
Temporal Latent Auto-Encoder: A Method for Probabilistic Multivariate Time
Series Forecasting

Nam Nguyen*, Brian Quanz*

IBM Research
{nnguyen,blquanz}@us.ibm.com

Abstract

Probabilistic forecasting of high dimensional multivariate time
series is a notoriously challenging task, both in terms of com-
putational burden and distribution modeling. Most previous
work either makes simple distribution assumptions or aban-
dons modeling cross-series correlations. A promising line of
work exploits scalable matrix factorization for latent-space
forecasting, but is limited to linear embeddings, unable to
model distributions, and not trainable end-to-end when us-
ing deep learning forecasting. We introduce a novel temporal
latent auto-encoder method which enables nonlinear factor-
ization of multivariate time series, learned end-to-end with a
temporal deep learning latent space forecast model. By impos-
ing a probabilistic latent space model, complex distributions
of the input series are modeled via the decoder. Extensive
experiments demonstrate that our model achieves state-of-the-
art performance on many popular multivariate datasets, with
gains sometimes as high as 50% for several standard metrics.

Introduction
Forecasting - predicting future values of time series, is a key
component in many industries (Fildes et al. 2008). Applica-
tions include forecasting supply chain and airline demand
(Fildes et al. 2008; Seeger, Salinas, and Flunkert 2016), fi-
nancial prices (Kim 2003), and energy, traffic or weather
patterns (Chatfield 2000). Forecasts are often required for
large numbers of related time series, i.e., multivariate time se-
ries forecasting, as opposed to univariate (single time series)
forecasting. For example, retailers may require sales/demand
forecasts for millions of different products at thousands of
different locations - amounting to billions of sales time series.

In multivariate settings, one common approach is to fit a
single multi-output model to predict all series simultaneously.
This includes statistical methods like vector auto-regressive
(VAR) models (Lütkepohl 2005) and generalizations (e.g.,
MGARCH (Bauwens, Laurent, and Rombouts 2006)), and
multivariate state-space models (Durbin and Koopman 2012),
as well as deep neural net (DNN) models including recurrent
neural networks (RNNs) (Funahashi and Nakamura 1993),
temporal convolutional neural networks (TCNs) (Bai, Kolter,
and Koltun 2018), and combinations (Lai et al. 2018; Goel,

*Nam Nguyen and Brian Quanz contributed equally to this work
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Melnyk, and Banerjee 2017; Borovykh, Bohte, and Oosterlee
2017; Cheng, Huang, and Zheng 2020; Dasgupta and Os-
ogami 2017; Cirstea et al. 2018; Rodrigues and Pereira 2020).
However, these are prone to overfitting and not scalable as
the number of time series increases (Yu, Rao, and Dhillon
2016; Sen, Yu, and Dhillon 2019; Salinas et al. 2019).

As such, another popular approach is to abandon multi-
variate forecasting entirely and perform univariate forecast-
ing (i.e., fit a separate model per series). Classical statisti-
cal forecasting methods using simple parametric models of
past values and forecasts are still arguably most commonly
used in industry, such as auto-regressive AR and ARIMA
models (Hyndman and Athanasopoulos 2018), exponential
smoothing (ES) (McKenzie 1984), and more general state-
space models (Hyndman et al. 2008). Such methods have
consistently out-performed machine learning methods such
as RNNs in large scale forecasting competitions until recently
(Makridakis, Hyndman, and Petropoulos 2020; Makridakis,
Spiliotis, and Assimakopoulos 2018, 2020; Crone, Hibon,
and Nikolopoulos 2011; Benidis et al. 2020). A key reason
for recent success of deep learning for forecasting is multi-
task univariate forecasting - sharing deep learning model pa-
rameters across all series, possibly with some series-specific
scaling factors or parametric model components (Salinas,
Flunkert, and Gasthaus 2019; Smyl 2020; Bandara, Bergmeir,
and Hewamalage 2020; Li et al. 2019; Wen et al. 2017; Ran-
gapuram et al. 2018; Chen et al. 2018). E.g., the winner of
the M4 forecasting competition (Makridakis, Spiliotis, and
Assimakopoulos 2020) was a hybrid ES-RNN model (Smyl
2020), in which a single shared univariate RNN model is used
to forecast each series but seasonal and level ES parameters
are simultaneously learned per series to normalize them.

However, a fundamental limitation of multi-task univariate
forecasting approaches is they are unable to model cross-
series correlations/effects (Rangapuram et al. 2018; Salinas
et al. 2019), common in many domains (Salinas et al. 2019;
Tsay 2013; Rasul et al. 2020). For example, in retail, cross-
product effects (e.g., increased sales of one product causing
increased/decreased sales of related products) are well known
(Gelper, Wilms, and Croux 2016; Leeflang et al. 2008; Srini-
vasan, Ramakrishnan, and Grasman 2005). In financial time
series one stock price may depend on relative prices of other
stocks; and energy time series may have spatial correlations
and dependencies. Furthermore, these approaches cannot

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9117

leverage the extra information provided from related series
in case of noise or sparsity. E.g., sales are often sparse (e.g.,
one sale a month for a particular product and store), so the
sales rate cannot be accurately estimated from a single series.

A promising line of research we focus on that addresses
limitations of both the single, large multi-output multivariate
model and the multi-task univariate model approaches is to
use factorization (Yu, Rao, and Dhillon 2016; Sen, Yu, and
Dhillon 2019). Relationships between time series are factor-
ized into a low rank matrix, i.e., each time series is modeled
as a linear combination of a smaller set of latent, basis (or
global) time series, so forecasting can be performed in the
low-dimensional latent space then mapped back to the input
(local) space. Thus modeling can scale to very large number
of series while still capturing cross-series relationships. Tem-
poral regularized matrix factorization (TRMF) (Yu, Rao, and
Dhillon 2016) imposes temporal regularization on the latent
time series so they are predictable by linear auto-regressive
models. Recently, DeepGLO (Sen, Yu, and Dhillon 2019)
extended this approach to enable non-linear latent space fore-
cast models. DeepGLO iteratively alternates between linear
matrix factorization and fitting a latent space TCN; forecasts
from this model are then fed as covariates to a separately
trained multi-task univariate TCN model.

However, these have several key limitations. First, they
cannot capture nonlinear relationships between series via the
transformation, which are common in many domains. E.g.,
products’ sales or stocks’ prices may depend on relative price
compared to others (i.e., value ratios, a non-linear relation-
ship). Second, although deepGLO introduces deep learning,
it is not an end-to-end model. Since factorization is done
separately and heuristic, alternating optimization with no
convergence guarantees is used, the process is inefficient and
may not find an optimal solution. Third, they have no way to
provide probabilistic outputs (i.e., predictive distributions),
which are critical for practical use of forecasts (Makridakis,
Hyndman, and Petropoulos 2020). Fourth, they are limited to
capturing stationary relationships between time series with
the fixed linear transform on a single time point - whereas
relationships between series are likely often nonstationary.

To address these limitations and extend the factorization
line of research, we propose the Temporal Latent Autoen-
coder (TLAE) (see Figure 1), which enables non-linear trans-
forms of the input series trained end-to-end with a DNN
temporal latent model to enforce predictable latent temporal
patterns, and implicitly infers the joint predictive distribution
simultaneously. Our main contributions are:
• We enable nonlinear factorization for the latent temporal

factorization line of research; we generalize the linear map-
pings to/from the latent space to nonlinear transforms by
replacing them with encoder and decoder neural networks,
with an input-output reproduction objective, i.e., an autoen-
coder (Kramer 1991; Hinton and Zemel 1994). Further, the
autoencoder can use temporal models (e.g., RNNs) - so
embeddings can evolve over time (be nonstationary).

• We introduce temporal regularization in the latent space
with flexible deep learning temporal models that can be
trained end-to-end with stochastic gradient descent, by
combining the objectives for reconstruction and forecast

error in the latent and input spaces in the loss function.
• We enable probabilistic output sampling by injecting noise

in the latent space prior to latent forecast decoding, so the
model learns to implicitly model the cross-time-series joint
predictive distribution by transforming the noise, similar to
variational autoencoders (VAEs) (Doersch 2016; Kingma
and Welling 2014a). Unlike VAEs, the latent mean (output
of the latent forecast model) is not constrained.

• We perform extensive experiments with multiple multi-
variate forecasting datasets, demonstrating superior perfor-
mance compared to past global factorization approaches as
well as comparable or superior performance to other recent
state of the art forecast methods, for both point and proba-
bilistic predictions. We also provide a variety of analyses
including hyper parameter sensitivity and ablation studies.

Related Work
Neural nets have a long history of applications in forecasting
(Zhang, Patuwo, and Hu 1998; Benidis et al. 2020), histori-
cally mostly focused on univariate models. Here we discuss
details of recent related deep learning work beyond those
mentioned in the introduction. For further details on classi-
cal methods please refer to (Hyndman and Athanasopoulos
2018; Lütkepohl 2005; Durbin and Koopman 2012; Bauwens,
Laurent, and Rombouts 2006). We compare with represen-
tative classical forecast methods in experiments - e.g., VAR,
ARIMA, and state space models (ETS).

A trend in DNN forecasting is to normalize series to ad-
dress different scaling / temporal patterns (Lai et al. 2018;
Zhang 2003; Salinas, Flunkert, and Gasthaus 2019; Goel,
Melnyk, and Banerjee 2017; Cheng, Huang, and Zheng 2020;
Bandara, Bergmeir, and Hewamalage 2020; Smyl 2020). E.g.,
LSTNet (Lai et al. 2018) fits the sum of a linear AR model
and a DNN with convolutional and recurrent layers. A popu-
lar multi-task univariate forecast method, DeepAR (Salinas,
Flunkert, and Gasthaus 2019), scales each series by its av-
erage and fits a shared RNN across series. Another recent
sate-of-the-art multi-task univariate model (Li et al. 2019)
combines TCN embeddings with the Transformer architec-
ture (Vaswani et al. 2017). Although these work well on some
datasets, as mentioned they are limited in use as they cannot
model dependencies between series.

TADA(Chen et al. 2018), DA-RNN (Qin et al. 2017)
and GeoMAN (Liang et al. 2018) use encoder-decoder ap-
proaches built on sequence-to-sequence work (Cho et al.
2014; Bahdanau, Cho, and Bengio 2015). However the
encoder-decoder is not an autoencoder, is designed for factor-
ing in exogenous variables for multi-step univariate forecast-
ing - not modeling cross series relationships / multivariate
forecasting, and is not probabilistic. An autoencoder was
used in (Cirstea et al. 2018), but only for pre-processing /
denoising of individual series before training an RNN, so did
not consider factorizing cross-series relationships or deriving
probabilistic outcomes, as in our method.

Recently a few DNN models have also been proposed to
model multivariate forecast distributions (Salinas et al. 2019;
Wang et al. 2019; Rasul et al. 2020). A low-rank Gaussian
copula model was proposed (Salinas et al. 2019) in which
a multitask univariate LSTM (Hochreiter and Schmidhuber

9118

1997) is used to output transformed time series and diagonal
and low-rank factors of a Gaussian covariance matrix. How-
ever, it is limited in flexibility / distributions it can model,
sensitive to choice of rank, and difficult to scale to very high
dimensional settings. A deep factor generative model was
proposed (Wang et al. 2019) in which a linear combination of
RNN latent global factors plus parametric noise models the
local series distributions. However, this can only model linear
combinations of global series and specific noise distributions,
has no easy way to map from local to global series, and is in-
efficient for inference and learning (limited network and data
size that can be practically used). Further, a recent concurrent
work uses normalizing flows for probabilistic forecasting
(Rasul et al. 2020): a multivariate RNN is used to model the
series progressions (single large multi-output model), with
the state translated to the output joint distribution via a nor-
malizing flow approach (Dinh, Sohl-Dickstein, and Bengio
2017).However, invertible flow requires the same number of
latent dimensions as input dimensions, so it does not scale to
large numbers of time series. E.g., the temporal model it is
applied across all series instead of a low dimensional space as
in our model, so for RNN it has quadratic complexity in the
number of series, whereas ours can be much lower (shown in
supplement).

Another line of related work is on variational methods with
sequence models such as variational RNN (VRNN) (Chung
et al. 2015) and (Chatzis 2017), e.g., VRNN applies a VAE
to each hidden state of an RNN over the input series. Both
of these apply the RNN over the input space so lack scala-
bility benefits and require propagating multi-step predictions
through the whole model, unlike our method which scalably
applies the RNN and its propagation in a low-dimensional
latent space. Further, due to noise added at every time step,
VRNN may struggle with long term dependencies, and the
authors state the model is designed for cases of high signal-
to-noise ratio, whereas most forecast data is very noisy.

Problem Setup and Methodology
Notation A matrix of multivariate time series is denoted
by a bold capital letter, univariate series by bold lowercase
letters. Given a vector x, its i-th element is denoted by xi.
For a matrix X, we use xi as the i-th column and xi,j is
the (i, j)-th entry of X. ‖X‖`2 is the matrix Frobenius norm.
‖x‖`p is the `p-norm of the vector x, defined as (

∑
i x

p
i)

1/p.
Given a matrix Y ∈ Rn×T , YB is indicated as a sub-matrix
of Y with column indices in B. For a set B, |B| is regarded
as the cardinality of this set. Lastly, for functions f and g,
f ◦ g is the composite function, f ◦ g(x) = f(g(x)).

Problem definition Let a collection of high dimensional
multivariate time series be denoted by (y1, ...,yT), where
each yi at time point i is a vector of dimension n. Here
we assume n is often a large number, e.g., ∼103 to 106

or more. We consider the problem of forecasting τ future
values (yT+1, ...,yT+τ) of the series given its observed his-
tory {yi}Ti=1. A more difficult but interesting problem is
modeling the conditional probability distribution of the high
dimensional vectors:
p(yT+1, ...,yT+τ |y1:T) =

∏τ
i=1 p(yT+i|y1:T+i−1). (1)

This decomposition turns the problem of probabilistically
forecasting several steps ahead to rolling prediction: the pre-
diction at time i is input to the model to predict the value at
time i + 1. Next we describe our key contribution ideas in
deterministic settings, then extend it to probabilistic ones.

Point Prediction
Motivation Temporal regularized matrix factorization
(TRMF) (Yu, Rao, and Dhillon 2016), decomposes the mul-
tivariate time series represented as a matrix Y ∈ Rn×T
(composed of n time series in its rows) into components
F ∈ Rn×d and X ∈ Rd×T while also imposing temporal
constraints on X. The matrix X is expected to inherit tem-
poral structures such as smoothness and seasonality of the
original series. If Y can be reliably represented by just the
few time series in X, then tasks on the high-dimensional
series Y can be performed on the much smaller dimensional
series X. In (Yu, Rao, and Dhillon 2016) forecasting future
values of Y is replaced with the much simpler task of predict-
ing future values on the latent series X, so the Y prediction
is just a weighted combination of the new X values with
weights defined by the matrix F.

To train temporal DNN models like RNNs, data is batched
temporally. Denote YB as a batch of data containing a subset
of b time samples, YB = [yt,yt+1, ...,yt+b−1] where B =
{t, ..., t + b − 1} are time indices. To perform constrained
factorization (Yu, Rao, and Dhillon 2016) proposed to solve:

min
X,F,W

L(X,F,W) =
1

|B|
∑
B∈B
LB(XB ,F,W), (2)

where B is the set of all data batches and each batch loss is:

LB(XB ,F,W) , 1
nb‖YB − FXB‖2`2 + λR(XB ;W).

(3)
Here, R(XB ;W) is regularization parameterized by W
on XB to enforce certain properties of the latent factors
and λ is the regularization parameter. In order to impose
temporal constraints, (Yu, Rao, and Dhillon 2016) assumes
an autoregressive model on XB specified simply as x` =∑L
j=1 W

(j)x`−j where L is a predefined lag parameter.
Then, the regularization reads

R(XB ;W) ,
b∑

`=L+1

‖x` −
L∑
j=1

W(j)x`−j‖2`2 . (4)

The optimization is solved via alternating minimization with
respect to variables X,F, and W.

Recently, (Sen, Yu, and Dhillon 2019) considered applying
deep learning to the same problem; the authors proposed
to replace the autoregressive component with a temporal
convolutional network (TCN) (Bai, Kolter, and Koltun 2018).
Their TCN-MF model employed the following regularization

R(XB ;W) ,
b∑

`=L+1

‖x` − TCN(x`−L,...,x`−1
;W)‖2`2 ,

(5)
where W is the set of parameters of the TCN network; alter-
nating minimization was also performed for optimization.

9119

(Sen, Yu, and Dhillon 2019) also investigated feeding TCN-
MF predictions as “global” features into a “local” multi-task
model forecasting individual time series. However, as men-
tioned, both (Yu, Rao, and Dhillon 2016) and (Sen, Yu, and
Dhillon 2019) have several challenging limitations. First, due
to the linear nature of the matrix factorization, the models
implicitly assume linear relationships across time series. This
implies the models will fail to capture non-linear correlation
cross series (e.g., one series inversely proportional to another)
that often occurs in practice, separately from the global tem-
poral patterns. Second, implementation of these optimization
problems with alternating minimization is sufficiently in-
volved, especially when the loss has coupling terms as in (4).
In (Sen, Yu, and Dhillon 2019), although the simple autore-
gressive model is replaced by a TCN, this network cannot
incorporate the factorization part, making back-propagation
impossible to perform end-to-end. TCN-MF model is there-
fore unable to leverage recent deep learning optimization
developments. This may explain why solutions of TCN-MF
are sometimes sub-optimal as compared to the simpler TRMF
approach (Yu, Rao, and Dhillon 2016).

Our model In this paper we propose a new model to over-
come these weaknesses. We observe that if Y can be decom-
posed exactly by F and X, then X = F+Y where F+ is the
pseudo-inverse of F. This implies that Y = FF+Y.

Now if F+ can be replaced by an encoder and F by a
decoder, we can exploit the ideas of autoencoders (Kramer
1991; Hinton and Zemel 1994) to seek more powerful non-
linear decompositions. The latent representation is now a
nonlinear transformation of the input, X = gφ(Y) where gφ
is the encoder that maps Y to d dimensional X: g : Rn → Rd
and φ is the set of parameters of the encoder. The nonlin-
earity of the encoder allows the model to represent more
complex structure of the data in the latent embedding. The
reconstruction of Y is Ŷ = fθ(X) where fθ is the decoder
that maps X back to the original domain: f : Rd → Rn and
θ is the set of parameters associated with the decoder.

Additionally, we introduce a new layer between the en-
coder and decoder to capture temporal structure of the latent
representation. The main idea is illustrated in Figure 1; in the
middle layer an LSTM network (Hochreiter and Schmidhu-
ber 1997) is employed to encode the long-range dependency
of the latent variables. The flow of the model is as follows:
a batch of the time series YB = [y1, ...,yb] ∈ Rn×b is em-
bedded into the latent variables XB = [x1, ...,xb] ∈ Rd×b
with d � n. These sequential ordered xi are input to the
LSTM to produce outputs x̂L+1, ..., x̂b with each x̂i+1 =
hW(xi−L+1, ...,xi) where h is the mapping function. h is
characterized by the LSTM network with parameters W.
The decoder will take the matrix X̂B consisting of variables
x1, ...,xL and x̂L+1, ..., x̂b as input and yield the matrix ŶB .

As seen from the figure, batch output ŶB contains two
components. The first, ŷi with i = 1, ..., L, is directly trans-
ferred from the encoder without passing through the mid-
dle layer: ŷi = fθ ◦ gφ(yi), while the second component
ŷi with i = L + 1, ..., b is a function of the past input:
ŷi+1 = fθ ◦ hW ◦ gφ(yi−L+1, ...,yi). By minimizing the
error ‖ŷi − yi‖p`p , one can think of this second component

as providing the model the capability to predict the future
from the observed history, while at the same time the first
one requires the model to reconstruct the data faithfully.

The objective function with respect to a batch of data is
defined as follows.

LB(W,φ,θ) , 1
nb‖YB − ŶB‖p`p

+ λ 1
d(b−L)

∑b−1
i=L‖xi+1 − hW(xi−L+1, ...,xi)‖q`q ,

(6)

and the overall loss function is

minW,φ,θ L(W,φ,θ) = 1
|B|

∑
B∈B LB(W,φ,θ). (7)

On the one hand, by optimizing Ŷ to be close to Y, the model
is expected to capture the correlation cross time series and
encode this global information into a few latent variables X.
On the other hand, minimizing the discrepancy between X̂
and X allows the model to capture temporal dependency and
provide the predictive capability of the latent representation.
We add a few more remarks:
• Although we use LSTMs here, other networks (e.g., TCN

(Bai, Kolter, and Koltun 2018) or Transformer (Vaswani
et al. 2017)) can be applied.

• A fundamental difference between TRMF / TCN-MF and
our method is that in the former, latent variables are part
of the optimization and solved for explicitly while in ours,
latent variables are parameterized by the networks, thus
back-propagation can be executed end-to-end for training.

• By simpler optimization, our model allows more flexible
selection of loss types imposed on Ŷ and X̂. In experi-
ments, we found that imposing `1 loss on Ŷ consistently
led to better prediction while performance remains similar
with either `1 or `2 loss on X̂. Since `1 loss is known to be
more robust to outliers, imposing it directly on Ŷ makes
the model more resilient to potential outliers.

• Encoders/decoders themselves can use temporal DNNs so
non-static relationships can be captured.
Once the model is learned, forecasting several steps ahead

is performed via rolling windows. Given past input data
[yT−L+1, ...,yT], the learned model produces the latent pre-
diction x̂T+1 = hW(xT−L+1, ...,xT) where each xi =
gφ(yi). The predicted ŷT+1 is then decoded from x̂T+1.
The same procedure can be sequentially repeated τ times (in
the latent space) to forecast τ future values of Y in which
the latent prediction x̂T+2 utilizes [xT−L+1, ...,xT , x̂T+1]
as the input to the model. Notice that the model does not
require retraining during prediction as opposed to TRMF.

Probabilistic Prediction
One of the notorious challenges with high-dimensional
time series forecasting is how to probabilistically model
the future values conditioned on the observed sequence:
p(yT+1, ...,yT+τ |y1, ...,yT). Most previous works either
focus on modelling each individual time series or parame-
terizing the conditional probability of the high dimensional
series by a multivariate Gaussian distribution. However, this
is inconvenient since the number of learned parameters (co-
variance matrix) grows quadratically with the data dimen-
sion. Recent DNN approaches make distribution assumptions

9120

Figure 1: Temporal latent autoencoder. Though illustrated with an RNN, any temporal DNN model (e.g., TCN or Transformer)
can be used in the latent space. The decoder translates Normal noise to arbitrary distributions.

(such as low-rank covariance) that limit flexibility and/or
similarly lack scalability (see Related Work section).

In this paper, instead of directly modelling in the input
space, we propose to encode the high dimensional data to a
much lower dimensional embedding, on which a probabilistic
model can be imposed. Prediction samples are later obtained
by sampling from the latent distribution and translating these
samples through the decoder. If the encoder is sufficiently
complex so that it can capture non-linear correlation among
series, we can introduce fairly simple probabilistic structure
on the latent variables and are still able to model complex
distributions of the multivariate data via the decoder mapping.
Indeed, together with the proposed network architecture in
Figure 1, we model

p(xi+1|x1, ...,xi) = N (xi+1;µi,σ
2
i), i = L, ..., b. (8)

Here, we fix the conditional distribution of latent variables to
multivariate Gaussian with diagonal covariance matrix with
variance σ2

i . This is meaningful as it encourages the latent
variables to capture different orthogonal patterns of the data,
which makes the representation more powerful, universal, and
interpretable. The mean µi and variance σ2

i are functions of
x1, ...,xi: µi = h

(1)
W (x1, ...,xi) and σ2

i = h
(2)
W (x1, ...,xi).

The objective function LB(φ, θ,W) with respect to the
batch data YB is defined as the weighted combination of the
reconstruction loss and the negative log likelihood loss

‖ŶB−YB‖p`p
nb − λ

b−L
∑b
i=L+1 logN (xi;µi−1,σ

2
i−1). (9)

This bears similarity to the loss of the variational autoen-
coder (VAE) (Kingma and Welling 2014b) which consists of
a data reconstruction loss and a Kullback–Leibler divergence
loss encouraging the latent distribution to be close to the stan-
dard multivariate Gaussian with zero mean and unit diagonal
covariance. Unlike VAEs, our model has a temporal model in
the latent space and is measuring a conditional discrepancy
(with no fixed mean constraint). Further, rather than encour-
age unit variance we fix latent space unit variance, to also
help avoid overfitting during training - i.e., we set σ2

i = 1
in our model. As with GANs, the decoder learns to translate
this noise to arbitrary distributions (examples in supplement).

Recall the output of the decoder ŷi+1 = fθ(x̂i+1) for
each sample x̂i+1 from the distribution (8). In order to
back-propagate through batch data, we utilize the reparam-
eterization trick as in VAEs. I.e., x̂i+1 = µi + 1ε =

h
(1)
W (x1, ...,xi) + 1ε with ε ∼ N (0, 1). Each iteration when

gradient calculation is required, a sample ε is generated which
yields latent sample x̂i+1 and associated ŷi+1.

Once the model is learned, next prediction samples ŷT+1

can be decoded from samples x̂T+1 of the latent distribution
(8). Conditioned on xT−L+1, ...,xT and the mean of x̂T+1,
samples x̂T+2 can also be drawn from (8) to obtain prediction
samples ŷT+2, and so on.

Experiments
Point Estimation
We first evaluate our point prediction model with loss de-
fined in (7). We compare with state-of-the art multivariate
and univariate forecast methods (Sen, Yu, and Dhillon 2019)
(Yu, Rao, and Dhillon 2016) (Salinas, Flunkert, and Gasthaus
2019) using 3 popular datasets: traffic: hourly traffic of 963
San Fancisco car lanes (Cuturi 2011; Dua and Graff 2017),
electricity: hourly consumption of 370 houses (Trindad 2015),
and wiki: daily views of ˜115k Wikipedia articles (Kaggle
2017). Traffic and electricity show weekly cross-series pat-
terns; wiki contains a very large number of series. Following
conventional setups (Salinas, Flunkert, and Gasthaus 2019;
Sen, Yu, and Dhillon 2019; Yu, Rao, and Dhillon 2016), we
perform rolling prediction evaluation: 24 time-points per win-
dow, last 7 windows for testing for traffic and electricity, and
14 per window with last 4 windows for wiki. We use the last
few windows prior to the test period for any hyper parameter
selection. We use 3 standard metrics: mean absolute percent
error (MAPE), weighted absolute percent error (WAPE), and
symmetric MAPE (SMAPE) to measure test prediction error.
Dataset / formula details are in the supplement.

Network architecture and optimization setup in experi-
ments is as follows: the encoder and decoder use feed forward
network (FNN) layers with ReLU activations on all but the
last layer. Layer dimensions vary per dataset. The network
architecture in the latent space is a 4-layer LSTM, each with
32 hidden units. In all experiments, `1 loss is used on Ŷ and
`2 for the regularization. Regularization parameter λ is set
to 0.5. We find the `1 loss on Ŷ can help reduce potential
outlier effects and provide more stable and accurate results.
Setup and training details are provided in the supplement.

Table 1 shows the comparison of different approaches. All
results except our proposed TLAE were reported in (Sen,
Yu, and Dhillon 2019) under the same experimental setup;

9121

we pick the best reported results in (Sen, Yu, and Dhillon
2019) with or without data normalization. Here, global mod-
els use global features for multivariate forecasting while local
models employ univariate models and separately predict in-
dividual series. Here we do not compare our model with
conventional methods (e.g., VAR, ARIMA) since they are
already confirmed to obtain inferior performance to TRMF
and DeepAR methods (Yu, Rao, and Dhillon 2016) (Salinas,
Flunkert, and Gasthaus 2019).

As seen in the table, our method significantly out-performs
other global modeling / factorization methods on all datasets
(8/9 dataset-metric combinations) - showing it clearly ad-
vances the state-of-the-art for global factorization multivari-
ate forecasting approaches. Compared with other global mod-
els, the gain on traffic and electricity datasets can be as sig-
nificant as 50%. Further, even without any local modeling
and additional exogenous features like hour of day (as used
in local and combined methods), our method still achieves
superior performance on 2/3 datasets across all metrics. Our
model could likely be further improved by incorporating the
exogenous features in the latent space or with local modeling
(as done with deepGLO) - the point is our model provides
a better global fit starting point. Also note our model only
applied standard network architectures and did not make use
of recent advanced ones such as TCNs or Transformer, for
which we might expect further improvement.

Furthermore, in experiments latent dimensions are set to
16 for traffic and 32 for electricity data, as opposed to 64 di-
mensions used in (Sen, Yu, and Dhillon 2019). This indicates
our model is able to learn a better and more compact rep-
resentation. We show examples of learned latent series and
input and latent space predictions (and distributions) in the
supplement, illustrating our model is able to capture shared
global patterns. We also highlight that our model does not
need retraining during testing.

Probabilistic Estimation
Our next experiments consider probabilistic forecasting. We
compare our model with the state-of-the-art probabilistic
multivariate method (Salinas et al. 2019), as well as (Wang
et al. 2019) and univariate forecasting (Salinas, Flunkert, and
Gasthaus 2019; Rangapuram et al. 2018; Li et al. 2019) in
the supplement, each following the same data setup (note:
different data splits and processing than in the previous sec-
tion; details in supplement). We apply the same network
architecture as in previous experiments, except the latent
variable loss is the negative Gaussian log likelihood (9) and
the regularization parameter λ is set to 0.005. A smaller λ
is selected in this case to account for the scale difference
between the regularizations in (6) and (9). Latent samples are
generated during training with the reparameterization trick
and distribution statistics obtained from decoded sampled
latent predictions. Two additional datasets are included: solar
(hourly production from 137 stations) and taxi (rides taken at
1214 locations every 30 minutes) (details in the supplement).

For probabilistic estimates, we report both the continuous
ranked probability score across summed time series (CRPS-
sum) (Matheson and Winkler 1976; Gneiting and Raftery
2007; Salinas et al. 2019) (details in supplement) and MSE

(mean square error) error metrics, to measure overall joint
distribution pattern fit and fit of joint distribution central ten-
dency, respectively, so that together the two metrics give a
good idea of how good the predictive distribution fit is. Re-
sults are shown in Table 2 comparing error scores of TLAE
with other methods reported in (Salinas et al. 2019). Here, GP
is the Gaussian process model of (Salinas et al. 2019). As one
can observe, our model outperforms other methods on most
of the dataset-metric combinations (7/10), in which the perfor-
mance gain is significant on Solar, Traffic, and Taxi datasets.
We also provide additional tables in the supplement to show
CRPS and MSE scores with standard deviation from different
runs for more thorough comparison. In the supplement, we
visually show different latent series learned from the model
on all datasets as well as predictive distributions and sampled
2D joint distributions, demonstrating non-Gaussian and non-
stationary distribution patterns. From the plots we see that
some are focused on capturing global, more slowly changing
patterns across time series; others appear to capture local,
faster changing information. Combinations of these enable
the model to provide faithful predictions.

Hyper Param. Sensitivity & Ablation Study
We conducted experiments with traffic data to monitor pre-
diction performance when varying hyper parameters: batch
size, regularization parameter λ, and latent dimension. We
use the same network architecture as the previous section and
train the model with probabilistic loss (9). Predictions are the
decoded mean of the latent distribution and error is measured
by MAPE, WAPE, and SMAPE metrics.

As explained (see Figure 1), the latent sequence to the
decoder consists of two sub-sequences {x1, ...,xL} and
{x̂L+1, ..., x̂b}. The first is directly transmitted from the
encoder; the second is the output of the LSTM network.
Minimizing discrepancy between x̂L+i and xL+i equips the
latent variables with predictive capability, which implicitly
contributes to better time series prediction, so selecting the
batch size sufficiently larger than L (the number of LSTM
time steps) should lead to better predictive performance.

We validate this intuition by varying batch size b =
L + 1, 1.5L, 2L, 2.5L, and 3L where L is set to 194. Fig-
ure 2 illustrates the metric variability with increasing batch
size. All three metrics decrease as we increase the batch
size, confirming the importance of balancing the two latent
sub-sequences, i.e., having a balance between both a direct re-
production and predictive loss component in the input space.

Next, for batch size b = 2L, we vary λ = 1e-6, 1e-5,
1e-4, 1e-3, 5e-3, 5e-2, 5e-1, and 5 and train for 500 epochs.
Figure 3 shows metrics vs. λ. As latent space regularization is
ignored with very small λ, the overall prediction performance
is poor. The performance is quickly improved with higher λ
- the latent constraint starts to dominate the reconstruction
term with larger λ. The best range of λ is [1e-4, 1e-2].

Lastly, we vary the latent embedding dimension between
[2, 4, 8, 16, 32], and train with 200 epochs vs. 1000 to reduce
computational time. Figure 4 shows the impact on metrics.
The model performance slightly improves with increase of
the latent dimension and starts to stabilize, indicating higher
latent dimension may not help much.

9122

Model Algorithm Datasets
Traffic Electricity-Large Wiki-Large

Global fact-
orization

TLAE (our proposed method) 0.117∗/0.137∗/0.108∗ 0.080∗/0.152∗/0.120∗ 0.334/0.447/0.434
DeepGLO - TCN-MF 0.226/0.284/0.247 0.106/0.525/0.188 0.433/1.59/0.686
TRMF 0.159/0.226/0.181 0.104/0.280/0.151 0.309/0.847/0.451
SVD+TCN 0.329/0.687/0.340 0.219/0.437/0.238 0.639/2.000/0.893

Local &
combined

DeepGLO - combined 0.148/0.168/0.142 0.082/0.341/0.121 0.237/0.441/0.395
LSTM 0.270/0.357/0.263 0.109/0.264/0.154 0.789/0.686/0.493
DeepAR 0.140/0.201/0.114 0.086/0.259/0.141 0.429/2.980/0.424
TCN (no LeveledInit) 0.204/0.284/0.236 0.147/0.476/0.156 0.511/0.884/0.509
TCN (LeveledInit) 0.157/0.201/0.156 0.092/0.237/0.126 0.212∗/0.316∗/0.296∗

Prophet (Taylor and Letham 2018) 0.303/0.559/0.403 0.197/0.393/0.221 -

Table 1: Comparison of different algorithms with WAPE/MAPE/SMAPE metrics. Only local and combined models employ
additional features such as hour of day and day of week. Best results for global modeling methods are labeled in bold, best overall
with ∗. Our scores are averaged over 3 separate random initialized runs. Standard dev. is less than 0.003 for all the metrics.

CRPS-Sum / MSE
Estimator Solar Electricity-Small Traffic Taxi Wiki-Small
VAR 0.524 / 7.0e3 0.031 / 1.2e7 0.144 / 5.1e-3 0.292 / - 3.400 / -
GARCH 0.869 / 3.5e3 0.278 / 1.2e6 0.368 / 3.3e-3 - / - - / -
Vec-LSTM-ind 0.470 / 9.9e2 0.731 / 2.6e7 0.110 / 6.5e-4 0.429 / 5.2e1 0.801 / 5.2e7
Vec-LSTM-ind-scaling 0.391 / 9.3e2 0.025 / 2.1e5 0.087 / 6.3e-4 0.506 / 7.3e1 0.113 / 7.2e7
Vec-LSTM-fullrank 0.956 / 3.8e3 0.999 / 2.7e7 -/- -/- -/-
Vec-LSTM-fullrank-scaling 0.920 /3.8e3 0.747 / 3.2e7 -/- -/- -/-
Vec-LSTM-lowrank-Copula 0.319 / 2.9e3 0.064 / 5.5e6 0.103 / 1.5e-3 0.4326 / 5.1e1 0.241 / 3.8e7
LSTM-GP (Salinas et al. 2019) 0.828 / 3.7e3 0.947 / 2.7e7 2.198 / 5.1e-1 0.425 / 5.9e1 0.933 / 5.4e7
LSTM-GP-scaling (Salinas et al. 2019) 0.368 / 1.1e3 0.022 / 1.8e5 0.079 / 5.2e-4 0.183 / 2.7e1 1.483 / 5.5e7
LSTM-GP-Copula (Salinas et al. 2019) 0.337 / 9.8e2 0.024 / 2.4e5 0.078 / 6.9e-4 0.208 / 3.1e1 0.086 / 4.0e7
VRNN (Chung et al. 2015) 0.133 / 7.3e2 0.051 / 2.7e5 0.181 / 8.7e-4 0.139 / 3.0e1 0.396 / 4.5e7
TLAE (our proposed method) 0.124 / 6.8e2 0.040 / 2.0e5 0.069 / 4.4e-4 0.130 / 2.6e1 0.241 / 3.8e7

Table 2: Comparison of algorithms with CRPS-Sum and MSE metrics (lower is better) - mean from 3 separate random initialized
runs. Most results are from Tables 2 and 6 of (Salinas et al. 2019) with VRNN and our results (TLAE) under the same setup. VAR
and GARCH are traditional multivariate methods (Lütkepohl 2005; Bauwens, Laurent, and Rombouts 2006); Vec-LSTM methods
use a single global LSTM that takes and predicts all series at once, with different output Gaussian distribution approaches; and
GP methods are DNN gaussian process ones proposed in (Salinas et al. 2019) with GP-Copula the main one - details in (Salinas
et al. 2019). A ’-’ indicates a method failed (e.g., required too much memory as not scalable enough for data size).

Additionally, to validate the hypothesis that nonlinear trans-
formation helps, we performed ablation study by using a
linear decoder and encoder under the same setup. We found
worse performance than the non-linear case, though still bet-
ter than DeepGLO (details in supplement).

Conclusion

This paper introduces an effective method for high dimen-
sional multivariate time series forecasting, advancing the
state-of-the-art for global factorization approaches. The
method offers an efficient combination between flexible non-
linear autoencoder mapping and inherent latent temporal
dynamics modeled by an LSTM. The proposed formulation
allows end-to-end training and, by modelling the distribution
in the latent embedding, generating complex predictive distri-
butions via the non-linear decoder. Our experiments illustrate
the superior performance compared to other state-of-the-art
methods on several common time series datasets. Future di-
rections include testing temporal models in the autoencoder,
3D tensor inputs, and combinations with local modeling.

Figure 2: Vary batch size Figure 3: Vary λ

Figure 4: Vary latent dim.

9123

References
Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural machine
translation by jointly learning to align and translate. In 3rd
International Conference on Learning Representations, ICLR
2015.
Bai, S.; Kolter, J. Z.; and Koltun, V. 2018. An empirical
evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271 .
Bandara, K.; Bergmeir, C.; and Hewamalage, H. 2020.
LSTM-MSNet: Leveraging Forecasts on Sets of Related
Time Series With Multiple Seasonal Patterns. IEEE Transac-
tions on Neural Networks and Learning Systems 1–14.
Bauwens, L.; Laurent, S.; and Rombouts, J. V. 2006. Multi-
variate GARCH models: a survey. Journal of applied econo-
metrics 21(1): 79–109.
Benidis, K.; Rangapuram, S. S.; Flunkert, V.; Wang, B.;
Maddix, D.; Turkmen, C.; Gasthaus, J.; Bohlke-Schneider,
M.; Salinas, D.; Stella, L.; et al. 2020. Neural forecast-
ing: Introduction and literature overview. arXiv preprint
arXiv:2004.10240 .
Borovykh, A.; Bohte, S.; and Oosterlee, C. W. 2017. Con-
ditional time series forecasting with convolutional neural
networks. arXiv preprint arXiv:1703.04691 .
Chatfield, C. 2000. Time-series forecasting. CRC press.
Chatzis, S. P. 2017. Recurrent latent variable conditional
heteroscedasticity. In 2017 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), 2711–
2715. IEEE.
Chen, T.; Yin, H.; Chen, H.; Wu, L.; Wang, H.; Zhou, X.; and
Li, X. 2018. TADA: Trend Alignment with Dual-Attention
Multi-task Recurrent Neural Networks for Sales Prediction.
In 2018 IEEE International Conference on Data Mining
(ICDM), 49–58.
Cheng, J.; Huang, K.; and Zheng, Z. 2020. Towards Better
Forecasting by Fusing Near and Distant Future Visions. In
AAAI Conference on Artificial Intelligence.
Cho, K.; van Merriënboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learn-
ing Phrase Representations using RNN Encoder–Decoder
for Statistical Machine Translation. In Proceedings of the
2014 Conference on Empirical Methods in Natural Language
Processing (EMNLP), 1724–1734.
Chung, J.; Kastner, K.; Dinh, L.; Goel, K.; Courville, A. C.;
and Bengio, Y. 2015. A recurrent latent variable model for
sequential data. In Advances in neural information processing
systems, 2980–2988.
Cirstea, R.-G.; Micu, D.-V.; Muresan, G.-M.; Guo, C.; and
Yang, B. 2018. Correlated time series forecasting using
multi-task deep neural networks. In Proceedings of the 27th
acm international conference on information and knowledge
management, 1527–1530.
Crone, S. F.; Hibon, M.; and Nikolopoulos, K. 2011. Ad-
vances in forecasting with neural networks? Empirical evi-
dence from the NN3 competition on time series prediction.
International Journal of forecasting 27(3): 635–660.

Cuturi, M. 2011. Fast global alignment kernels. In Pro-
ceedings of the 28th international conference on machine
learning (ICML-11), 929–936.

Dasgupta, S.; and Osogami, T. 2017. Nonlinear dynamic
Boltzmann machines for time-series prediction. In Thirty-
First AAAI Conference on Artificial Intelligence.

Dinh, L.; Sohl-Dickstein, J.; and Bengio, S. 2017. Density
estimation using real nvp .

Doersch, C. 2016. Tutorial on variational autoencoders. arXiv
preprint arXiv:1606.05908 .

Dua, D.; and Graff, C. 2017. UCI Machine Learning Reposi-
tory. URL http://archive.ics.uci.edu/ml.

Durbin, J.; and Koopman, S. J. 2012. Time series analysis by
state space methods. Oxford university press.

Fildes, R.; Nikolopoulos, K.; Crone, S. F.; and Syntetos, A. A.
2008. Forecasting and operational research: a review. Journal
of the Operational Research Society 59(9): 1150–1172.

Funahashi, K.-i.; and Nakamura, Y. 1993. Approximation
of dynamical systems by continuous time recurrent neural
networks. Neural networks 6(6): 801–806.

Gelper, S.; Wilms, I.; and Croux, C. 2016. Identifying De-
mand Effects in a Large Network of Product Categories. Jour-
nal of Retailing 92(1): 25 – 39. ISSN 0022-4359. doi:https:
//doi.org/10.1016/j.jretai.2015.05.005. URL http://www.
sciencedirect.com/science/article/pii/S0022435915000536.

Gneiting, T.; and Raftery, A. E. 2007. Strictly proper scoring
rules, prediction, and estimation. Journal of the American
statistical Association 102(477): 359–378.

Goel, H.; Melnyk, I.; and Banerjee, A. 2017. R2N2: resid-
ual recurrent neural networks for multivariate time series
forecasting. arXiv preprint arXiv:1709.03159 .

Hinton, G. E.; and Zemel, R. S. 1994. Autoencoders, mini-
mum description length and Helmholtz free energy. In Ad-
vances in neural information processing systems, 3–10.

Hochreiter, S.; and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8): 1735–1780.

Hyndman, R.; Koehler, A. B.; Ord, J. K.; and Snyder, R. D.
2008. Forecasting with exponential smoothing: the state
space approach. Springer Science & Business Media.

Hyndman, R. J.; and Athanasopoulos, G. 2018. Forecasting:
principles and practice. OTexts.

Kaggle. 2017. Wikipedia web traffic data set. URL
https://www.kaggle.com/c/web-traffic-time-series-
forecasting/data. Accessed: 2020-01-11.

Kim, K.-j. 2003. Financial time series forecasting using
support vector machines. Neurocomputing 55(1-2): 307–319.

Kingma, D. P.; and Welling, M. 2014a. Auto-Encoding Vari-
ational Bayes. In Bengio, Y.; and LeCun, Y., eds., 2nd In-
ternational Conference on Learning Representations, ICLR
2014, Banff, AB, Canada, April 14-16, 2014, Conference
Track Proceedings. URL http://arxiv.org/abs/1312.6114.

9124

Kingma, D. P.; and Welling, M. 2014b. Auto-encoding varia-
tional bayes. In In Proceedings of the International Confer-
ence on Learning Representations (ICLR).

Kramer, M. A. 1991. Nonlinear principal component analysis
using autoassociative neural networks. AIChE journal 37(2):
233–243.

Lai, G.; Chang, W.-C.; Yang, Y.; and Liu, H. 2018. Modeling
long-and short-term temporal patterns with deep neural net-
works. In The 41st International ACM SIGIR Conference on
Research & Development in Information Retrieval, 95–104.

Leeflang, P. S.; Selva], J. P.; Dijk], A. V.; and Wittink, D. R.
2008. Decomposing the sales promotion bump accounting
for cross-category effects. International Journal of Research
in Marketing 25(3): 201 – 214. ISSN 0167-8116. doi:https:
//doi.org/10.1016/j.ijresmar.2008.03.003. URL http://www.
sciencedirect.com/science/article/pii/S0167811608000347.

Li, S.; Jin, X.; Xuan, Y.; Zhou, X.; Chen, W.; Wang, Y.-X.;
and Yan, X. 2019. Enhancing the Locality and Breaking the
Memory Bottleneck of Transformer on Time Series Forecast-
ing. In Advances in neural information processing systems,
4838–4847.

Liang, Y.; Ke, S.; Zhang, J.; Yi, X.; and Zheng, Y. 2018.
Geoman: Multi-level attention networks for geo-sensory time
series prediction. In IJCAI, 3428–3434.

Lütkepohl, H. 2005. New introduction to multiple time series
analysis. Springer Science & Business Media.

Makridakis, S.; Hyndman, R. J.; and Petropoulos, F. 2020.
Forecasting in social settings: The state of the art. Interna-
tional Journal of Forecasting 36(1): 15–28.

Makridakis, S.; Spiliotis, E.; and Assimakopoulos, V. 2018.
Statistical and Machine Learning forecasting methods: Con-
cerns and ways forward. PloS one 13(3).

Makridakis, S.; Spiliotis, E.; and Assimakopoulos, V. 2020.
The M4 Competition: 100,000 time series and 61 forecasting
methods. International Journal of Forecasting 36(1): 54–74.

Matheson, J. E.; and Winkler, R. L. 1976. Scoring rules for
continuous probability distributions. Management science
22(10): 1087–1096.

McKenzie, E. 1984. General exponential smoothing and
the equivalent ARMA process. Journal of Forecasting 3(3):
333–344.

Qin, Y.; Song, D.; Cheng, H.; Cheng, W.; Jiang, G.; and
Cottrell, G. W. 2017. A dual-stage attention-based recurrent
neural network for time series prediction. In Proceedings of
the 26th International Joint Conference on Artificial Intelli-
gence, 2627–2633.

Rangapuram, S. S.; Seeger, M.; Gasthaus, J.; Stella, L.; Wang,
Y.; and Januschowski, T. 2018. Deep State Space Models for
Time Series Forecasting. In Advances in neural information
processing systems, 7796––7805.

Rasul, K.; Sheikh, A.-S.; Schuster, I.; Bergmann, U.; and Voll-
graf, R. 2020. Multi-variate Probabilistic Time Series Fore-
casting via Conditioned Normalizing Flows. arXiv preprint
arXiv:2002.06103 .

Rodrigues, F.; and Pereira, F. C. 2020. Beyond expectation:
Deep joint mean and quantile regression for spatiotempo-
ral problems. IEEE Transactions on Neural Networks and
Learning Systems .
Salinas, D.; Bohlke-Schneider, M.; Callot, L.; Medico, R.;
and Gasthaus, J. 2019. High-Dimensional Multivariate Fore-
casting with Low-Rank Gaussian Copula Processes. In
Advances in neural information processing systems, 7796–
–7805.
Salinas, D.; Flunkert, V.; and Gasthaus, J. 2019. DeepAR:
Probabilistic Forecasting with Autoregressive Recurrent Net-
works. International Journal of Forecasting 8(2): 136–153.
Seeger, M. W.; Salinas, D.; and Flunkert, V. 2016. Bayesian
intermittent demand forecasting for large inventories. In
Advances in Neural Information Processing Systems, 4646–
4654.
Sen, R.; Yu, H.-F.; and Dhillon, I. 2019. Think Globally,
Act Locally: A Deep Neural Network Approach to High-
Dimensional Time Series Forecasting. In Advances in neural
information processing systems, 4838–4847.
Smyl, S. 2020. A hybrid method of exponential smoothing
and recurrent neural networks for time series forecasting.
International Journal of Forecasting 36(1): 75–85.
Srinivasan, S. R.; Ramakrishnan, S.; and Grasman, S. E.
2005. Identifying the effects of cannibalization on the product
portfolio. Marketing intelligence & planning .
Taylor, S. J.; and Letham, B. 2018. Forecasting at scale. The
American Statistician 72(1): 37–45.
Trindad, A. 2015. ElectricityLoadDiagrams20112014
Data Set. URL https://archive.ics.uci.edu/ml/datasets/
ElectricityLoadDiagrams20112014. Accessed: 2020-01-11.
Tsay, R. S. 2013. Multivariate time series analysis: with R
and financial applications. John Wiley & Sons.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. Attention
is all you need. In Advances in neural information processing
systems, 5998–6008.
Wang, Y.; Smola, A.; Maddix, D.; Gasthaus, J.; Foster, D.;
and Januschowski, T. 2019. Deep Factors for Forecasting. In
International Conference on Machine Learning, 6607–6617.
Wen, R.; Torkkola, K.; Narayanaswamy, B.; and Madeka,
D. 2017. A multi-horizon quantile recurrent forecaster. In
Advances in neural information processing systems - Time
Series Workshop.
Yu, H.-F.; Rao, N.; and Dhillon, I. 2016. Temporal Regular-
ized Matrix Factorization for High-dimensional Time Series
Prediction. In Advances in neural information processing
systems, 847–855.
Zhang, G.; Patuwo, B. E.; and Hu, M. Y. 1998. Forecasting
with artificial neural networks:: The state of the art. Interna-
tional journal of forecasting 14(1): 35–62.
Zhang, G. P. 2003. Time series forecasting using a hybrid
ARIMA and neural network model. Neurocomputing 50:
159–175.

9125

