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Abstract
We consider the problem of learning a set of probability dis-
tributions from the empirical Bellman dynamics in distribu-
tional reinforcement learning (RL), a class of state-of-the-art
methods that estimate the distribution, as opposed to only the
expectation, of the total return. We formulate a method that
learns a finite set of statistics from each return distribution via
neural networks, as in the distributional RL literature. Exist-
ing distributional RL methods however constrain the learned
statistics to predefined functional forms of the return distribu-
tion which is both restrictive in representation and difficult in
maintaining the predefined statistics. Instead, we learn unre-
stricted statistics, i.e., deterministic (pseudo-)samples, of the
return distribution by leveraging a technique from hypothe-
sis testing known as maximum mean discrepancy (MMD),
which leads to a simpler objective amenable to backpropaga-
tion. Our method can be interpreted as implicitly matching all
orders of moments between a return distribution and its Bell-
man target. We establish sufficient conditions for the contrac-
tion of the distributional Bellman operator and provide finite-
sample analysis for the deterministic samples in distribution
approximation. Experiments on the suite of Atari games show
that our method outperforms the distributional RL baselines
and sets a new record in the Atari games for non-distributed
agents.

Introduction
A fundamental aspect in reinforcement learning (RL) is the
value of an action in a state which is formulated as the
expected value of the return, i.e., the expected value of
the discounted sum of rewards when the agent follows a
policy starting in that state and executes that action (Sut-
ton, Barto et al. 1998). Learning this expected action-value
via Bellman’s equation (Bellman 1957) is central to value-
based RL such as temporal-difference (TD) learning (Sut-
ton 1988), SARSA (Rummery and Niranjan 1994), and Q-
learning (Watkins and Dayan 1992). Recently, however, ap-
proaches known as distributional RL that aim at learning the
distribution of the return have shown to be highly effective in
practice (Morimura et al. 2010b,a; Bellemare, Dabney, and
Munos 2017; Dabney et al. 2018b,a; Yang et al. 2019).

Despite many algorithmic variants with impressive prac-
tical performance (Bellemare, Dabney, and Munos 2017;
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Dabney et al. 2018b,a; Yang et al. 2019), they all share the
same characteristic that they explicitly learn a set of statistics
of predefined functional forms to approximate a return dis-
tribution. Using predefined statistics can limit the learning
due to the statistic constraints it imposes and the difficulty
to maintain such predefined statistics. In this paper, we pro-
pose to address these limitations by instead learning a set of
unrestricted statistics, i.e., deterministic (pseudo-)samples,
of a return distribution that can be evolved into any func-
tional form. We observe that the deterministic samples can
be deterministically learned to simulate a return distribution
by utilizing an idea from statistical hypothesis testing known
as maximum mean discrepancy (MMD). This novel perspec-
tive requires a careful design of algorithm and a further un-
derstanding of distributional RL associated with MMD.

Leveraging this perspective, we are able to provide a
novel algorithm to eschew the predefined statistic limitations
in distributional RL and give theoretical understanding of
distributional RL within this perspective. Our approach is
also conceptually amenable for natural extension along the
lines of recent modelling improvements to distributional RL
brought by Implicit Quantile Networks (IQN) (Dabney et al.
2018a), and Fully parameterized Quantile Function (FQF)
(Yang et al. 2019). Specifically, our key contributions are

1. We provide a novel approach to distributional RL using
deterministic samples via MMD that addresses the limita-
tions in the existing distributional RL;

2. We provide theoretical understanding of distributional RL
within our framework, specifically the contraction prop-
erty of the distributional Bellman operator and the non-
asymptotic convergence of the approximate distribution
from deterministic samples;

3. We demonstrate the practical effectiveness of our frame-
work in both tabular RL and large-scale experiments
where our method outperforms the standard distributional
RL methods and even establishes a new record in the Atari
games for non-distributed agents.

Outline. After carefully reviewing relevant background and
related works, and discussing their limitations, we present
our novel algorithmic approach to address these issues fol-
lowed by theoretical analysis. We then present the experi-
ments to confirm the effectiveness of our approach empiri-
cally and conclude our work.
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Background and Related Works
Expected RL
In a standard RL setting, an agent interacts with an environ-
ment via a Markov Decision Process (S,A, R, P, γ) (Puter-
man 2014) where S and A denote state and action spaces,
resp., R the reward measure, P (·|s, a) the transition kernel
measure, and γ ∈ [0, 1) a discount factor. A policy π(·|s)
maps a state to a distribution over the action space.

Given a policy π, the discounted sum of future rewards
following policy π is the random variable

Zπ(s, a) =
∞∑
t=0

γtR(st, at), (1)

where s0 = s, a0 = a, st ∼ P (·|st−1, at−1), at ∼ π(·|st),
and R(st, at) ∼ R(·|st, at). The goal in expected RL is to
find an optimal policy π∗ that maximizes the action-value
function Qπ(s, a) := E[Zπ(s, a)]. A common approach is
to find the unique fixed point Q∗ = Qπ

∗
of the Bellman

optimality operator (Bellman 1957) T : RS×A → RS×A
defined by

TQ(s, a) := E[R(s, a)] + γEP [max
a′

Q(s′, a′)], ∀(s, a).

A standard approach to this end is Q-learning (Watkins and
Dayan 1992) which maintains an estimate Qθ of the opti-
mal action-value function Q∗ and iteratively improves the
estimation via the Bellman backup

Qθ(s, a)← E[R(s, a)] + γEP [max
a′

Qθ(s
′, a′)].

Deep Q-Network (DQN) (Mnih et al. 2015) achieves
human-level performance on the Atari benchmark by lever-
aging a convolutional neural network to represent Qθ while
using a replay buffer and a target network to update Qθ.

Additional Notations
Let X ⊆ Rd be an open set. Let P(X ) be the set of Borel
probability measures on X . Let P(X )S×A be the Cartesian
product of P(X ) indexed by S × A. For any α ≥ 0, let
Pα(X ) := {p ∈ P(X ) :

∫
X ‖x‖

αp(dx) < ∞}. When
d = 1, let mn(p) :=

∫
X x

np(dx) be the n-th order moment
of a distribution p ∈ P(X ), and let

P∗(X ) =

{
p ∈ P(X ) : lim sup

n→∞

|mn(p)|1/n

n
= 0

}
.

Note that if X is a bounded domain in R, then P∗(X ) =
P(X ). Denote by δz the Dirac measure, i.e., the point mass,
at z. Denote by ∆n the n-dimensional simplex.

Distributional RL
Instead of estimating only the expectation Qπ of Zπ , dis-
tributional RL methods (Bellemare, Dabney, and Munos
2017; Dabney et al. 2018b,a; Rowland et al. 2018; Yang
et al. 2019) explicitly estimate the return distribution µπ =
law(Zπ) as an auxiliary task. Empirically, this auxiliary

task has been shown to significantly improve the perfor-
mance in the Atari benchmark. Theoretically, in the pol-
icy evaluation setting, the distributional version of the Bell-
man operator is a contraction in the p-Wasserstein met-
ric (Bellemare, Dabney, and Munos 2017) and Crámer dis-
tance (Rowland et al. 2018) (but not in total variation dis-
tance (Chung and Sobel 1987), Kullback-Leibler divergence
and Komogorov-Smirnov distance (Bellemare, Dabney, and
Munos 2017)). The contraction implies the uniqueness of
the fixed point of the distributional Bellman operator. In
control settings with tabular function approximations, dis-
tributional RL has a well-behaved asymptotic convergence
in Crámer distance when the return distributions are param-
eterized by categorical distributions (Rowland et al. 2018).
Bellemare et al. (2019) establish the asymptotic convergence
of distributional RL in policy evaluation in linear function
approximations. Lyle, Bellemare, and Castro (2019) exam-
ine behavioural differences between distributional RL and
expected RL, aligning the success of the former with non-
linear function approximations.

Categorical Distributional RL (CDRL) CDRL (Belle-
mare, Dabney, and Munos 2017) approximates a distribu-
tion η by a categorical distribution η̂ =

∑N
i=1 θiδzi where

z1 ≤ z2 ≤ ... ≤ zN is a set of fixed supports and {θi}Ni=1 are
learnable probabilities. The learnable probabilities {θi}Ni=1
are found in such way that η̂ is a projection of η onto
{
∑N
i=1 piδzi : {pi}Ni=1 ∈ ∆N} w.r.t. the Crámer distance

(Rowland et al. 2018). In practice, C51 (Bellemare, Dabney,
and Munos 2017), an instance of CDRL with N = 51, has
shown to perform favorably in Atari games.

Quantile Regression Distributional RL (QRDRL) QR-
DRL (Dabney et al. 2018b) approximates a distribution η

by a mixture of Diracs η̂ = 1
N

∑N
i=1 δθi where {θi}Ni=1

are learnable in such a way that η̂ is a projection of η on
{ 1
N

∑N
i=1 δzi : {zi}Ni=1 ∈ RN} w.r.t. to the 1-Wasserstein

distance. Consequently, θi = F−1η ( 2i−1
2N ) where F−1η is

the inverse cumulative distribution function of η. Since the
quantile values {F−1η ( 2i−1

2N )} at the fixed quantiles { 2i−12N }
is a minimizer of an asymmetric quantile loss from quan-
tile regression literature (thus the name QRDRL) and the
quantile loss is compatible with stochastic gradient descent
(SGD), the quantile loss is used for QRDRL in practice. QR-
DQN-1 (Dabney et al. 2018b), an instance of QRDRL with
Huber loss, performs favorably empirically in Atari games.

Other Distributional Methods Some recent distribu-
tional RL methods have made modelling improvements
to QRDRL. Two typical improvements are from Implicit
Quantile Networks (IQN) (Dabney et al. 2018a), and Fully
parameterized Quantile Function (FQF) (Yang et al. 2019).
IQN uses implicit models to represent the quantile values
{θi} in QRDRL, i.e., instead of being represented by fixed
network outputs, {θi} are the outputs of a differentiable
function (e.g., neural networks) on the samples from a base
sampling distribution (e.g., uniform). FQF further improves
IQN by optimizing the locations of the base samples for
IQN, instead of using random base samples as in IQN, i.e.,
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both quantiles and quantile values are learnable in FQF.

Predefined Statistic Principle
Formally, a statistic is any functional ζ : P(X ) → R that
maps a distribution p ∈ P(X ) to a scalar ζ(p), e.g., the
expectation ζ(p) =

∫
X xp(dx) is a common statistic in

RL. Here, we formally refer to a predefined statistic as the
one whose functional form is specified before the statistic is
learned. In contrast, an unrestricted statistic does not sub-
scribe to any specific functional form (e.g., the median of a
distribution η is a predefined statistic as its functional form
is predefined via F−1η ( 1

2 ) while any empirical sample z ∼ η
can be considered an unrestricted statistic of η).

Though CDRL and QRDRL are two different variants of
distributional RL methodology, they share a unifying char-
acteristic that they both explicitly learn a finite set of prede-
fined statistics, i.e., statistics of predefined functional forms
(Rowland et al. 2019). We refer to this as predefined statis-
tic principle. This is clear for QRDRL as the statistics to be
learned about a distribution η are {ζ1, ..., ζN} where

ζi(η) := F−1η (
2i− 1

N
), ∀i ∈ {1, ..., N}.

It is a bit more subtle for CDRL. It can be shown in (Row-
land et al. 2019) that CDRL is equivalent to learning the
statistics {ζ1, ..., ζN−1} where

ζi(η) := EZ∼η
[
1{Z<zi} + 1{zi≤Z<zi+1}

zi+1 − Z
zi+1 − zi

]
, ∀i.

Learning predefined statistics as in CDRL and QRDRL
however can suffer two limitations in (i) statistic represen-
tation and (ii) difficulty in maintaining the predefined statis-
tics. Regarding (i), given the same fixed budget of N statis-
tics to approximate a return distribution η, CDRL restric-
tively associates the statistic budget to N fixed supports
{zi}Ni=1 while QRDRL constrains the budget to N quan-
tile values at specific quantiles. Instead, the statistic budget
should be freely learned into any form as long as it could
simulate the target distribution η sensibly. Regarding (ii), the
fixed supports in CDRL require a highly involved projection
step to be able to use KL divergence as the Bellman backup
changes the distribution supports; QRDRL requires that the
statistics must satisfy the constraints for valid quantile val-
ues at specific quantiles, e.g., the statistics to be learned are
order statistics. In fact, QR-DQN (Dabney et al. 2018b), a
typical instance of QRDRL, implicitly maintains the order
statistics via an asymmetric quantile loss but still does not
guarantee the monotonicity of the obtained quantile esti-
mates. A further notice regarding (ii) recognized in (Row-
land et al. 2019) is that since in practice we do not observe
the environment dynamic but only samples of it, a naive up-
date to learn the predefined statistics using such samples can
collapse the approximate distribution due to the different na-
tures of samples and statistics (in fact, (Rowland et al. 2019)
proposes imputation strategies to overcome this problem).
Instead, the statistics to be learned should be free of all such
difficulties to reduce the learning burden.

One might say that IQN/FQF (discussed in the previ-
ous subsection) can help QRDRL overcome these limita-
tions. While the modeling improvements in IQN/FQF are

practically effective, IQN/FQF however still embrace the
predefined statistic principle above as they built upon QR-
DRL with an improved modelling capacity. In this work we
propose an alternative approach to distributional RL that
directly eschews the predefined statistic principle used in
the prior distributional RL methods, i.e., the finite set of
statistics in our approach can be evolved into any func-
tional form and thus also reduces the need to maintain any
statistic constraints. If we informally view improvements to
CDRL/QRDRL into two dimensions: either modelling di-
mension or statistic dimension, IQN/FQF lie in the mod-
elling dimension while our work belongs to the statistic di-
mension. We notice that this does not necessarily mean one
approach is better than the other, but rather two orthogonal
approaches where the modelling improvements in IQN/FQF
can naturally apply to our work to further improve the mod-
eling capacity. We leave these modeling extensions to the
future work and focus the present work only on unrestricted
statistics with the simplest modelling choice as possible.

Distributional RL via Moment Matching
Maximum Mean Discrepancy
Let F be a reproducing kernel Hilbert space (RKHS) as-
sociated with a continuous kernel k(·, ·) on X . Consider
p, q ∈ P(X ), and let Z and W be two random variables
with distributions p and q, respectively. The maximum mean
discrepancy (MMD) (Gretton et al. 2012) between p and q
is defined as

MMD(p, q;F) := sup
f∈F :‖f‖F≤1

(E[f(Z)]− E[f(W )])

= ‖ψp − ψq‖F

=

(
E[k(Z,Z ′)] + E[k(W,W ′)]− 2E[k(Z,W )]

)1/2

where ψp :=
∫
X k(x, ·)p(dx) is the Bochner integral,

i.e., the mean embedding of p into F (Smola et al.
2007), and Z ′ (resp. W ′) is a random variable with
distribution p (resp. q) and is independent of Z (resp.
W ). In sequel, we interchangeably refer to MMD by
MMD(p, q;F),MMD(p, q; k), or MMD(p, q) if the context
is clear.

Empirical Approximation Given empirical samples
{zi}Ni=1 ∼ p and {wi}Mi=1 ∼ q, MMD admits a simple
empirical estimate as

MMD2
b({zi}, {wi}; k) =

1

N2

∑
i,j

k(zi, zj)

+
1

M2

∑
i,j

k(wi, wj)−
2

NM

∑
i,j

k(zi, wj).

Though there is also a simple unbiased estimate of MMD,
the biased estimate MMDb has smaller variance in practice
and thus is adopted in our work.

Problem Setting
Consider d = 1. For any policy π, let µπ = law(Zπ) be the
law (distribution) of the return r.v. Zπ as defined in Eq. (1).
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Algorithm 1: Generic MMDRL update
Require: Number of particles N , kernel k, discount

factor γ ∈ [0, 1]
Input: Sample transition (s, a, r, s′)

1 if Policy evaluation then
2 a∗ ∼ π(·|s′)
3 end
4 else if Control setting then
5 a∗ ← arg maxa′∈A

1
N

∑N
i=1 Zθ(s

′, a′)i
6 end
7 T̂Zi ← r + γZθ−(s′, a∗)i, ∀1 ≤ i ≤ N

Output: MMD2
b

(
{Zθ(s, a)i}Ni=1, {T̂Zi}Ni=1; k

)

The distributional Bellman operator T π (Bellemare, Dab-
ney, and Munos 2017) specifies the relation of different re-
turn distributions across state-action pairs along the Bell-
man dynamic; that is, for any µ ∈ P(X )S×A, and any
(s, a) ∈ S ×A,

T πµ(s, a) :=∫
S

∫
A

∫
X

(fγ,r)#µ(s′, a′)R(dr|s, a)π(da′|s′)P (ds′|s, a),

where fγ,r(z) := r + γz, ∀z and (fγ,r)#µ(s′, a′) is the
pushforward measure of µ(s′, a′) by fγ,r. Note that µπ is
the fixed point of T π , i.e., T πµπ = µπ . We are interested
in the problem of learning µπ ∈ P(X )S×A via the distribu-
tional Bellman operator T π .

Algorithmic Approach
In practical setting, we must approximate the return distri-
bution via a finite set of statistics as the space of Borel prob-
ability measures is infinite-dimensional. Let Zθ(s, a) :=
{Zθ(s, a)i}Ni=1 be a set of parameterized statistics of
µπ(s, a) where θ represents the parameters of the model,
e.g., neural networks. Instead of restricting Zθ(s, a) to pre-
defined statistic functionals, we model unrestricted statis-
tics, i.e., deterministic samples where each Zθ(s, a)i can be
evolved into any form of statistics and we use the Dirac mix-
ture µ̂θ(s, a) = 1

N

∑N
i=1 δZθ(s,a)i to approximate µπ(s, a).

We refer to the deterministic samples Zθ(s, a) as particles,
and our goal is reduced into learning the particles Zθ(s, a)
to approximate µπ(s, a). To this end, the particles Zθ(s, a)
is deterministically evolved to minimize the MMD distance
between the approximate distribution and its distributional
Bellman target. Algorithm 1 below presents the generic up-
date in our approach, namely MMDRL.

Intuition The MMDRL reduces into the standard TD or
Q-learning when N = 1. For N > 1, the objective MMDb
when used with SGD and Gaussian kernels k(x, y) =
exp(−|x − y|2/h) contributes in two ways: (i) The term
1
N2

∑
i,j k(Zθ(s, a)i, Zθ(s, a)j) serves as a repulsive force

that pushes the particles {Zθ(s, a)i} away from each other,
preventing them from collapsing into a single mode, with
force proportional to 2

he
−(Zθ(s,a)i−Zθ(s,a)j)2/h|Zθ(s, a)i −

Zθ(s, a)j |; (ii) the term − 2
N2

∑
i,j k(Zθ(s, a)i, T̂Zj) acts

as an attractive force which pulls the particles {Zθ(s, a)i}
closer to their target particles {T̂Zi}. This can also be in-
tuitively viewed as a two-sample counterpart to Stein point
variational inference (Liu and Wang 2016; Chen et al. 2018).

Particle Representation We can easily extend MMDRL
to DQN-like architecture to create a novel deep RL, namely
MMDQN (Algorithm 3 in Appendix B). In this work, we
explicitly represent the particles {Zθ(s, a)i}Ni in MMDQN
via fixed N network outputs as in QR-DQN (Dabney et al.
2018b) for simplicity (details in Appendix B). We empha-
size that modeling improvements from IQN (Dabney et al.
2018a) and FQF (Yang et al. 2019) can be naturally applied
to MMDQN: we can implicitly generate {Zθ(s, a)i}Ni via
applying a neural network function to N samples of a base
sampling distribution (e.g., normal or uniform distribution)
as in IQN, or we can use the proposal network in FQF to
learn the weights of each Dirac components in MMDQN in-
stead of using equal weights 1/N .

Theoretical Analysis
Here we provide theoretical understanding of MMDRL. Be-
fore that, we define the notion of supremum MMD, a MMD
counterpart to the supremum Wasserstein in (Bellemare,
Dabney, and Munos 2017), to work on P(X )S×A.

Definition 1. Supremum MMD is a functional P(X )S×A×
P(X )S×A → R defined by

MMD∞(µ, ν; k) := sup
(s,a)∈S×A

MMD(µ(s, a), ν(s, a); k)

for any µ, ν ∈ P(X )S×A.

We are concerned with the following questions:

1. Metric property: When does MMD∞ induce a metric on
P(X )S×A?

2. Contraction property: When is T π a contraction in
MMD∞?

3. Convergence property: How fast do the particles re-
turned by minimizing MMD approach the target distri-
bution it approximates?

The metric property in the first question ensures that
MMD∞ is a meaningful test to distinguish two return distri-
butions on P(X )S×A. The contraction property in the sec-
ond question guarantees that following from Banach’s fixed
point theorem (Banach 1922), T π has a unique fixed point
which is µπ . In addition, starting with an arbitrary point
µ0 ∈ P(X )X×A, T π ◦T π ◦ ...◦T πµ0 converges at an expo-
nential rate to µπ in MMD∞. We provide sufficient condi-
tions to answer the first two questions and derive the conver-
gence rate of the optimal particles in approximating a target
distribution for the third question. A short answer is that the
first two properties highly depend on the underlying kernel
k, and the particles returned by minimizing MMD enjoy a
rate O(1/

√
n) regardless of the dimension d of the underly-

ing space X .
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Metric Property
Proposition 1. Let P̃(S) ⊆ P(S) be some (Borel) sub-
set of the space of the Borel probability measures. If MMD
is a metric on P̃(X ), then MMD∞ is also a metric on
P̃(X )S×A.

Proof. See Appendix A.1.

Theorem 1 below provides sufficient conditions for MMD
to induce a metric on P̃(X ).
Theorem 1. We have

1. If the underlying kernel k is characteristic (i.e., the in-
duced Bochner integral ψp is injective), e.g., Gaussian
kernels, then MMD is a metric on P(X ) (Fukumizu et al.
2007; Gretton et al. 2012).

2. Define unrectified kernels kα(x, y) := −‖x− y‖α, ∀α ∈
R, ∀x, y ∈ X . Then MMD(·, ·; kα) is a metric on Pα(X )
for all α ∈ (0, 2) but not a metric for α = 2 (Székely
2003).

3. MMD associated with the so-called exp-prod kernel
k(x, y) = exp(xyσ2 ) for any σ > 0 is a metric on P∗(X ).

Proof. See Appendix A.2.

Contraction Property We analyze the contraction of T π
for several important classes of kernels. One such class
is shift invariant and scale sensitive kernels. A kernel
k(·, ·) is said to be shift invariant if k(x + c, y + c) =
k(x, y), ∀x, y, c ∈ X ; it is said to be scale sensitive with or-
der α > 0 if k(cx, cy) = |c|αk(x, y), ∀x, y ∈ X and c ∈ R.
For example, the unrectified kernel kα considered in Theo-
rem 1 is both shift invariant and scale sensitive with order α
while Gaussian kernels are only shift invariant.
Theorem 2. We have

1. If the underlying kernel is k =
∑
i∈I ciki where each

component kernel ki is both shift invariant and scale sen-
sitive with order αi > 0, ci ≥ 0, and I is a (possibly infi-
nite) index set, then T π is a γα∗/2-contraction in MMD∞
where α∗ := mini∈I αi.

2. T π is not a contraction in MMD∞ associated with either
Gaussian kernels or exp-prod kernels k(x, y) = exp(xyσ2 ).

Proof. See Appendix A.3.

Practical Consideration Theorem 2 provides a negative
result for the commonly used Gaussian kernel. In practice,
however, we found that Gaussian kernels can promote to
match the moments between two distributions and have bet-
ter empirical performance as compared to the other kernels
analyzed in this section. In fact, MMD associated with Gaus-
sian kernels k(x, y) = exp(−(x − y)2/(2σ2)) can be de-
composed into

MMD2(µ, ν; k) =
∞∑
n=0

1

σ2nn!
(m̃n(µ)− m̃n(ν))

2

where m̃n(µ) = Ex∼µ
[
e−x

2/(2σ2)xn
]
, and similarly for

m̃n(ν). This indicates that MMD associated with Gaussian

kernels approximately performs moment matching (scaled
with a factor e−x

2/(2σ2) for each moment term).

Convergence Rate of Distribution Approximation We
justify the goodness of the particles obtained via minimizing
MMD in terms of approximating a target distribution.

Theorem 3. Let X ⊆ Rd and P ∈ P(X ). For any n ∈ N,
let {xi}ni=1 ⊂ X be a set of n deterministic points such that
{xi}ni=1 ∈ arg inf{x̃i}ni=1

MMD( 1
n

∑n
i=1 δx̃i , P ;F). Then,

Pn := 1
n

∑n
i=1 δxi converges to P at a rate of O(1/

√
n) in

the sense that for any function h in the unit ball of F , we
have∣∣∣∣ ∫

X
h(x)dPn(x)−

∫
X
h(x)dP (x)

∣∣∣∣ = O(1/
√
n).

Remark. MMD enjoys a convergence rate ofO(n−1/2) 1 re-
gardless of the underlying dimension d while 1-Wasserstein
distance has a convergence rate of O(n−1/d) (if d > 2)
(Fournier and Guillin 2015), which is slower for large d.

Proof. We first present two relevant results below (whose
proofs are deferred to Appendix A.4) from which the theo-
rem can follow.

Proposition 2. Let (Xi)
n
i=1 be n i.i.d. samples of some dis-

tribution P . We have

MMD

(
1

n

n∑
i=1

δXi , P ;F

)
= Op(1/

√
n),

where Op denotes big-O in probability.

Lemma 1. Let (an)n∈N ⊂ R and (Xn)n∈N ⊂ R be se-
quences of deterministic variables and of random variables,
respectively, such that for all n, |an| ≤ |Xn| almost surely
(a.s.). Then, if Xn = Op(f(n)) for some function f(n) > 0,
we have an = O(f(n)).

It follows from the Cauchy-Schwartz inequality in F that
for any function h in the unit ball of F , we have∣∣∣∣ ∫

X
h(x)dPn(x)−

∫
X
h(x)dP (x)

∣∣∣∣
≤ ‖h‖F ×

∥∥∥∥ ∫
X
k(x, ·)dPn(x)−

∫
X
k(x, ·)dP (x)

∥∥∥∥
F

≤ MMD

(
1

n

n∑
i=1

δxi , P ;F

)
. (2)

Now by letting Xn = MMD( 1
n

∑n
i=1 δx̃i , P ;F), an =

MMD( 1
n

∑n
i=1 δxi , P ;F), and f(n) = 1/

√
n, and noting

that an ≤ Xn, ∀n, Proposition 2, Lemma 1 and Eq. (2) im-
mediately imply Theorem 3.

1In fact, the convergence rate can be improved to O(1/n) using
kernel herding technique (Chen, Welling, and Smola 2010).
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Figure 1: Performance of different methods in approximating the optimal policy’s return distribution at the initial state in the
chain environment of various chain lengths K = {1, 2, ..., 15}. The distribution approximation is evaluated in terms of how
well a method can approximate the k-th central moment (except k = 1 means the expectation) of the target distribution. 95%
C.I. with 30 seeds. A variant (Gaussian-MMDRL) of our proposed MMDRL matches the MC rollouts (representing ground
truth) much better than QRDRL.

Experimental Results
We first present results with a tabular version of MMDRL
to illustrate its behaviour in distribution approximation task.
We then combine the MMDRL update to the DQN-style
architecture to create a novel deep RL algorithm namely
MMDQN, and evaluate it on the Atari-57 games. We give
full details of the architectures and hyperparameters used in
the experiments in the Appendix B. 2

Tabular Policy Evaluation
We empirically evaluate that MMDRL with Gaussian ker-
nels (Gaussian-MMDRL) can approximately learn the mo-
ments of a policy’s return distribution as compared to the
MMDRL with unrectified kernels (unrectified-MMDRL) and
the baseline QRDRL.

We use a variant of the classic chain environment (Row-
land et al. 2019) . The chain environment of length K is
a chain of K states s0, ..., sK−1 where s0 is the initial
state and sK−1 is the terminal state (see Figure 2). In each
state, there are only two possible actions: (i) forward, which
moves the agent one step to the right with probability 0.9 and
to s0 with probability 0.1, or (ii) backward, which transitions
the agent to s0 with probability 0.9 and one step to the right
with probability 0.1. The agent receives reward −1 when
transitioning to the initial state s0, reward 1 when reaching
the terminal state sK−1, and 0 otherwise. The discount fac-
tor is γ = 0.9. We estimate µ∗0 the return distribution at
the initial state of the optimal policy π∗ which selects for-
ward action in every state. The longer the chain length K,
the more stochastic the optimal policy’s return distribution at
s0. We use 10, 000 Monte Carlo rollouts under policy π∗ to
compute the central moments of µ∗0 as ground truth values.
Each method uses only N = 30 samples to approximate the
target distribution µ∗0 (more algorithm details are presented
in Algorithm 2 in Appendix B).

The result is presented in Figure 1. While all the methods
approximate the expectation of the target distribution well,
their approximation qualities differentiate greatly when it
comes to higher order moments. Gaussian-MMDRL, though
with only N = 30 particles, can approximate higher order

2Our official code is available at https://github.com/
thanhnguyentang/mmdrl.

moments more reasonably in this example whereas the rest
highly suffer from underestimation. We also experimented
with the kernel considered in Theorem 1.3 in this tabular
experiment and the Atari game experiment (next part) but
found that it is highly inferior to the other kernel choices
(even though it has an exact moment matching form as com-
pared to Gaussian kernels, see Appendix A.2) thus we did
not include it (we speculate that the shift invariance of Gaus-
sian kernels seems effective when interacting with transition
samples from the Bellman dynamics).

𝑠0 𝑠1 𝑠𝐾−2 𝑠𝐾−1
𝑟 = 1

𝑟 = −1

𝑟 =0

Figure 2: An illustration of a variant of the classic chain
MDP with the chain length K.

Atari Games
To demonstrate the effectiveness of MMDRL at scale, we
combine the MMDRL in Algorithm 1 with DQN-like archi-
tecture to obtain a deep RL agent namely MMDQN (Algo-
rithm 3 in Appendix B). Specifically in this work, we used
the same architecture as QR-DQN (Dabney et al. 2018b) for
simplicity but more advanced modeling improvements from
IQN (Dabney et al. 2018a) and FQF (Yang et al. 2019) can
naturally be used in combination to our framework.

Evaluation Protocol We evaluated our algorithm on 55 3

Atari 2600 games (Bellemare et al. 2013) following the stan-
dard training and evaluation procedures (Mnih et al. 2015;
van Hasselt, Guez, and Silver 2016) (the full details are in
appendix B). We computed human normalized scores for
each agent per game. From the human normalized scores
for an agent across all games, we extracted three statistics
for the agent’s performance: the median, the mean and the
number of games where the agent’s performance is above
the human expert’s performance.

3We failed to include Defender and Surround games using Ope-
nAI and Dopamine framework.
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(a) Different kernel bandwidths (at fixed N = 200). (b) Different values of N (at fixed h = mix).

Figure 3: The sensitivity of (the human-normalized scores of) MMDQN in the 6 tuning games with respect to: (a) the kernel
choices (Gaussian kernels with different bandwidths h and unrectified kernels), and (b) the number of particles N . Here h =
mix indicates the mixture of bandwidth values in {1, 2, ..., 10}. All curves are smoothed over 5 consecutive iterations. 95%
C.I. for the h = mix, N = 200, and unrectified kernel curves (3 seeds) and 1 seed for the other curves.

Figure 4: Percentage improvement per-game of MMDQN
over QR-DQN-1.

Mean Median >Human >DQN
DQN 221% 79% 24 0
PRIOR. 580% 124% 39 48
C51 701% 178% 40 50
QR-DQN-1 902% 193% 41 54
RAINBOW 1213% 227% 42 52
IQN 1112% 218% 39 54
FQF 1426% 272% 44 54
MMDQN 1969% 213% 41 55

Table 1: Mean and median of best human-normalized scores
across 55 Atari 2600 games. The results for MMDQN are
averaged over 3 seeds and the reference results are from
(Yang et al. 2019).

Baselines We categorize the baselines into two groups.
The first group contains comparable methods: DQN,
PRIOR., C51, and QR-DQN-1, where DQN (Mnih et al.
2015) and PRIOR. (prioritized experience replay (Schaul
et al. 2016)) are classic baselines. The second group in-
cludes reference methods: RAINBOW (Hessel et al. 2018),
IQN, and FQF, which contain algorithmic/modeling im-
provements orthogonal to MMDQN: RAINBOW combines
C51 with prioritized replay and n-step update while IQN and
FQF contain modeling improvements as described in the re-
lated work section. Since in this work we used the same ar-
chitecture as QR-DQN and C51 for MMDQN, we directly
compare MMDQN with the first group while including the
second group for reference.

Hyperparameter Setting For fair comparison with QR-
DQN, we used the same hyperparameters: N = 200,
Adam optimizer (Kingma and Ba 2015) with lr =
0.00005, εADAM = 0.01/32. We used ε-greedy policy with
ε being decayed at the same rate as in DQN but to a lower
value ε = 0.01 as commonly used by the distributional RL
methods. We used a target network to compute the distri-
butional Bellman target as with DQN. Our implementation
is based on OpenAI Gym (Brockman et al. 2016) and the
Dopamine framework (Castro et al. 2018).

Kernel Selection We used Gaussian kernels kh(x, y) =
exp

(
−(x− y)2/h

)
where h > 0. The kernel bandwidth

h is crucial to the statistical quality of MMD: overesti-
mated bandwidth results in a flat kernel while underesti-
mated one makes the decision boundary highly irregular. We
utilize the kernel mixture trick in (Li, Swersky, and Zemel
2015) which is a mixture of K kernels covering a range of
bandwidths k(x, y) =

∑K
i=1 khi(x, y). The Gaussian kernel

with a bandwidth mixture yields much a better performance
than that with individual bandwidth and unrectified kernels
in 6 tuning games: Breakout, Assault, Asterix, MsPacman,
Qbert, and BeamRider (see Figure 3 (a)). Figure 3 (b) shows
the sensitivity of MMDQN in terms of the number of parti-
cles N in the 6 tuning games where too small N adversely
affects the performance.

The main empirical result is provided in Table 1 where
we compute the mean and median of best human normal-
ized scores across 55 Atari games in the 30 no-op eval-
uation setting (the full raw scores for each game are pro-
vided in Appendix C). The table shows that MMDQN sig-
nificantly outperforms the comparable methods in the first
group (DQN, PRIOR., C51 and QR-DQN-1) in all metrics
though it shares the same network architecture with C51
and QR-DQN-1. Although we did not include any orthogo-
nal algorithmic/modelling improvements from the reference
methods to MMDQN, MMDQN still performs comparably
with these methods and even achieve a state-of-the-art mean
human-normalized score. In Figure 4 we also provide the
percentage improvement per-game of MMDQN over QR-
DQN-1 where MMDQN offers significant gains over QR-
DQN-1 in a large array of games.
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