
Objective-Based Hierarchical Clustering of Deep Embedding Vectors

Stanislav Naumov1, Grigory Yaroslavtsev2, Dmitrii Avdiukhin2

1ITMO University
2Indiana University*

josdas@mail.ru, grigory.yaroslavtsev@gmail.com, davdyukh@iu.edu

Abstract

We initiate a comprehensive experimental study of objective-
based hierarchical clustering methods on massive datasets con-
sisting of deep embedding vectors from computer vision and
NLP applications. This includes a large variety of image em-
bedding (ImageNet, ImageNetV2, NaBirds), word embedding
(Twitter, Wikipedia), and sentence embedding (SST-2) vectors
from several popular recent models (e.g. ResNet, ResNext,
Inception V3, SBERT). Our study includes datasets with up to
4.5 million entries with embedding dimensions up to 2048.
In order to address the challenge of scaling up hierarchical
clustering to such large datasets we propose a new practical
hierarchical clustering algorithm B++&C. It gives a 5%/20%
improvement on average for the popular Moseley-Wang (MW)
/ Cohen-Addad et al. (CKMM) objectives (normalized) com-
pared to a wide range of classic methods and recent heuristics.
We also introduce a theoretical algorithm B2SAT&C which
achieves a 0.74-approximation for the CKMM objective in
polynomial time. This is the first substantial improvement over
the trivial 2/3-approximation achieved by a random binary
tree. Prior to this work, the best poly-time approximation of
≈ 2/3 + 0.0004 was due to Charikar et al. (SODA’19).

1 Introduction
Vector embeddings, in particular those obtained via deep
neural nets, are an extremely popular technique for repre-
senting unstructured data (e.g. images, text, videos, etc.) as
vectors in a d-dimensional feature space. While resulting
vectors are most frequently used for classification they can
also serve as representations for other downstream machine
learning tasks, including clustering, deduplication, recom-
mendation systems, etc. Flat clustering of vector embeddings
has been studied extensively (e.g. (Min et al. 2018; Guérin
et al. 2017)). In this paper we focus on hierarchical clus-
tering, which has a large number of applications, including
anomaly detection (Deb and Dey 2017; Parwez, Rawat, and
Garuba 2017; Fu, Hu, and Tan 2005), personalized recom-
mendations (Zhang et al. 2014) and construction of flat clus-
terings (Sander et al. 2003). There are classical and recent
approaches which allow one to learn a hierarchy on objects in
either supervised (Wu, Tygert, and LeCun 2019; Nickel and

*Supported by NSF CCF-1657477 and Facebook Faculty Award.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Kiela 2017) or unsupervised fashion (Yang, Parikh, and Ba-
tra 2016; Shin, Song, and Moon 2019; Mathieu et al. 2019).
However, such approaches are substantially more expensive
than hierarchical clustering of embedding vectors. Hence hi-
erarchical clustering of deep vector embeddings has emerged
as a computationally efficient alternative (e.g. for applications
to face recognition (Lin, Chen, and Chellappa 2017)).

In this paper we focus on scalable algorithms for objective-
based hierarchical clustering, i.e. clustering which optimizes
a certain well-defined objective function. Designing an objec-
tive function for hierarchical clustering which can be approxi-
mated efficiently is challenging, and only recently substantial
progress has been made following the work by Dasgupta
(2015). In this paper we focus on two popular objectives in-
spired by it: a similarity-based objective introduced in Mose-
ley and Wang (2017) (MW) and a distance-based objective
introduced in Cohen-addad et al. (2019) (CKMM).

Intuitively, these objectives measure the quality of the
resulting hierarchical clustering on a random triple of ob-
jects from the dataset. They incentivize solutions where the
more similar pair in the triple is closer in the resulting hierar-
chy (see Sec 1.1 for formal definitions). Worst-case approxi-
mation algorithms for these objectives are known (Moseley
and Wang 2017; Charikar, Chatziafratis, and Niazadeh 2019;
Chatziafratis et al. 2020; Cohen-addad et al. 2019; Alon, Azar,
and Vainstein 2020). Beyond worst-case analysis has been
given for the hierarchical stochastic block model (Cohen-
Addad, Kanade, and Mallmann-Trenn 2017) and for vector
data (Charikar et al. 2019).

We study performance of objective-based hierarchical
clustering methods on large beyond worst-case datasets
consisting of deep vector embeddings. We perform exper-
iments on massive datasets (number of objects n is in range
[5 · 104, 4.5 · 106] and embedding dimension d is in range
[100, 2048]) of word, sentence, and image embedding vectors
from the last hidden layer of various popular neural archi-
tectures. We study three types of algorithms: 1) algorithms
with rigorous guarantees for the MW/CKMM objectives, 2)
classic hierarchical agglomerative methods, 3) some other
popular algorithms without guarantees scalable to large data.

While the best worst-case approximations for MW and
CKMM objectives are 0.585 (Alon, Azar, and Vainstein
2020) and ≈ 2/3 + 0.0004 (Charikar, Chatziafratis, and Ni-
azadeh 2019) respectively, we show that in practice, for deep

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9055

vector embeddings in computer vision and natural language
processing, many algorithms achieve a much better approx-
imation. We conduct our experiments for cosine similarity
(for MW) and squared Euclidean distance (for CKMM) due
to their widespread use as similarity/distance measures in
deep learning applications, but we believe that our findings
are likely to hold for various other measures as well.

Given the popularity of various heuristics for hierarchical
clustering, we don’t aim to provide a full list of all possible
approaches and objectives (see classic and recent surveys
for an overview (Murtagh and Contreras 2012, 2017; Jain,
Murty, and Flynn 1999; Manning, Raghavan, and Schütze
2008)). A non-exhaustive list of other methods and objec-
tives, which we omit in this study due to lack of rigorous
guarantees for MW/CKMM or scalability issues, includes
various spectral methods (Wu et al. 2018; Huang et al. 2019),
LSH-based average-linkage (Cochez and Mou 2015a; Ab-
boud, Cohen-Addad, and Houdrougé 2019), various k-means
algorithms (Zhong 2005; Wang, Gittens, and Mahoney 2019;
Chen, Zhou, and Ma 2020) and a recent objective for bisect-
ing k-means (Wang and Moseley 2020).

1.1 Preliminaries
Distances and similarities. In machine learning appli-
cations, some of the most popular similarity and dissim-
ilarity measures for feature vectors are cosine similarity
cos-sim(x,y) = 〈x,y〉

2‖x‖2‖y‖2 + 1
2 (e.g. for deep represen-

tation learning (Reimers and Gurevych 2019)) and squared
Euclidean distance L2

2(x,y) = ‖x − y‖22 (e.g. used in k-
means). Another frequently used class of similarity functions
is radial basis functions RBFγ(x,y) = e−γ‖x−y‖

2
2 . These

measures are examples of asymmetric kernel functions, i.e.
there exist kernel-defining functions φ and ψ which allow to
compute these measures either exactly (cos-sim, L2

2) or ap-
proximately (RBFγ) as dot products 〈φ(x), ψ(y)〉 in some
inner product spaces (Rahimi and Recht 2007). Such repre-
sentation allows us to use an important optimization which
we call an inverse kernel trick (see Section 2).

Hierarchical clustering. Given a set of n objects, the goal
of hierarchical clustering (HC) is to find a tree T (also re-
ferred to as a dendrogram) which contains them as leaves.
The internal nodes of T then correspond to clusters of objects
at various levels of granularity. We hence refer to the internal
nodes of T as clusters, while also treating them as sets of
all objects in their subtrees. For a pair of leaves (e1, e2) let
LCAT (e1, e2) be the cluster C ∈ T of the smallest cardinal-
ity such that e1, e2 ∈ C.

Objectives for HC. Measuring the quality of a HC is more
challenging than evaluating the performance of basic flat
clustering and label prediction tasks. Two major obstacles
which have inhibited progress on optimization algorithms for
HC are: 1) difficulty of collecting accurate ground truth tree
information (instead, triples (Chatziafratis, Niazadeh, and
Charikar 2018), quadruples (Ghoshdastidar, Perrot, and von
Luxburg 2019) and flat classes (Kobren et al. 2017) are often

used) and 2) diversity of methods using which such ground
truth can be compared with the algorithm’s output T : tree edit
distance (Cochez and Mou 2015b; Bille 2005), flat clustering
score (Abboud, Cohen-Addad, and Houdrougé 2019; Bateni
et al. 2017; Kobren et al. 2017). In a typical scenario when a
ground truth partition {Ci }Ki=1 into flat clusters is known, a
popular quality measure is dendrogram purity (DP) (Heller
and Ghahramani 2005), defined as maximizing:

DP(T) =
1∑K

i=1 |Ci|2

K∑
i=1

∑
e1,e2∈Ci

|Ci ∩ LCAT (e1, e2)|
|LCAT (e1, e2)|

(1)

However, DP says little about the quality of T overall – per-
fect DP can be achieved when each ground truth cluster
corresponds to a subtree, regardless of hierarchy on top or
inside of the subtrees.

Addressing the above challenges, a recent line of work by
Dasgupta (2015); Moseley and Wang (2017); Cohen-addad
et al. (2019) has proposed a family of related optimization
objectives for HC. Instead of relying on ground truth in-
formation, these methods only use either distances (dij) or
similarities (wij) between the data points.
Definition 1.1 Let w : V × V → R≥0 be a similarity func-
tion. Then Dasgupta’s objective minimizes

QD(T) :=
∑
i<j

wij |LCAT (ei, ej)| → min (2)

A complementary Moseley-Wang’s (MW) objective maximizes

QM (T) :=
∑
i<j

wij(n− |LCAT (ei, ej)|)→ max (3)

Definition 1.2 Let d : V ×V → R≥0 be a distance function.
Then Cohen-Addad et al. (CKMM) objective maximizes

QC(T) :=
∑
i<j

dij |LCAT (ei, ej)| → max (4)

over binary trees.
Note that QD(T) +QM (T) =

∑
i<j wijn = const, and

hence minimizing QD is equivalent to minimizing QM . QD
and QC have similar expressions; however, since one uses
similarities and another one uses distance, QD is minimized,
while QC is maximized. In the worst-case, optimizing these
three objectives exactly is NP-hard (Dasgupta 2015; Cohen-
addad et al. 2019)

Approximations and normalized objectives for HC.
One of our goals is to measure approximations achieved
by various algorithms. Since computing the optimum is NP-
hard, we use an upper bound Qub ≥ OPT on it instead.
Approximation factor is then defined as α(T) = Q(T)/Qub.

One of the effects of considering similarity/dissimilarity
graphs induced by high-dimensional vector representations
is the concentration of measure. The distributions of weights
have small standard deviations and large means1. This is why

1E.g. for embeddings of ImageNetV2 using ResNet34 mean
cosine similarity cos-sim between vectors in the same class is
≈ 0.88 and between different classes is ≈ 0.75.

9056

the approach which returns a random binary tree (denoted
as RANDOM) gives a good approximation for the objectives
above. To highlight the differences in quality between dif-
ferent algorithms, we propose normalized versions of the
objectives which measures advantage over RANDOM.
Definition 1.3 Let TR be a random binary tree clustering
and Q be a maximization objective. Then we define normal-
ized approximation factors for Q as

α∗(T) =
Q(T)− E[Q(TR)]

Qub − E[Q(TR)]
(5)

With a slight abuse of notation, for a triple (i, j, k) let (̂i, ĵ, k̂)

be a permutation of indices such that î and ĵ have the small-
est cardinality LCAT in the triple. Charikar, Chatziafratis,
and Niazadeh (2019, Section 4.3) show that QM (T) =∑
i<j<k wîĵ and hence for the MW objective we can use

a standard upper bound

QubM =
∑
i<j<k

max(wij , wik, wjk)

For Dasgupta’s objective, Wang and Wang (2018, Claim
1) show that QD(T) =

∑
i<j<k(wîk̂ + wĵk̂) + 2

∑
i<j wij .

Since the expressions for QD and QC are similar, we have

QubC =
∑
i<j<k

max(dij+dik, dik+djk, dij+djk)+2
∑
i<j

dij

1.2 Our Contributions
The main contributions of our paper are the following:

Experimental study of objective-based HC. We provide
the first comprehensive experimental study of objective-based
hierarchical clustering methods on massive datasets consist-
ing of deep embedding vectors. For such vectors, we compare
various HC clustering approaches, including classical hier-
archical agglomerative clustering, top-down approaches and
various other recent HC algorithms.

New normalized objectives. Due to the special structure
of vector embedding data2, even the simplest approaches
produce solutions with very high MW and CKMM scores
(even a trivial random tree achieves 85-97% approximation).
To address this issue, in Section 1.1 we introduce normal-
ized MW/CKMM objectives which are better suited for deep
vector embedding data. They capture the advantage over a
trivial random tree and allow to better separate performance
of different algorithms.

New algorithm B++&C. In Section 2, we propose an
algorithm B++&C inspired by Chatziafratis et al. (2020).
The main idea is to consider a graph whose vertices are ob-
jects and edges are similarities (dissimilarities). We perform
a top-level split by partitioning this graph, so that the cut
between the resulting parts is minimized (maximized). Our
approach differs from Chatziafratis et al. (2020) in that we
perform multiple levels of partitioning while also allowing
imbalance at each level. We show that on deep vector embed-
dings this algorithm outperforms a wide range of alternatives
(see Figure 1, Tables 1 and 2).

2Similarities/distances between vectors from the same classes
and from different classes in such data can be very close.

0

0.1

0.2

0.3

α
∗ C

ImageNet

0

0.2

0.4

0.6

Word2vec

B++&C B2SAT&C BKMEANS

GRINCH RANDOM CUT

Figure 1: Normalized distance-based CKMM objectives α∗C
under squared Euclidean distance for embeddings of Ima-
geNet using ResNet34 and word embeddings of Wikipedia
using Word2vec. B++&C outperforms other approaches by
7% for ImageNet and by 35% for Word2vec.

Scaling up B++&C. One of the main advantages of
B++&C is its efficiency. The algorithm is a gradient descent
approach inspired by Avdiukhin, Pupyrev, and Yaroslavtsev
(2019) applied to a quadratic function.Using a technique
which we refer to as inverse kernel trick (see Section 2), for
several widely used similarities and distance measures, we
can represent A as a product of low-rank matrices, which
allows us to compute the gradient efficiently.

B2SAT&C and improved approximation for CKMM.
In Section 3, we introduce a theoretical hierarchical clustering
algorithm B2SAT&C which achieves a 0.74-approximation
for the CKMM objective in polynomial time, significantly
improving existing ≈ 2/3 + 0.0004 approximation (Charikar,
Chatziafratis, and Niazadeh 2019). The main idea is to reduce
the problem of performing a top-level split to the BALANCED
MAX-2-SAT problem.

2 BISECT++ AND CONQUER
Our algorithm BISECT++ AND CONQUER (Algorithm 2)
is an extension of the BISECT AND CONQUER technique
from Chatziafratis et al. (2020) with several crucial modifica-
tions which allow one to achieve high practical performance
and solution quality. If the set of items V is small (less than
a specified parameter θ, typically θ ∈ [100, 5000]), we solve
HC using average-linkage. Otherwise, we reduce our prob-
lem to graph partitioning: we introduce a complete graph
where vertices are objects and edge weights are similarities
(distances) between them, and our goal is to partition the
vertices into two sets of a fixed size so that the total weight
of edges between the parts is minimized (maximized for
distance-based objectives).

Let x ∈ {−1, 1 }n be a vector such that xi = 1 if element
i belongs to the first part and xi = −1 otherwise. The graph
partitioning problem can be reduced to optimizing a quadratic
function f(x) = x>Wx, where W is the similarity matrix,
under constraints xi ∈ {−1, 1 } (each vertex belongs to
some part) and

∑
i xi ≈ 2δn (balance constraint). Note that

in f(x), Wuv is taken with a positive sign if u and v are in

9057

Algorithm 1: GRADIENTDESCENTPARTITIONING:
δ-imbalanced Graph 2-Partitioning via Randomized
Projected Gradient Descent

parameters: noise variance r, learning rates { ηt },
the number of iterations I , kernel-defining functions
φ, ψ : Rd → Rk

input :Feature vectors V = { v1, . . . , vn } ⊆ Rd,
imbalance δ ∈ [0, 0.5]

output : imbalanced partition of V into (V1, V2)
1 B = [−1, 1]n ∩ {x ∈ Rn |

∑
i xi = 2δn }

2 for i = 1 to n do // Compute Φ,Ψ ∈ Rn×k
3 Φi,Ψi ← φ(vi), ψ(vi)

4 x(0) ← argmin
x∈B

‖Nn(0, r)− x‖

// Projected gradient descent
5 for t = 0 to I − 1 do
6 y(t+1) ← x(t) − ηtΦΨ>x(t)

7 x(t+1) ← argmin
x∈B

‖y(t+1) − x‖

8 V1 ← V2 ← ∅;
9 for each i ∈ V do // Randomized rounding

10 With probability
x
(t)
i +1

2 ,
11 let V1 ← V1 ∪ {i}
12 otherwise, V2 ← V2 ∪ {i}
13 return (V1, V2)

Algorithm 2: BISECT++ AND CONQUER: Hierarchi-
cal clustering via imbalanced graph partitioning

parameters: required imbalance δ, the maximum
number of elements to run average linkage θ

input :Feature vectors V = { v1, . . . , vn } ⊆ Rd
output :Clustering tree on V

1 if n < θ then
2 return AVERAGELINKAGE(V)
3 V1, V2 ← GRADIENTDESCENTPARTITIONING(V, δ)
4 return {V1, V2 } ∪ B++&C(V1) ∪ B++&C(V2)

the same part (xu = xv), and with a negative sign otherwise.
δ is an imbalance parameter controlling sizes of the parts,
which are approximately (1/2 − δ)|V | and (1/2 + δ)|V |. If
the parts should be equal, δ = 0; otherwise, we can tune δ to
improve partition quality on imbalanced datasets.

Our algorithm is based on the approach described
in Avdiukhin, Pupyrev, and Yaroslavtsev (2019): we opti-
mize a continuous relaxation (xi ∈ [−1, 1]) of the function
above. The algorithm is a projected gradient descent ap-
proach which optimizes f(x) = x>Wx under constraints
xi ∈ [−1, 1] and

∑
i xi = 2δn. In the end, i-th element goes

to the first part with probability (xi+1)/2. The key idea of
our approach is the “Inverse kernel trick”, which helps us to
avoid building an explicit graph, as described below.

Inverse kernel trick. Note that computing the gradient
∇f(x) = 2Wx naı̈vely requires either O(n2d) time or
O(n2) space/time per iteration. To scale B++&C, we use a
technique which we call an inverse kernel trick. This tech-

nique is applicable for kernelizable similarities and distance
measures which can be represented as wij = 〈φ(vi), ψ(vj)〉
for functions φ, ψ : Rd → Rk, which we call kernel-defining
functions (examples can be found in the full version). These
functions can be defined using matrices Φ,Ψ ∈ Rn×k, whose
i-th rows are Φi = φ(vi) and Ψi = ψ(vi). Then the gradient
can be computed as Wx = Φ(Ψ>x) in O(nk) time. Some
kernels (e.g. RBF) do not have finite-dimensional kerneliza-
tion. In such cases we use an unbiased finite-dimensional
estimation of the kernel (see Table 3 in the full version)

We now outline the algorithm. We first precompute matri-
ces Φ and Ψ as described above. Then we repeatedly perform
a gradient descent stepand project the current point onto the
feasible space. In the end we perform randomized rounding.
Time complexity of B++&C is O(Ink log n+ θnk), where
I is the number of iterations (since when we use average
linkage, we have n/θ sets of size θ, and therefore the total
complexity of average linkage is O(θnk)). Space complexity
is O(nk). B++&C is highly parallelizable since after each
iteration, the tree is divided into two independent subtrees.
Additionally, each iteration is highly parallelizable since the
most expensive operations are matrix-vector multiplications.

3 B2SAT&C: Improved Approximation for
the CKMM Objective

In this section, we introduce our main algorithm (Algo-
rithm 4) which achieves 0.74-approximation for the CKMM
objective, significantly improving the previous≈ 2/3+0.0004
approximation. The main idea behind our algorithm is to use
BALANCED MAX-2-SAT PARTITIONING as a subroutine. In
BALANCED MAX-2-SAT PARTITIONING the objective is to
partition a set V into two sets S and T of approximately the
same size, such that the total weight of edges with at least one
endpoint in S, i.e.

∑
u,v∈V : u∈S or v∈S duv , is maximized.

This objective can be expressed as an instance of BAL-
ANCED MAX-2-SAT: given a 2-SAT formula whose clauses
have specified weights, the goal is to find an assignment
for which exactly half of the variables are true and the total
weight of satisfied clauses is maximized. Our Algorithm 3
constructs this instance of BALANCED MAX-2-SAT as a col-
lection of n2 disjunctions: for each u, v ∈ V we introduce a
clause (xu ∨ xv) with weight duv (Line 3). Given a solution
for the instance let S = {u : xu = 1} and T = {u : xu = 0},
we select the best of the following three solutionsO1,O2,O3

(see Appendix in the full version for an illustration):
• (O1) We define RANDOM(S) and RANDOM(T) as ran-

dom permutations of elements of S and T . We then con-
catenate these permutations and define the solution as a
path tree, where elements from S are at the top and ele-
ments from T are at the bottom.

• (O2) Union of recursive bisections of S and T .
• (O3) Recursive bisection of V .
The motivation for BALANCED MAX-2-SAT PARTITIONING
is that, in the path solution, edges inside S and edges between
S and T will have a greater LCA compared to edges inside
T . Thus they make a more significant contribution to the
CKMM objective. As a result, we can show the following:

9058

Algorithm 3: BALANCED MAX-2-SAT PARTITION-
ING
input :Distance function d : V × V → R≥0.
output :Partitioning of S

1 Set C ← ∅
2 for (u, v) ∈ V × V do
3 Add clause (xu ∨ xv) to C with weight duv
4 return BALANCED MAX-2-SAT(C)

Algorithm 4: Hierarchical Clustering via MAX-2-
SAT (B2SAT&C)

input :Feature vectors V = { v1, . . . , vn } ⊆ Rd,
distance function d : V × V → R≥0

output :Clustering tree on V
1 Let S ⊆ V be the set of vertices corresponding to

positive variables in the assignment given by
BALANCED MAX-2-SAT PARTITIONING(d);

2 O1 ← PATH(CONCAT(RANDOM(S),RANDOM(V \ S)))

3
O2 ← (BALANCED-BISECTION-HC(S, d),

BALANCED-BISECTION-HC(V \ S, d))
4 O3 ← BALANCED-BISECTION-HC(V, d)
5 return Best of O1,O2,O3

Theorem 3.1 [Proof in the full version] Algorithm 4 con-
structs a tree which gives a multiplicative γ-approximation of
the optimum value of the CKMM objective, where γ ≥ 0.74.

4 Experiments
We give a comprehensive experimental evaluation of a wide
range of hierarchical clustering algorithms, including:
• Grafting and rotation-based incremental hierarchical clus-

tering (GRINCH) (Monath et al. 2019a),
• Local rotation-based incremental hierarchical clustering

(PERCH) (Kobren et al. 2017),
• Bisecting k-means (BKMEANS),
• Robust single-linkage implementation from the HDB-

SCAN library (McInnes and Healy 2017; McInnes, Healy,
and Astels 2017) (ROBUSTSL) (Chaudhuri and Dasgupta
2010; Chaudhuri et al. 2014),

• Minimum spanning tree based affinity clustering
(AFFINITYC) (Bateni et al. 2017),

• Ward’s method (WARD’SM) (Ward 1963)
• Average linkage (AVERAGEL) (Sokal and Michener

1958),
• Single linkage (SINGLEL) (Gower and Ross 1969)
• Complete linkage (COMPLETEL) (Sørensen et al. 1948),
• 1D projection based RANDOM CUT (Charikar et al. 2019);

we project all vectors onto random line and partition them
based on the order they appear on the line,

• Our own new algorithms B2SAT&C3 and B++&C.
• A special case of B++&C with no imbalance (δ = 0),

which we denote as B++&C(δ = 0). This algorithm is
3Implementation of our theoretical algorithm using kernelized

gradient descent based balanced 2SAT solver.

similar to a balanced bisection algorithm from Chatzi-
afratis et al. (2020), with the main difference being is that
we perform bisection on multiple levels.

In the full version, we additionally perform comparison with
the following HC algorithms which produce non-binary trees:
• Gradient-based optimization of representations of trees in

hyperbolic space (GHHC) (Monath et al. 2019b),
• Top-down incremental hierarchical clustering

(BIRCH) (Zhang, Ramakrishnan, and Livny 1996),

4.1 Datasets
We use a large number of vector embeddings including basic
supervised and unsupervised constructions, embeddings with
pre-trained networks on fresh data from the same distribution,
embeddings with pre-trained networks on a different distribu-
tion and metric/similarity learning with triplet loss. We focus
on large high-dimensional datasets (n up to 4.5 · 106, d up to
2048) consisting of embedding vectors arising from applica-
tions to computer vision (CV) and natural language process-
ing (NLP). We study five different types of datasets: three
types of image data (“features”, “generalization”, “shift”),
and two types of text data (“word”, “sentence”). In order to
facilitate comparison with the previous work, we also provide
results on smaller datasets for other machine learning appli-
cations (Glass4, Spambase4, CovType4, ALOI (Geusebroek,
Burghouts, and Smeulders 2005)) and on larger datasets (Im-
ageNet Inception (Monath et al. 2019b)) in the full version.

CV: supervised embeddings (“features”). This is the
most vanilla setting, in which embedding vectors are con-
structed via supervised learning. Vectors are taken from the
last hidden layer of a pre-trained neural net. We use image
embeddings of ImageNet ILSVRC 2012 (Deng et al. 2009)
via ResNet34 (He et al. 2015).

CV: generalization (“generalization”). The “generaliza-
tion” setting is similar to “features” except that we perform
evaluation on a fresh set of samples from a similar distribu-
tion. We use ResNet34 pre-trained on ImageNet ILSVRC
2012 to compute embedding vectors of images from Ima-
geNetV2 (Recht et al. 2019). As shown in Recht et al. (2019),
Top-1 accuracy drops by 12.1% on this dataset.

CV: distribution shift (“shift”). The “shift” setting is sim-
ilar to “features” and “generalization” except that we perform
evaluation on a different distribution. We use ResNet34 pre-
trained on ImageNet ILSVRC 2012 to compute embedding
vectors of NaBirds (Van Horn et al. 2015). These two datasets
have very little intersection on classes: ImageNet ILSVRC
2012 is very general and contains 1000 classes, of which
only 55 are birds, while NaBirds is more domain-specific and
contains 555 classes of birds.

NLP: word embeddings (“word”). In the “word” setting
we use unsupervised word embedding vectors trained on
Twitter 5 and Wikipedia (Yamada et al. 2020) using two
classic methods Glove (Pennington, Socher, and Manning
2014) and Word2vec (Yamada et al. 2016; Mikolov et al.
2013). We emphasize that this setting corresponds to a fully

4http://archive.ics.uci.edu/ml
5https://nlp.stanford.edu/projects/glove

9059

unsupervised pipeline since both datasets and HC algorithms
we use are unsupervised.

NLP: sentence embeddings (“sentence”). In the “sen-
tence” setting we use a pre-trained Sentence-BERT (Reimers
and Gurevych 2019) to construct embeddings from the senti-
ment analysis dataset of movie reviews SST-2 (Socher et al.
2013). We use a RoBERTa-based (Liu et al. 2019) model
roberta-base-nli-stsb-mean-tokens 6 which has been trained
to produce meaningful sentence representations. Comparing
to “shift” this setting shows more advanced techniques of
similarity and representation learning including siamese ar-
chitecture and triplet loss. Cosine similarity cos-sim between
sentence representations corresponds to semantic similarity.

4.2 Results
We report our key experimental results in Table 1 and Table 2.
Experiments were performed on 8 CPUs 2.0GHz Intel Xeon
Scalable Processor (Skylake), 90Gb RAM. Missing entries
are due to timeouts (5 hours) or memory limits. The scala-
bility of different methods is discussed in the full version. In
order to highlight the quality of the resulting HC, the algo-
rithms are sorted by their average rank. Table 1 and Table 2
contains only mean value of 5 repetitions, full results and
standard deviations are provided in the full version. MW and
CKMM objectives are not suitable for non-binary trees. In
order to compare with algorithms which produce non-binary
trees (GHHC, BIRCH), in the full version we introduce ap-
propriate extensions of these objectives to non-binary trees.
See the full version for a complete set of experimental results.

Naı̈ve random baseline. For the MW objective, a ran-
dom binary tree (RANDOM) achieves a 1/3-approximation
in expectation, while for CKMM objective it achieves a
2/3-approximation. Worst-case analysis predicts that beating
these baselines is challenging: current best poly-time approx-
imations are 0.42 for MW (B++&C(δ = 0) (Chatziafratis
et al. 2020)) and 0.74 for CKMM (B2SAT&C, our work,
Theorem 3.1). Furthermore, for many practical algorithms
worst-case analysis predicts that they either can’t go above
the naı̈ve baselines (AVERAGEL (Charikar, Chatziafratis, and
Niazadeh 2019)) or even fail to meet it (BKMEANS (Moseley
and Wang 2017)). Such worst-case instances are folklore for
COMPLETEL, AFFINITYC and SINGLEL.

Approximation and normalization of objectives. On
deep-learned vector embeddings, almost all algorithms dra-
matically outperform the naı̈ve approximation baselines. Due
to concentration of measure (as discussed in the end of Sec-
tion 1.1) even RANDOM gets at least 85-94% / 91-97% of
the optimum, which noticeably outperform the worst case
1/3 and 2/3 approximations. Furthermore, classic HAC algo-
rithms (AVERAGEL, COMPLETEL, WARD’SM) also work
much better than predicted by the worst-case analysis. Our
results in Table 2 show that approximations achieved by var-
ious algorithms are very close, with many of them being
within 1% difference. Therefore, to highlight performance
variations between the algorithms, we measure advantage
over RANDOM and focus on normalized objectives α∗M/α

∗
C .

6https://github.com/UKPLab/sentence-transformers

Performance on different types of data. Our experi-
ments show that the quality of HC produced by different
algorithms can vary substantially across different types of
data. For example, optimizing CKMM on unsupervised word
embedding vectors (Twitter, Wikipedia) turns out to be rather
challenging (see Table 1). Performance of most approaches
drops drastically on these vectors, sometimes even below a
simple RANDOM CUT. Nevertheless, despite this variablity,
B++&C shows consistently best performance across the dif-
ferent types of vector embeddings.

Performance of various types of algorithms. While
HAC approaches (AVERAGEL, COMPLETEL, WARD’SM)
often show good performance, their running time scales su-
perlinearly making them prohibitively slow on large datasets.
Among scalable algorithms, our results show the advantage
of top-down methods (B++&C, B2SAT&C, BKMEANS)
over nearest-neighbor based approaches (SINGLEL, AFFIN-
ITYC, PERCH, and GRINCH). This is due to the fact that
MW/CKMM objectives encourage solutions with good
global structure which top-down methods tend to recover
better than approaches focused on exploiting local structure.

Performance of B++&C. Our proposed combination of
top-down unbalanced bisection (with kernelization and gradi-
ent descent optimization) and average-linkage B++&C ap-
pears to robustly give the highest quality performance across
a diverse collection of datasets. On normalized MW/CKMM
objectives (α∗M/α

∗
C), B++&C outperforms other approaches

on all datasets by 2-17%/4-59% respectively.
Generalization properties of HC objectives. Since we

use pretrained neural nets to generate vector embeddings, we
can compute HC on fresh samples from a similar distribu-
tion very quickly7. Applying this approach to ImageNetV2
(a fresh sample from the ImageNet distribution) our results
show that most algorithms show similar MW/CKMM scores
compared to ImageNet. This is rather different from the con-
sistent ≈ 10% prediction accuracy drop reported in Recht
et al. (2019). We believe that explanation of this phenomenon
might be a promising direction for future work.

5 Conclusion and Future Work
In this paper, we initiate a comprehensive experimental study
of HC algorithms on deep embedding vectors. Our results in-
dicate that CKMM is particularly well-suited for such data as
it captures the quality of the overall hierarchy and only relies
on distances between vectors. We introduce a new scalable al-
gorithm B++&C which outperforms existing approaches on
all considered datasets. Moreover, we present a polynomial-
time algorithm B2SAT&C that significantly improves the
existing approximation for the CKMM objective to 0.74.

A possible future direction is to show approximation guar-
antees for imbalanced bisection. It might also be interesting
to understand why there is no drop in HC quality (contrary
to the drop in the classification accuracy shown in Recht
et al. (2019)) when generalizing ImageNet embeddings for
ImageNetV2 dataset.

7At the cost of a single forward pass + running a HC algorithm.

9060

Dataset
Method
Domain
Setting

Size

ImageNet
ResNet34

CV
features

large

ImageNetV2
ResNet34

CV
generalization

small

NaBirds
ResNet34

CV
shift

medium

Twitter
Glove
NLP
word
large

Wikipedia
Word2vec

NLP
word
large

SST-2
SBERT

NLP
sentence
medium

B++&C .30/.95 .83/.99 .71/.97 .60/.97 .58/.94 .49/.97
AVERAGEL – .59/.97 – – – –
B2SAT&C .23/.95 .26/.95 .57/.96 .12/.93 .30/.90 .46/.96
ROBUSTSL – .70/.98 .45/.95 – – .15/.94

B++&C(δ = 0) .23/.95 .26/.95 .57/.96 .10/.93 .17/.88 .46/.96
COMPLETEL – .48/.97 – – – –
BKMEANS .23/.95 .26/.95 .61/.96 .10/.93 .10/.87 .45/.96

GRINCH .08/.94 .06/.94 .47/.95 .01/.92 .08/.86 .16/.94
PERCH .05/.94 .08/.94 .36/.94 .00/.92 – .15/.94

RANDOM CUT .06/.94 .09/.94 .12/.92 .11/.93 .23/.89 .07/.94
RANDOM .00/.94 .00/.94 .00/.91 .00/.92 .00/.85 .00/.93
n ≈ 1.2 · 106 104 5 · 104 1.3 · 106 4.5 · 106 7 · 104

d 512 512 512 200 100 768
#classes 103 103 555 – – 2

Table 1: Normalized/unnormalized (α∗C /αC) distance-based CKMM objectives under squared Euclidean distance. On αC
all algorithms (including RANDOM) give at least 85-94% approximation. On α∗C B++&C outperforms other approaches
on all datasets by 4-59%. Among other scalable algorithms, BKMEANS shows good average performance. Among non-
scalable algorithms, basic HAC methods (AVERAGEL, COMPLETEL) and robust single linkage (ROBUSTSL) show competitive
performance. Our worst-case theoretical algorithm B2SAT&C also shows substantial gains. Even a simple 1D random projection
technique (RANDOM CUT) gives non-trivial results on NLP datasets. Algorithms that performed worse than RANDOM CUT
(SINGLEL, AFFINITYC, WARD’SM) are not shown. See the full version for complete results which include comparison with
GHHC and BIRCH.

Dataset
Method
Domain
Setting

Size

ImageNet
ResNet34

CV
features

large

ImageNetV2
ResNet34

CV
generalization

small

NaBirds
ResNet34

CV
shift

medium

Twitter
Glove
NLP
word
large

Wikipedia
Word2vec

NLP
word
large

SST-2
SBERT

NLP
sentence
medium

B++&C .40/.98 .51/.99 .73/.99 .44/.97 .40/.96 .51/.96
COMPLETEL – .51/.99 – – – –
BKMEANS .37/.98 .39/.98 .71/.99 .27/.96 .38/.96 .45/.95

B++&C(δ = 0) .37/.98 .39/.98 .67/.99 .23/.95 .40/.96 .46/.95
B2SAT&C .37/.98 .39/.98 .67/.99 .23/.95 .40/.96 .46/.95
AVERAGEL – .38/.98 – – – –
WARD’SM – .35/.98 – – – –

GRINCH .10/.98 .12/.98 .54/.98 .09/.95 .09/.94 .17/.93
ROBUSTSL – .17/.98 .16/.97 – – .20/.93

PERCH .07/.97 .13/.98 .43/.98 .01/.94 – .15/.92
RANDOM CUT .06/.97 .06/.97 .13/.97 .06/.94 .13/.95 .07/.92

RANDOM .00/.97 .00/.97 .00/.96 .00/.94 .00/.94 .00/.91

Table 2: Normalized/unnormalized (α∗M /αM) similarity-based MW objectives under cosine similarity. On αM all algorithms
give at least 94-97% approximation. For α∗M , B++&C outperforms other approaches on all medium-large datasets by 2-17%.
Among other scalable algorithms BKMEANS shows good average performance. Among non-scalable algorithms HAC methods
(COMPLETEL, AVERAGEL, WARD’SM) show competitive performance, while performance of ROBUSTSL drops compared to
the distance-based CKMM objective. Our theoretical algorithm B2SAT&C shows the same performance as B++&C(δ = 0).
Algorithms which performed worse than RANDOM CUT (SINGLEL, AFFINITYC) are not shown. See the full version for complete
results.

9061

References
Abboud, A.; Cohen-Addad, V.; and Houdrougé, H. 2019. Sub-
quadratic High-Dimensional Hierarchical Clustering. In Advances
in Neural Information Processing Systems, 11576–11586.

Alon, N.; Azar, Y.; and Vainstein, D. 2020. Hierarchical Cluster-
ing: A 0.585 Revenue Approximation. In Conference on Learning
Theory, COLT 2020, 9-12 July 2020, volume 125 of Proceedings of
Machine Learning Research, 153–162. PMLR.

Avdiukhin, D.; Pupyrev, S.; and Yaroslavtsev, G. 2019. Multi-
Dimensional Balanced Graph Partitioning via Projected Gradient
Descent. Proc. VLDB Endow. 12(8): 906–919.

Bateni, M.; Behnezhad, S.; Derakhshan, M.; Hajiaghayi, M.; Kiveris,
R.; Lattanzi, S.; and Mirrokni, V. 2017. Affinity Clustering: Hier-
archical Clustering at Scale. In Advances in Neural Information
Processing Systems 30, 6864–6874. Curran Associates, Inc.

Bille, P. 2005. A Survey on Tree Edit Distance and Related Prob-
lems. Theor. Comput. Sci. 337(1–3): 217–239.

Charikar, M.; Chatziafratis, V.; and Niazadeh, R. 2019. Hierarchical
Clustering Better than Average-Linkage. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’19, 2291–2304. USA: Society for Industrial and Applied
Mathematics.

Charikar, M.; Chatziafratis, V.; Niazadeh, R.; and Yaroslavtsev, G.
2019. Hierarchical Clustering for Euclidean Data. In Proceedings of
Machine Learning Research, volume 89 of Proceedings of Machine
Learning Research, 2721–2730. PMLR.

Chatziafratis, V.; Niazadeh, R.; and Charikar, M. 2018. Hierarchical
Clustering with Structural Constraints. CoRR abs/1805.09476. URL
http://arxiv.org/abs/1805.09476.

Chatziafratis, V.; Yaroslavtsev, G.; Lee, E.; Makarychev, K.; Ahma-
dian, S.; Epasto, A.; and Mahdian, M. 2020. Bisect and Conquer:
Hierarchical Clustering via Max-Uncut Bisection. In Chiappa, S.;
and Calandra, R., eds., The 23rd International Conference on Ar-
tificial Intelligence and Statistics, volume 108 of Proceedings of
Machine Learning Research, 3121–3132. PMLR.

Chaudhuri, K.; and Dasgupta, S. 2010. Rates of convergence for the
cluster tree. In Advances in neural information processing systems,
343–351.

Chaudhuri, K.; Dasgupta, S.; Kpotufe, S.; and Von Luxburg, U.
2014. Consistent procedures for cluster tree estimation and pruning.
IEEE Transactions on Information Theory 60(12): 7900–7912.

Chen, L.; Zhou, S.; and Ma, J. 2020. Fast Kernel k-means Clus-
tering Using Incomplete Cholesky Factorization. arXiv preprint
arXiv:2002.02846 .

Cochez, M.; and Mou, H. 2015a. Twister tries: Approximate hierar-
chical agglomerative clustering for average distance in linear time.
In Proceedings of the 2015 ACM SIGMOD international conference
on Management of data, 505–517.

Cochez, M.; and Mou, H. 2015b. Twister Tries: Approximate Hier-
archical Agglomerative Clustering for Average Distance in Linear
Time. In Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’15, 505–517. New
York, NY, USA: Association for Computing Machinery.

Cohen-Addad, V.; Kanade, V.; and Mallmann-Trenn, F. 2017. Hier-
archical clustering beyond the worst-case. In Advances in Neural
Information Processing Systems, 6201–6209.

Cohen-addad, V.; Kanade, V.; Mallmann-trenn, F.; and Mathieu, C.
2019. Hierarchical Clustering: Objective Functions and Algorithms.
J. ACM 66(4).

Dasgupta, S. 2015. A cost function for similarity-based hierarchical
clustering. CoRR abs/1510.05043.
Deb, A. B.; and Dey, L. 2017. Outlier detection and removal al-
gorithm in K-means and hierarchical clustering. World Journal of
Computer Application and Technology 5(2): 24–29.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-Fei, L.
2009. Imagenet: A large-scale hierarchical image database. In
2009 IEEE conference on computer vision and pattern recognition,
248–255. Ieee.
Fu, Z.; Hu, W.; and Tan, T. 2005. Similarity based vehicle trajectory
clustering and anomaly detection. In IEEE International Conference
on Image Processing 2005, volume 2, II–602. Ieee.
Geusebroek, J.-M.; Burghouts, G. J.; and Smeulders, A. W. 2005.
The Amsterdam library of object images. International Journal of
Computer Vision 61(1): 103–112.
Ghoshdastidar, D.; Perrot, M.; and von Luxburg, U. 2019. Founda-
tions of Comparison-Based Hierarchical Clustering. In Advances in
Neural Information Processing Systems (NeurIPS).
Gower, J. C.; and Ross, G. J. S. 1969. Minimum Spanning Trees and
Single Linkage Cluster Analysis. Journal of the Royal Statistical
Society. Series C (Applied Statistics) 18(1): 54–64.
Guérin, J.; Gibaru, O.; Thiery, S.; and Nyiri, E. 2017. Cnn fea-
tures are also great at unsupervised classification. arXiv preprint
arXiv:1707.01700 .
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep Residual
Learning for Image Recognition. CoRR abs/1512.03385. URL
http://arxiv.org/abs/1512.03385.
Heller, K. A.; and Ghahramani, Z. 2005. Bayesian Hierarchical
Clustering. In Proceedings of the 22Nd International Conference
on Machine Learning, ICML ’05, 297–304. New York, NY, USA:
ACM.
Huang, D.; Wang, C.-D.; Wu, J.; Lai, J.-H.; and Kwoh, C. K. 2019.
Ultra-scalable spectral clustering and ensemble clustering. IEEE
Transactions on Knowledge and Data Engineering .
Jain, A. K.; Murty, M. N.; and Flynn, P. J. 1999. Data clustering: a
review. ACM computing surveys (CSUR) 31(3): 264–323.
Kobren, A.; Monath, N.; Krishnamurthy, A.; and McCallum, A.
2017. A Hierarchical Algorithm for Extreme Clustering. In Pro-
ceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’17, 255–264. New
York, NY, USA: Association for Computing Machinery. ISBN
9781450348874.
Lin, W.-A.; Chen, J.-C.; and Chellappa, R. 2017. A proximity-aware
hierarchical clustering of faces. In 2017 12th IEEE International
Conference on Automatic Face & Gesture Recognition (FG 2017),
294–301. IEEE.
Liu, Y.; Ott, M.; Goyal, N.; Du, J.; Joshi, M.; Chen, D.; Levy,
O.; Lewis, M.; Zettlemoyer, L.; and Stoyanov, V. 2019. Roberta:
A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692 .
Manning, C. D.; Raghavan, P.; and Schütze, H. 2008. Introduction
to information retrieval. Cambridge University Press.
Mathieu, E.; Le Lan, C.; Maddison, C. J.; Tomioka, R.; and Teh,
Y. W. 2019. Continuous Hierarchical Representations with Poincaré
Variational Auto-Encoders. In Advances in neural information
processing systems, 12544–12555.
McInnes, L.; and Healy, J. 2017. Accelerated hierarchical density
based clustering. In 2017 IEEE International Conference on Data
Mining Workshops (ICDMW), 33–42. IEEE.

9062

McInnes, L.; Healy, J.; and Astels, S. 2017. hdbscan: Hierarchical
density based clustering. The Journal of Open Source Software
2(11): 205.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and Dean, J.
2013. Distributed representations of words and phrases and their
compositionality. In Advances in neural information processing
systems, 3111–3119.

Min, E.; Guo, X.; Liu, Q.; Zhang, G.; Cui, J.; and Long, J. 2018.
A survey of clustering with deep learning: From the perspective of
network architecture. IEEE Access 6: 39501–39514.

Monath, N.; Kobren, A.; Krishnamurthy, A.; Glass, M. R.; and
McCallum, A. 2019a. Scalable Hierarchical Clustering with Tree
Grafting. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’19,
1438–1448. New York, NY, USA: ACM.

Monath, N.; Zaheer, M.; Silva, D.; McCallum, A.; and Ahmed, A.
2019b. Gradient-based Hierarchical Clustering using Continuous
Representations of Trees in Hyperbolic Space. In The 25th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining.

Moseley, B.; and Wang, J. 2017. Approximation Bounds for Hierar-
chical Clustering: Average Linkage, Bisecting K-means, and Local
Search. In Advances in Neural Information Processing Systems 30,
3094–3103. Curran Associates, Inc.

Murtagh, F.; and Contreras, P. 2012. Algorithms for hierarchical
clustering: an overview. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 2(1): 86–97.

Murtagh, F.; and Contreras, P. 2017. Algorithms for hierarchical
clustering: an overview, II. Wiley Interdisciplinary Reviews: Data
Mining and Knowledge Discovery 7(6): e1219.

Nickel, M.; and Kiela, D. 2017. Poincaré embeddings for learning
hierarchical representations. In Advances in neural information
processing systems, 6338–6347.

Parwez, M. S.; Rawat, D. B.; and Garuba, M. 2017. Big data analyt-
ics for user-activity analysis and user-anomaly detection in mobile
wireless network. IEEE Transactions on Industrial Informatics
13(4): 2058–2065.

Pennington, J.; Socher, R.; and Manning, C. D. 2014. Glove:
Global vectors for word representation. In Proceedings of the 2014
conference on empirical methods in natural language processing
(EMNLP), 1532–1543.

Rahimi, A.; and Recht, B. 2007. Random Features for Large-Scale
Kernel Machines. In Advances in Neural Information Process-
ing Systems 20, Proceedings of the Twenty-First Annual Confer-
ence on Neural Information Processing Systems, Vancouver, British
Columbia, Canada, December 3-6, 2007, 1177–1184.

Recht, B.; Roelofs, R.; Schmidt, L.; and Shankar, V. 2019. Do
imagenet classifiers generalize to imagenet? arXiv preprint
arXiv:1902.10811 .

Reimers, N.; and Gurevych, I. 2019. Sentence-BERT: Sentence
Embeddings using Siamese BERT-Networks. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics. URL http:
//arxiv.org/abs/1908.10084.

Sander, J.; Qin, X.; Lu, Z.; Niu, N.; and Kovarsky, A. 2003. Auto-
matic extraction of clusters from hierarchical clustering represen-
tations. In Pacific-Asia Conference on Knowledge Discovery and
Data Mining, 75–87. Springer.

Shin, S.; Song, K.; and Moon, I. 2019. Hierarchically Clustered
Representation Learning. CoRR abs/1901.09906.

Socher, R.; Perelygin, A.; Wu, J.; Chuang, J.; Manning, C. D.; Ng,
A. Y.; and Potts, C. 2013. Recursive deep models for semantic
compositionality over a sentiment treebank. In Proceedings of
the 2013 conference on empirical methods in natural language
processing, 1631–1642.

Sokal, R. R.; and Michener, C. D. 1958. A statistical method for
evaluating systematic relationships. University of Kansas Science
Bulletin 38: 1409–1438.

Sørensen, T.; Sørensen, T.; Sørensen, T.; SORENSEN, T.; Sorensen,
T.; Sorensen, T.; and Biering-Sørensen, T. 1948. A method of
establishing groups of equal amplitude in plant sociology based on
similarity of species content and its application to analyses of the
vegetation on Danish commons .

Van Horn, G.; Branson, S.; Farrell, R.; Haber, S.; Barry, J.; Ipeirotis,
P.; Perona, P.; and Belongie, S. 2015. Building a bird recognition app
and large scale dataset with citizen scientists: The fine print in fine-
grained dataset collection. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 595–604.

Wang, D.; and Wang, Y. 2018. An Improved Cost Function for
Hierarchical Cluster Trees. ArXiv abs/1812.02715.

Wang, S.; Gittens, A.; and Mahoney, M. W. 2019. Scalable kernel
K-means clustering with Nyström approximation: relative-error
bounds. The Journal of Machine Learning Research 20(1): 431–
479.

Wang, Y.; and Moseley, B. 2020. An Objective for Hierarchical
Clustering in Euclidean Space and Its Connection to Bisecting
K-means. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, 6307–6314.

Ward, J. H. 1963. Hierarchical Grouping to Optimize an Objective
Function. Journal of the American Statistical Association 58(301):
236–244.

Wu, C.; Tygert, M.; and LeCun, Y. 2019. A hierarchical loss and its
problems when classifying non-hierarchically. PloS one 14(12).

Wu, L.; Chen, P.-Y.; Yen, I. E.-H.; Xu, F.; Xia, Y.; and Aggarwal, C.
2018. Scalable spectral clustering using random binning features.
In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, 2506–2515.

Yamada, I.; Asai, A.; Sakuma, J.; Shindo, H.; Takeda, H.; Takefuji,
Y.; and Matsumoto, Y. 2020. Wikipedia2Vec: An Efficient Toolkit
for Learning and Visualizing the Embeddings of Words and Entities
from Wikipedia. arXiv preprint 1812.06280v3 .

Yamada, I.; Shindo, H.; Takeda, H.; and Takefuji, Y. 2016. Joint
Learning of the Embedding of Words and Entities for Named Entity
Disambiguation. In Proceedings of The 20th SIGNLL Conference on
Computational Natural Language Learning, 250–259. Association
for Computational Linguistics.

Yang, J.; Parikh, D.; and Batra, D. 2016. Joint unsupervised learning
of deep representations and image clusters. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition,
5147–5156.

Zhang, T.; Ramakrishnan, R.; and Livny, M. 1996. BIRCH: An Effi-
cient Data Clustering Method for Very Large Databases. SIGMOD
Rec. 25(2): 103–114.

Zhang, Y.; Ahmed, A.; Josifovski, V.; and Smola, A. J. 2014. Tax-
onomy Discovery for Personalized Recommendation. In ACM In-
ternational Conference on Web Search And Data Mining (WSDM).

Zhong, S. 2005. Efficient online spherical k-means clustering. In
Proceedings. 2005 IEEE International Joint Conference on Neural
Networks, 2005., volume 5, 3180–3185. IEEE.

9063

