > γ ≥ 0. All memory-
based techniques satisfy this, for various definitions ofQ
and γ. (We provide examples in the additional material.)

We note that the above discussion considered these meth-
ods independently. However, we do note that our method does
allow for these relaxations to be combined—for instance, one
can analyze an asynchronous, fault-tolerant method with
communication compression.

Asynchronous Shared-Memory Systems
We consider a system with p processors (or threads) P =
{1, 2, . . . , p}, which can communicate through shared mem-

ory. Specifically, we assume that the parameter vector ~w ∈
Rd is shared by the processors, and is split into d components,
one per dimension. Processors can atomically read a com-
ponent via a read operation, and update it via the atomic
fetch&add (faa) operation, which reads the current value
of the component and updates it in place, in a single atomic
step. In each iteration t, each processor first obtains a local
view ~vit of the parameter by scanning through the shared
parameter ~w component-wise. It then generates a stochastic
gradient G̃

(
~vit
)

based on this view, and proceeds to update ~x
via faa on each component, in order. (We refer the reader
to (Nadiradze et al. 2020) for a full description, including
pseudocode.)

Consistency Relaxation. Ideally, threads would proceed
in lock step, first obtaining perfect, identical snapshots of ~w,
calculating gradients in terms of this identical parameter, and
then summing the gradients before proceeding to the next
iteration. However, in practice, threads are asynchronous, and
proceed at arbitrary speeds. This causes their snapshots to
be inconsistent, as they might contain some partial concur-
rent updates, but not others. The challenge is to prove SGD
convergence in this case. It is common (Recht et al. 2011; Sa
et al. 2015) to assume a bound τmax on the maximum delay
between the time (iteration) when an individual update was
generated, and the iteration when it has been applied, and
becomes visible to all processors. In this case, the auxiliary
variable ~xt used by elastic consistency will correspond to the
sum of first t stochastic gradients, ordered by the time when
the atomic faa over the first index of ~w was performed.

Elastic Consistency Bounds for Specific Systems
Given these definitions, we can now state the elastic consis-
tency bounds for the different types of distributed systems
and consistency relaxations. Please see Table 1, and (Nadi-
radze et al. 2020) for the detailed derivations.

Implications. Plugging the asynchronous shared-memory
bound into Theorem 2 (and its version with multiple steps)
implies convergence bounds in the smooth non-convex
case, extending (Sa et al. 2015; Alistarh, De Sa, and Kon-
stantinov 2018), which focus on the convex case, whereas
the asynchronous message-passing bound implies similar
bounds to the best known in the non-convex case for this
model (Lian et al. 2015). For synchronous message-passing
with communication-compression, our framework implies
the first general bounds for the parallel, multi-node case:
references (Stich, Cordonnier, and Jaggi 2018; Karimireddy
et al. 2019) derive tight rates for such methods, but in the
sequential case, where there is a single node which applies
the compressed gradient onto its model, whereas (Alistarh
et al. 2018) considers the multi-node case, but requires an
additional analytic assumption. Please see Section for addi-
tional discussion on related work. In the crash-prone case,
elastic consistency implies new convergence bounds for crash
or message-omission faults. Note that, although the elastic
bound is the same for both f crash and message-omissions
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System Consistency Relaxation Bound B Novelty

Shared-Memory τmax-Bounded Asynchrony
√
dτmaxM Extends (Sa et al. 2015; Alistarh,

De Sa, and Konstantinov 2018)

Message-Passing τmax-Bounded Asynchrony
(p−1)τmaxM

p
Reproves (Lian et al. 2015)

Message-Passing τmax-Bounded Asynchrony O( (p−1)τmaxσ
p

) New

Message-Passing Distributed Communication-Compression
with Error Feedback

√
(2−γ)γ
(1−γ)3M Improves (Alistarh et al. 2018;

Stich, Cordonnier, and Jaggi
2018; Karimireddy et al. 2019)

Message-Passing Synchronous, f Crash or Message-drop Faults Mf/p New
Message-Passing Synchronous, f Crash or Message-drop Faults O(σf/p) New
Message-Passing Variance bounded Elastic Scheduler O(σ) New

Table 1: Summary of elastic consistency bounds.

(Mf/p), the derivations are slightly different. The frame-
work also allows us to combine consistency relaxations, i.e.
consider communication-compression with crashes.

One relative weakness of the above results is that the
bounds depend on the gradient second-moment bound. This
is not due to elastic consistency itself, but due to the fact that
we needed a bound on M to bound the elastic consistency
constant for these systems, which is consistent with previous
work, e.g. (Sa et al. 2015; Alistarh, De Sa, and Konstantinov
2018; Lian et al. 2015). Next, we show that this limitation,
which is common in the literature, can be removed by slightly
altering the algorithms.

Practical Application: Elastic Scheduling
So far, we have used elastic consistency to derive bounds
for existing models and methods. Next, we ask whether it
can inspire new distribution schemes. Our target application
will be communication scheduling in the context of training
deep neural networks (DNNs). More precisely, when per-
forming distributed training of DNNs via back-propagation,
it is common to schedule parts of the communication in
parallel with the computation. For instance, assuming we
train a three-layer network A → B → C, the gradient
of the last layer C will be “ready” to sync before layers
A,B, and can be transmitted earlier. Several recent papers,
e.g. (Jayarajan et al. 2019; Peng et al. 2019) investigate in-
tricate scheduling mechanisms for leveraging this type of
communication-computation overlap. A common feature of
these schedulers (Jayarajan et al. 2019; Peng et al. 2019) is
ensuring perfect consistency at each processor: communica-
tion can be reordered w.r.t. computation only if it doing so
does not deviate from the sequential execution.

Our analysis suggests that consistency can be relaxed as
long as the consistency bound is small. Specifically, we will
allow processes to start their next forward pass before all
layers are synchronized, as long as enough gradient norm has
been received to ensure a small elastic consistency constant.

The Elastic Scheduler. We will present two relaxed sched-
ulers, a norm-bounded and a variance-bounded one. Given

0 ≤ β ≤ 1, the β−norm-bounded algorithm at a fixed proces-
sor i is as follows. Assume that the processor is at iteration
t, and has completed its backward pass over the network,
obtaining a local gradient G̃(~vit) (computed over the local
view ~vti ). Normally, the processor would need to wait for all
parameters to be synchronized, i.e. to receive all the other
processors’ gradients. However, the elastic scheduling rule
will allow the processor to start its next forward pass before
this point, on the inconsistent view, as long as the norm of
the received update is at least a β-fraction of its own gradient
at the step. In this case, the processor speculatively goes for-
ward with its forward-backward step. For both versions, the
processor cannot speculate ahead by more than 1 step. In this
case, we can easily show that the elastic consistency constant
B is upper bounded by O(M), since a processor cannot miss
more than one gradient.

The variance-bounded version is slightly cleverer: if a pro-
cessor finishes its forward-backward pass “early” and does
not receive all the other processors’ gradients within a small
timeout, it will proceed to replace the missing gradients with
its own, and speculatively performs the forward-backward
pass based on this inconsistent view. Critically, the proces-
sor will “correct” the gradient step retroactively, once it has
received the full gradient in the next step. The consistency
bound in this case becomes 3σ. The proof of this statement
is provided in (Nadiradze et al. 2020).

More generally, variance-bounded scheduler also inspires
a way of improving the elastic consistency bounds for crash
and message-drop faults and asynchrony with delay τmax :
instead of proceeding without the dropped messages, each
node can replace the corresponding missing gradient with its
own. This will allow us to replace the second moment bound
M with variance bound O(σ).

Implementation. We implement the elastic scheduler on
top of the Horovod distributed training framework (Sergeev
and Del Balso 2018), which allows us to interface with
both Pytorch (Ketkar 2017) and Tensorflow (Abadi et al.
2016). Our implementation is decentralized—as opposed to
BytePS (Peng et al. 2019), which has a Parameter Server
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Figure 1: Elastic bound-v-accuracy (left) and accuracy-v-time (center) for WRN28x8 on CIFAR-100.

architecture—but the performance of our baseline implemen-
tation is identical to the original BytePS. We conduct our
experiments in Pytorch, testing convergence and speedup for
residual networks (He et al. 2016) applied to image classifi-
cation tasks on the CIFAR-10/100 datasets (Krizhevsky and
Hinton 2009). Hyperparameter values are standard, and are
given in the full version (Nadiradze et al. 2020). Experiments
are performed on two AWS EC2 P3.2xlarge instances, each
with a V100 GPU, and averaged over 3 trials.

Experiments. We first examine the impact of the elastic
consistency bound on accuracy. For this, we execute the
norm-bounded variant with different values of β ∈ [0, 1], and
examine the top validation accuracy. Figure 1 (left) shows the
strong correlation between these two measures for WideRes-
Net28x8 (Zagoruyko and Komodakis 2016) on CIFAR-100,
confirming our analysis. Next, we examine the potential for
speedup of the elastic scheduler. As frequent re-computation
of the L2 norm is expensive, we implement a relaxed variant
which tracks the ratio of parameters received (L0 norm). The
results for β = 0.8 are given in Figure 1 (right), showing
a ∼ 20% speedup versus the (highly performant) baseline
implementation of BytePS, without accuracy loss. The full
version of the paper (Nadiradze et al. 2020) contains addi-
tional experiments and a full report.

Related Work and Discussion
Distributed machine learning has recently gained significant
practical adoption, e.g. (Dean et al. 2012; Ho et al. 2013;
Chilimbi et al. 2014; Zhang, Choromanska, and LeCun 2015;
Xing et al. 2015; Jayarajan et al. 2019; Peng et al. 2019). Con-
sequently, there has been significant work on introducing and
analyzing distributed relaxations of SGD (Recht et al. 2011;
Ho et al. 2013; Sa et al. 2015; Lian et al. 2015; Chaturapruek,
Duchi, and Ré 2015; Leblond, Pedregosa, and Lacoste-Julien
2017; Alistarh, De Sa, and Konstantinov 2018; Wang and
Joshi 2018; Woodworth et al. 2018; Karimireddy et al. 2019;
Stich and Karimireddy 2019; Lu, Nash, and De Sa 2020).
Due to space constraints, we cover in detail only work that is
technically close to ours.

Specifically, De Sa et al. (2015) were the first to con-
sider a unified analysis framework for asynchonous and

communication-compressed iterations. Relative to it, our
framework improves in three respects: (i) it does not re-
quire stringent gradient sparsity assumptions; (ii) it is also
able to analyze the case where the updates are not unbi-
ased estimators of the gradient, which allows extensions to
error-feedback communication-reduction; and (3) it also tack-
les convergence for general non-convex objectives. Refer-
ence (Lian et al. 2015) presented the first general analysis
of asynchronous non-convex SGD , without communication-
reduction. Qiao et al. (2019) model asynchrony and com-
munication reduction as perturbations of the SGD iteration,
and introduce a metric called “rework cost,” which can be
subsumed into the elastic consistency bound.

Karimireddy et al. (2019) analyze communication-
compression with error feedback, and present a general
notion of δ-compressor to model communication-reduced
consistency relaxations; later, the framework was extended
to include asynchronous iterations (Stich and Karimireddy
2019). Every method satisfying the δ-compressor property is
elastically-consistent, although the converse is not true. Rela-
tive to this work, our framework generalizes in one important
practical aspect, as it allows the analysis in distributed set-
tings: (Karimireddy et al. 2019; Stich and Karimireddy 2019)
assume that the iterations are performed at a single processor,
which may compress gradients or view inconsistent infor-
mation only with respect to its own earlier iterations. This
extension is non-trivial; tackling this more realistic setting
previously required additional analytic assumptions (Alistarh
et al. 2018). Sparsified methods would not be competitive
with our elastic scheduler, since they only impose sparsity to
reduce communication, which would not necessarily improve
scheduling.

We have proposed a new and fairly general framework
for analyzing inconsistent SGD iterations. Its main advan-
tages are generality and simplicity. Inspired by this technical
condition, we introduce two new, efficient scheduling mech-
anisms. More generally, we believe that elastic consistency
could inspire new distributed algorithms, and be used to de-
rive convergence in a streamlined manner. One key line of
extension which we plan to pursue is to study whether elastic
consistency can be extended to other first-order distributed
optimization methods, or zeroth- or second-order methods.
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