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Abstract
The problem of identifying a probabilistic context free gram-
mar has two aspects: the first is determining the grammar’s
topology (the rules of the grammar) and the second is esti-
mating probabilistic weights for each rule. Given the hard-
ness results for learning context-free grammars in general,
and probabilistic grammars in particular, most of the litera-
ture has concentrated on the second problem. In this work we
address the first problem. We restrict attention to structurally
unambiguous weighted context-free grammars (SUWCFG)
and provide a query learning algorithm for structurally un-
ambiguous probabilistic context-free grammars (SUPCFG).
We show that SUWCFG can be represented using co-linear
multiplicity tree automata (CMTA), and provide a polyno-
mial learning algorithm that learns CMTAs. We show that the
learned CMTA can be converted into a probabilistic grammar,
thus providing a complete algorithm for learning a strucu-
trally unambiguous probabilistic context free grammar (both
the grammar topology and the probabilistic weights) using
structured membership queries and structured equivalence
queries. We demonstrate the usefulness of our algorithm in
learning PCFGs over genomic data.

1 Introduction
Probabilistic context free grammars (PCFGs) constitute
a computational model suitable for probabilistic systems
which observe non-regular (yet context-free) behavior. They
are vastly used in computational linguistics (Chomsky
1956), natural language processing (Church 1988) and bi-
ological modeling, for instance, in probabilistic modeling of
RNA structures (Grate 1995). Methods for learning PCFGs
from experimental data have been thought for over half a
century. Unfortunately, there are various hardness results re-
garding learning context-free grammars in general and prob-
abilistic grammars in particular. It follows from (Gold 1978)
that context-free grammars (CFGs) cannot be identified in
the limit from positive examples, and from (Angluin 1990)
that CFGs cannot be identified in polynomial time using
equivalence queries only. Both results are not surprising
for those familiar with learning regular languages, as they
hold for the class of regular languages as well. However,
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while regular languages can be learned using both member-
ship queries and equivalence queries (Angluin 1987), it was
shown that learning CFGs using both membership queries
and equivalence queries is computationally as hard as key
cryptographic problems for which there is currently no
known polynomial-time algorithm (Angluin and Kharitonov
1995). See more on the difficulties of learning context-free
grammars in (de la Higuera 2010, Chapter 15). Hardness re-
sults for the probabilistic setting have also been established.
(Abe and Warmuth 1992) have shown a computational hard-
ness result for the inference of probabilistic automata, in par-
ticular, that an exponential blowup with respect to the alpha-
bet size is inevitable unless RP = NP.

The problem of identifying a probabilistic grammar from
examples has two aspects: the first is determining the rules
of the grammar up to variable renaming and the second is es-
timating probabilistic weights for each rule. Given the hard-
ness results mentioned above, most of the literature has con-
centrated on the second problem. Two dominant approaches
for solving the second problem are the forward-backward
algorithm for HMMs (Rabiner 1989) and the inside-outside
algorithm for PCFGs (Baker 1979; Lari and Young 1990).

In this work we address the first problem. Due to the hard-
ness results regarding learning probabilistic grammars using
membership and equivalence queries (MQ and EQ) we use
structured membership queries and structured equivalence
queries (SMQ and SEQ), as was done by (Sakakibara 1988)
for learning context-free grammars. Structured strings, pro-
posed by (Levy and Joshi 1978), are strings over the given
alphabet that includes parentheses that indicate the structure
of a possible derivation tree for the string. One can equiva-
lently think about a structured string as a derivation tree in
which all nodes but the leaves are marked with ?, namely an
unlabeled derivation tree.

It is known that the set of derivation trees of a given CFG
constitutes a regular tree-language, where a regular tree-
language is a tree-language that can be recognized by a tree
automaton. (Sakakibara 1988) has generalized Angluin’s L∗
algorithm (for learning regular languages using MQ and EQ)
to learning a tree automaton, and provided a polynomial
learning algorithm for CFGs using SMQ and SEQ. Let T(G)
denote the set of derivation trees of a CFG G, and S(T(G))
the set of unlabeled derivation trees (namely the structured
strings of G). While a membership query (MQ) asks whether
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a given string w is in the unknown grammar G, a structured
membership query (SMQ) asks whether a structured string s
is in S(T(G)) and a structured equivalence query (SEQ) an-
swers whether the queried CFG G′ is structurally equivalent
to the unknown grammar G, and accompanies a negative an-
swer with a structured string s′ in the symmetric difference
of S(T(G′)) and S(T(G)).

In our setting, since we are interested in learning prob-
abilistic grammars, an SMQ on a structured string s is an-
swered by a weight p ∈ [0, 1] standing for the probability for
G to generate s, and a negative answer to an SEQ is accom-
panied by a structured string s such that G and G′ generate
s with different probabilities (up to a predefined error mar-
gin) along with the probability p with which the unknown
grammar G generates s.

(Sakakibara 1988) works with tree automata to model the
derivation trees of the unknown grammars. In our case the
automaton needs to associate a weight with every tree (rep-
resenting a structured string). We choose to work with the
model of multiplicity tree automata. A multiplicity tree au-
tomaton (MTA) associates with every tree a value from a
given field K. An algorithm for learning multiplicity tree au-
tomata, to which we refer as M∗, was developed in (Habrard
and Oncina 2006; Drewes and Högberg 2007).1

A probabilistic grammar is a special case of a weighted
grammar and (Abney, McAllester, and Pereira 1999; Smith
and Johnson 2007) have shown that convergent weighted
CFGs (WCFG) where all weights are non-negative and
probabilistic CFGs (PCFGs) are equally expressive.2 We
thus might expect to be able to use the learning algorithm
M∗ to learn an MTA corresponding to a WCFG, and ap-
ply this conversion to the result, in order to obtain the de-
sired PCFG. However, as we show in Proposition 4.1, there
are probabilistic languages for which applying the M∗ al-
gorithm results in an MTA with negative weights. Trying to
adjust the algorithm to learn a positive basis may encounter
the issue that for some PCFGs, no finite subset of the infi-
nite Hankel Matrix spans the entire space of the function,
as we show in Proposition 4.2.3 To overcome these issues
we restrict attention to structurally unambiguous grammars
(SUCFG, see section 4.1), which as we show, can be mod-
eled using co-linear multiplicity automata (defined next).

We develop a polynomial learning algorithm, which we
term C∗, that learns a restriction of MTA, which we term
co-linear multiplicity tree automata (CMTA). We then show
that a CMTA for a probabilistic language can be converted
into a PCFG, thus yielding a complete algorithm for learning
SUPCFGs using SMQs and SEQs as desired.

As a proof-of-concept, in Section 6 we exemplify our al-
gorithm by applying it to a small data-set of genomic data.

Due to lack of space, all the proofs, a complete running
example, and the supplementary material for the demonstra-
tion section are available in the full version of this paper

1Following a learning algorithm developed for multiplicity
word automata (Beimel et al. 2000).

2The definition of convergent is deferred to the preliminaries.
3The definition of the Hankel Matrix and its role in learning

algorithms appears in the sequel.

(Nitay, Fisman, and Ziv-Ukelson 2021).

2 Preliminaries
This section provides the definitions required for probabilis-
tic grammars – the object we design a learning algorithm
for, and multiplicity tree automata, the object we use in the
learning algorithm.

2.1 Probabilistic Grammars
Probabilistic grammars are a special case of context free
grammars where each production rule has a weight in the
range [0, 1] and for each non-terminal, the sum of weights
of its productions is one. A context free grammar (CFG) is a
quadruple G = 〈V ,Σ, R, S〉, where V is a finite non-empty
set of symbols called variables or non-terminals, Σ is a finite
non-empty set of symbols called the alphabet or the termi-
nals, R ⊆ V × (V ∪ Σ)∗ is a relation between variables and
strings over V ∪ Σ, called the production rules, and S ∈ V
is a special variable called the start variable. We assume the
reader is familiar with the standard definition of CFGs and
of derivation trees. We say that S ⇒ w for a string w ∈ Σ∗

if there exists a derivation tree t such that all leaves are in Σ
and when concatenated from left to right they form w. That
is, w is the yield of the tree t. In this case we also use the no-
tation S ⇒t w. A CFG G defines a set of words over Σ, the
language generated by G, which is the set of words w ∈ Σ∗

such that S ⇒ w, and is denoted JGK. For simplicity, we
assume the grammar does not derive the empty word.

Weighted grammars A weighted grammar (WCFG) is
a pair 〈G, θ〉 where G = 〈V ,Σ, R, S〉 is a CFG and θ :
R → R is a function mapping each production rule to
a weight in R. A WCFG W = 〈G, θ〉 defines a func-
tion from words over Σ to weights in R. The WCFG asso-
ciates with a derivation tree t its weight, which is defined as
W(t) =

∏
(V−→α)∈R θ(V −→ α)]t(V−→α) where ]t(V −→ α)

is the number of occurrences of the production V −→ α in
the derivation tree t. We abuse notation and treatW also as
a function from Σ∗ to R defined asW(w) =

∑
S⇒tw

W(t).
That is, the weight of w is the sum of weights of the deriva-
tion trees yielding w, and if w /∈ JGK thenW(w) = 0. If the
sum of all derivation trees in JGK, namely

∑
w∈JGKW(w), is

finite we say thatW is convergent.

Probabilistic grammars A probabilistic grammar
(PCFG) is a WCFG P = 〈G, θ〉 where G = 〈V ,Σ, R, S〉
is a CFG and θ : R → [0, 1] is a function mapping each
production rule of G to a weight in the range [0, 1] that
satisfies 1 =

∑
(V−→αi)∈R θ(V −→ αi) for every V ∈ V .4

One can see that if P is a PCFG then the sum of all
derivations equals 1, thus P is convergent.

2.2 Word/Tree Series and Multiplicity Automata
While words are defined as sequences over a given alphabet,
trees are defined using a ranked alphabet, an alphabet Σ =

4Probabilistic grammars are sometimes called stochastic gram-
mars (SCFGs).
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Mη = Pxyz =

(
c1111 c1112 c1121 c1122 c1211 c1212 c1221 c1222

c2111 c2112 c2121 c2122 c2211 c2212 c2221 c2222

) 
x1y1z1
x1y1z2
x1y2z1
. . .

x2y2z2


Figure 1: A matrix Mη for a multi-linear function η and a
vector Pxyz for the respective 3 parameters.

{Σ0,Σ1, . . . ,Σp} which is a tuple of alphabets Σk where
Σ0 is non-empty. Let Trees(Σ) be the set of trees over Σ,
where a node labeled σ ∈ Σk for 0 ≤ k ≤ p has exactly k
children. While a word language is a function mapping all
possible words (elements of Σ∗) to {0, 1}, a tree language
is a function from all possible trees (elements of Trees(Σ))
to {0, 1}. We are interested in assigning each word or tree a
non-Boolean value, usually a weight p ∈ [0, 1]. Let K be a
field. We are interested in functions mapping words or trees
to values in K. A function from Σ∗ to K is called a word
series, and a function from Trees(Σ) to K is referred to as a
tree series.

Word automata are machines that recognize word lan-
guages, i.e. they define a function from Σ∗ to {0, 1}. Tree
automata are machines that recognize tree languages, i.e.
they define a function from Trees(Σ) to {0, 1}. Multiplic-
ity word automata (MA) are machines to implement word
series, i.e. they define a function from Σ∗ to K. Multiplicity
tree automata (MTA) are machines to implement tree series,
i.e. they define a function from Trees(Σ) to K. Multiplicity
automata can be thought of as an algebraic extension of au-
tomata, in which reading an input letter is implemented by
matrix multiplication. In a multiplicity word automaton with
dimension m over alphabet Σ, for each σ ∈ Σ there is an m
by m matrix, µσ , whose entries are values in K where intu-
itively the value of entry µσ(i, j) is the weight of the passage
from state i to state j. The definition of multiplicity tree au-
tomata is a bit more involved; it makes use of multilinear
functions as defined next.

Multilinear functions Let V = Kd be the d dimensional
vector space over K. Let η : Vk → V be a k-linear func-
tion. We can represent η by a d by dk matrix over K. For
instance, if η : V3 → V and d = 2 (i.e. V = K2) then
η can be represented by the 2 × 23 matrix Mη provided in
Fig 1 where cij1j2j3 ∈ K for i, j1, j2, j3 ∈ {1, 2}. Then η, a
function taking k parameters in V = Kd, can be computed
by multiplying the matrix Mη with a vector for the param-
eters for η. Continuing this example, given the parameters
x = (x1 x2), y = (y1 y2), z = (z1 z2) the value η(x, y, z)
can be calculated using the multiplication MηPxyz where
the vector Pxyz of size 23 is provided in Fig 1. In general,
if η : Vk → V is such that η(x1, x2, . . . , xk) = y and Mη ,
the matrix representation of η, is defined using the constants
cij1j2...jk then

y[i] =
∑

{(j1,j2,...,jk)∈{1,2,...,d}k}
cij1j2...jk x1[j1] x2[j2] · · · xk[jk]

λ =

(
1
0

)
µa =

(
1
1

)

µb =

(
0 1 1 0

0 0 0 1

)

a ( 1
1 )( 1

1 ) a

a ( 1
1 )b( 2

1 )

b( 3
1 )

a b

cd

e

a b

c?

?

(I.i) (I.ii) (II)

Figure 2: (I.i) An MTA M = ((Σ0,Σ2),R, 2, µ, λ) where
Σ0 = {a} and Σ2 = {b} implementing a tree series that re-
turns the number of leaves in the tree. (I.ii) a tree where a
node t is annotated by µ(t). Since µ(tε) = ( 3

1 ), where tε
is the root, the value of the entire tree is λ · ( 3

1 ) = 3. (II) a
derivation tree and its corresponding skeletal tree, which can
be written as the structured string ((ab)c).

Multiplicity tree automata A multiplicity tree automa-
ton (MTA) is a tuple M = (Σ,K, d, µ, λ) where Σ =
{Σ0,Σ1, . . . ,Σp} is the given ranked alphabet, K is a field
corresponding to the range of the tree-series, d is a non-
negative integer called the automaton dimension, µ and λ
are the transition and output function, respectively, whose
types are defined next. Let V = Kd. Then λ is an element
of V, namely a d-vector over K. Intuitively, λ corresponds
to the final values of the “states” ofM. The transition func-
tion µ maps each element σ of Σ to a dedicated transition
function µσ such that given σ ∈ Σk for 0 ≤ k ≤ p then µσ
is a k-linear function from Vk to V. The transition func-
tion µ induces a function from Trees(Σ) to V, defined as
follows. If t = σ for some σ ∈ Σ0, namely t is a tree
with one node which is a leaf, then µ(t) = µσ (note that
µσ is a vector in Kd when σ ∈ Σ0). If t = σ(t1, . . . , tk),
namely t is a tree with root σ ∈ Σk and children t1, . . . , tk
then µ(t) = µσ(µ(t1), . . . , µ(tk)). The automaton M in-
duces a total function from Trees(Σ) to K defined as fol-
lows:M(t) = λ ·µ(t). Fig. 2(I.i) provides an example of an
MTA and the value for a computed tree Fig. 2(I.ii).

Contexts In the course of our learning algorithm we need
a way to compose trees, more accurately we compose trees
with contexts as defined next. Let Σ = {Σ0,Σ1, . . . ,Σp}
be a ranked alphabet. Let � be a symbol not in Σ. We use
Trees�(Σ) to denote all non-empty trees over Σ′ = {Σ0 ∪
{�},Σ1, . . . ,Σp} in which � appears exactly once. We refer
to an element of Trees�(Σ) as a context. Note that at most
one child of any node in a context c is a context; the other
ones are pure trees (i.e. elements of Trees(Σ)). Given a tree
t ∈ Trees(Σ) and context c ∈ Trees�(Σ) we use cJtK for the
tree t′ ∈ Trees(Σ) obtained from c by replacing � with t.

Structured tree languages/series Recall that our motiva-
tion is to learn a word (string) series rather than a tree series,
and due to hardness results on learning CFGs and PCFGs
we resort to using structured strings. A structured string is a
string with parentheses exposing the structure of a derivation
tree for the corresponding trees, as exemplified in Fig. 2 (II).
A skeletal alphabet is a ranked alphabet in which we use
a special symbol ? /∈ Σ0 and for every 0 < k ≤ p the
set Σk consists only of the symbol ?. For t ∈ Trees(Σ),
the skeletal description of t, denoted by S(t), is a tree with
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the same topology as t, in which the symbol in all inter-
nal nodes is ?, and the symbols in all leaves are the same
as in t. Let T be a set of trees. The corresponding skele-
tal set, denoted S(T ) is {S(t) | t ∈ T}. Going from the
other direction, given a skeletal tree s we use T(s) for the
set {t ∈ Trees(Σ) | S(t) = s}.

A tree language over a skeletal alphabet is called a skele-
tal tree language. And a mapping from skeletal trees to
K is called a skeletal tree series. Let T denote a tree se-
ries mapping trees in Trees(Σ) to K. By abuse of nota-
tions, given a skeletal tree s, we use T (s) for the sum of
values T (t) for every tree t of which s = S(t). That is,
T (s) =

∑
t∈T(s) T (t). Thus, given a tree series T (possi-

bly generated by a WCFG or an MTA) we can treat T as a
skeletal tree series.

3 From Positive MTAs to PCFGs
Our learning algorithm for probabilistic grammars builds
on the relation between WCFGs with positive weights
(henceforth PWCFGs) and PCFGs (Abney, McAllester, and
Pereira; Smith and Johnson). In particular, we first establish
that a positive multiplicity tree automaton (PMTA), which
is a multiplicity tree automaton (MTA) where all weights of
both µ and λ are positive, can be transformed into an equiva-
lent WCFGW . That is, we show that a given PMTAA over
a skeletal alphabet can be converted into a WCFG W such
that for every structured string swe have thatA(s) =W(s).
If the PMTA defines a convergent tree series (namely the
sum of weights of all trees is finite) then so will the con-
structed WCFG. Therefore, given that the WCFG describes
a probability distribution, we can apply the transformation of
WCFG to a PCFG (Abney, McAllester, and Pereira; Smith
and Johnson) to yield a PCFG P such that W(s) = P(s),
obtaining the desired PCFG for the unknown tree series.

Transforming a PMTA into a PWCFG Let A =
(Σ,R+, d, µ, λ) be a PMTA over the skeletal alphabet Σ =
{Σ0,Σ1, . . . ,Σp}. We define a PWCFGWA = (GA, θ) for
GA = (V,Σ0, R, S) as provided in Fig. 3 where cii1,i2,...,ip
is the respective coefficient in the matrix corresponding to
µ? for ? ∈ Σk, 1 ≤ k ≤ p. Proposition 3.1 states that the
transformation preserves the weights.
Proposition 3.1. W(t) = A(t) for every t ∈ Trees(Σ).

V = {S} ∪ {Vi | 1 ≤ i ≤ d}
R = {S → Vi | 1 ≤ i ≤ d} ∪ θ(S → Vi) = λ[i]
{Vi → σ | 1 ≤ i ≤ d, σ ∈ Σ0} ∪ θ(Vi → σ) = µσ[i]{
Vi → Vi1Vi2 ...Vik

∣∣∣∣ 1 ≤ i, ij ≤ d,
for 1 ≤ j ≤ k

}
θ(Vi → Vi1Vi2 ...Vik ) =

cii1,i2,...,ik

Figure 3: Transforming a PMTA into a PCFG

In this paper we consider structurally unambiguous
WCFGs and PCFGs (in short SUWCFGs and SUPCFGs,
resp.) as defined in §4. In Thm. 5.1, given in §5, we show
that we can learn a PMTA for a SUWCFG in polyno-
mial time using a polynomial number of queries (see exact
bounds there), thus obtaining the following result.

Corollary 3.2. SUWCFGs can be learned in polynomial
time using SMQs and SEQs, where the number of SEQs is
bounded by the number of non-terminal symbols.

The overall learning time for SUPCFG relies, on top of
Corollary 3.2, on the complexity of converting a WCFG into
a PCFG (Abney, McAllester, and Pereira 1999), for which
an exact bound is not provided, but the method is reported
to converge quickly (Smith and Johnson 2007, §2.1).

4 Learning Struc. Unamb. PCFGs
In this section we discuss the setting of the algorithm, the
ideas behind Angluin-style learning algorithms, and the is-
sues with using current algorithms to learn PCFGs. As
in G∗(the algorithm for CFGs (Sakakibara 1988)), we as-
sume an oracle that can answer two types of queries: struc-
tured membership queries (SMQ) and structured equivalence
queries (SEQ) regarding the unknown regular tree series T
(over a given ranked alphabet Σ). Given a structured string
s, the query SMQ(s) is answered with the value T (s). Given
an automaton A the query SEQ(A) is answered “yes” if A
implements the skeletal tree series T and otherwise the an-
swer is a pair (s, T (s)) where s is a structured string for
which T (s) 6= A(s) (up to a predefined error).

Our starting point is the learning algorithm M∗ (Habrard
and Oncina 2006) which learns MTA using SMQs and SEQs.
First we explain the idea behind this and similar algorithms,
next the issues with applying it as is for learning PCFGs,
then the idea behind restricting attention to strucutrally un-
ambiguous grammars, and finally our algorithm itself.

Hankel Matrix All the generalizations of L∗ (the algo-
rithm for learning regular languages using MQs and EQs, that
introduced this learning paradigm (Angluin 1987)) share a
general idea that can be explained as follows. A word or tree
language as well as a word or tree series can be represented
by its Hankel Matrix. The Hankel Matrix has infinitely many
rows and infinitely many columns. In the case of word series
both rows and columns correspond to an infinite enumera-
tion w0, w1, w2, . . . of words over the given alphabet. In the
case of tree series, the rows correspond to an infinite enu-
meration of trees t0, t1, t2, . . . (where ti ∈ Trees(Σ)) and the
columns to an infinite enumeration of contexts c0, c1, c2, . . .
(where ci ∈ Trees�(Σ)). In the case of words, the entry
H(i, j) holds the value for the word wi ·wj , and in the case
of trees it holds the value of the tree cjJtiK. If the series is
regular there should exists a finite number of rows in this in-
finite matrix, which we term basis, such that all other rows
can be represented using rows in the basis. In the case of L∗,
and G∗(that learn word-languages and tree-languages, resp.)
rows that are not in the basis should be equal to rows in the
basis. The rows of the basis correspond to the automaton
states, and the equalities to other rows determines the transi-
tion relation. In the case of M∗(that learns tree-series) rows
not in the basis should be expressible as a linear combination
of rows in the basis, and the linear combinations determines
the weights of the extracted automaton. In our case, in order
to apply the PMTA to PCFG conversion we need the algo-
rithm to find a positive linear combination of rows to act as
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the basis, so that the extracted automaton will be a PMTA. In
all cases we would like the basis to be minimal in the sense
that no row in the basis is expressible using other rows in
the basis. This is since the size of the basis derives the di-
mension of the automaton, and obviously we prefer smaller
automata.

Positive linear spans An interest in positive linear com-
binations occurs also in the research community studying
convex cones and derivative-free optimizations and a theory
of positive linear combinations has been developed (Cohen
and Rothblum 1993; Regis 2016).5 We need the following
definitions and results.

The positive span of a finite set of vectors S =
{v1, v2, ..., vk} ⊆ Rn is defined as follows:
span+(S) = {λ1·v1+λ2·v2+...+λk·vk | λi ≥ 0, ∀1 ≤ i ≤ k}
A set of vectors S = {v1, v2, ..., vk} ⊆ Rn is positively de-
pendent if some vi is a positive combination of the other vec-
tors; otherwise, it is positively independent. Let A ∈ Rm×n.
We say that A is nonnegative if all of its elements are non-
negative. The nonnegative column (resp. row) rank of A,
denoted c-rank+(A) (resp. r-rank+(A)), is defined as the
smallest nonnegative integer q for which there exist a set
of column- (resp. row-) vectors V = {v1, v2, ..., vq} in
Rm such that every column (resp. row) of A can be rep-
resented as a positive combination of V . It is known that
c-rank+(A) = r-rank+(A) for any matrix A (Cohen and
Rothblum 1993). Thus one can freely use rank+(A) for pos-
itive rank, to refer to either one of these.

Issues with positive spans The first question that comes
to mind, is whether we can use the M∗ algorithm as is – to
learn a positive tree series. We show that this is not the case.
In particular, there are positive tree series for which applying
the M∗ algorithm results in an MTA with negative weights.
Moreover, this holds also if we consider word (rather than
tree) series, and if we restrict the weights to be probabilistic
(rather than simply positive).
Proposition 4.1. There exists a probabilistic word series for
which the M∗ alg. may return an MTA with negative weights.

The proof shows this is the case for the word series
over alphabet Σ = {a, b, c} which assigns the following six
strings: aa, ab, ac, ba, cb, cc probability of 1

6 each, and prob-
ability 0 to all other strings.

Hence, we turn to ask whether we can adjust the algo-
rithm M∗ to learn a positive basis. We note first that work-
ing with positive spans is much trickier than working with
general spans, since for d ≥ 3 there is no bound on the size
of a positively independent set in Rd+ (Regis 2016). To ap-
ply the ideas of the Angluin-style query learning algorihtms
we need the Hankel Matrix (which is infinite) to contain a
finite sub-matrix with the same rank. Unfortunately, as we
show next, there exists a probabilistic (thus positive) tree se-
ries T that can be recognized by a PMTA, but none of its
finite-sub-matrices span the entire space of HT .

5Throughout the paper we use the terms positive and nonnega-
tive interchangeably.

Proposition 4.2. There exists a PCFG G s.t. for the Han-
kel Matrix HG corresponding to its tree-series TG no finite
number of rows positively spans the entire matrix.

Thus, running M∗on TG would yield an MTA with nega-
tive weights. The proof shows this is the case for the follow-
ing PCFG:

N1 −→ aN1 [ 12 ] | aN2 [ 13 ] | aa [ 16 ]

N2 −→ aN1 [ 14 ] | aN2 [ 14 ] | aa [ 12 ]

4.1 Focusing on Structurally Unambiguous CFGs
To overcome these obstacles we restrict attention to
structurally unambiguous CFGs (SUCFGs) and their
weighted/probabilistic versions (SUWCFGs/SUPCFGs). A
context-free grammar is termed ambiguous if there exists
more than one derivation tree for the same word. We term
a CFG structurally ambiguous if there exists more than one
derivation tree with the same structure for the same word.
A context-free language is termed inherently ambiguous if
it cannot be derived by an unambiguous CFG. Note that
a CFG which is unambiguous is also structurally unam-
biguous, while the other direction is not necessarily true.
For instance, the language {anbncmdm | n ≥ 1,m ≥
1} ∪ {anbmcmdn | n ≥ 1,m ≥ 1} which is inherently
ambiguous (Hopcroft and Ullman 1979, Thm. 4.7) is not in-
herently structurally ambiguous. Therefore we have relaxed
the classical unambiguity requirement.

The Hankel Matrix and MTA for SUPCFG Recall that
the Hankel Matrix considers skeletal trees. Therefore if a
word has more than one derivation tree with the same struc-
ture, the respective entry in the matrix holds the sum of
weights for all derivations. This makes it harder for the
learning algorithm to infer the weight of each tree separately.
By choosing to work with structurally unambiguous gram-
mars, we overcome this difficulty as an entry corresponds to
a single derivation tree.

To discuss properties of the Hankel Matrix for an
SUPCFG we need the following definitions. Let H be a ma-
trix, t a tree (or row index) c a context (or column index),
T a set of trees (or row indices) and C a set of contexts
(or column indices). We use H[t] (resp. H[c]) for the row
(resp. column) of H corresponding to t (resp. c). Similarly
we use H[T ] and H[C] for the corresponding sets of rows
or columns. Finally, we use H[t][C] for the restriction of H
to row t and columns [C].

Two vectors, v1, v2 ∈ Rn are co-linear with a scalar
α ∈ R for some α 6= 0 iff v1 = α·v2. Given a matrixH , and
two trees t1 and t2, we say that t1 nαH t2 iff H[t1] and H[t2]
are co-linear, with scalar α 6= 0. That is, H[t1] = α ·H[t2].
Note that if H[t1] = H[t2] = 0̄, then t1nαH t2nαH t1 for ev-
ery α > 0. We say that t1 ≡H t2 if t1nαH t2 for some α 6= 0.
It is not hard to see that ≡H is an equivalence relation.

The following proposition states that in the Hankel Matrix
of an SUPCFG, the rows of trees that are rooted by the same
non-terminal are co-linear.
Proposition 4.3. Let H be the Hankel Matrix of an
SUPCFG. Let t1, t2 be derivation trees rooted by the same
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non-terminal. Assume P(t1),P(t2) > 0. Then t1 nαH t2 for
some α 6= 0.

We can thus conclude that the number of equivalence
classes of ≡H for an SUPCFG is finite and bounded by the
number of non-terminals plus one (for the zero vector).

Corollary 4.4. The skeletal tree-set for an SUPCFG has a
finite number of equivalence classes under ≡H .

Next we would like to reveal the restrictions that can be
imposed on a PMTA that corresponds to an SUPCFG. We
term an MTA co-linear (and denote it CMTA) if in every
column of every transition matrix µσ there is at most one
entry which is non-negative.

Proposition 4.5. A CMTA can represent an SUPCFG.

The proof relies on showing that a WCFG is structurally
unambiguous iff it is invertible and converting an invertible
WCFG into a PMTA yields a CMTA.6

5 The Learning Algorithm
Let T : Trees(Σ) → R be an unknown tree series,
and let H be its Hankel Matrix. The learning algorithm
LearnCMTA (or C∗, for short), provided in Alg. 1, main-
tains a data structure called an observation table. An ob-
servation table for T is a quadruple (T,C,H,B). Where
T ⊆ Trees(Σ) is a set of row titles, C ⊆ Trees�(Σ) is a set
of column titles, H : T × C → R is a sub-matrix of H ,
and B ⊂ T , the so called basis, is a set of row titles cor-
responding to rows of H that are co-linearly independent.
The algorithm starts with an almost empty observation ta-
ble, where T = ∅, C = �, B = ∅ and uses procedure
Complete(T,C,H,B,Σ0) to add the nullary symbols of the
alphabet to the row titles, uses SMQ queries to fill in the ta-
ble until certain criteria hold on the observation, namely it
is closed and consistent, as defined in the sequel. Once the
table is closed and consistent, it is possible to extract from
it a CMTA A (as we shortly explain). The algorithm then
issues the query SEQ(A). If the result is “yes” the algorithm
returns A which was determined to be structurally equiva-
lent to the unknown series. Otherwise, the algorithm gets in
return a counterexample (s, T (s)), a structured string in the
symmetric difference of A and T , and its value. It then uses
Complete to add all prefixes of t to T and uses SMQs to fill
in the entries of the table until the table is once again closed
and consistent.

Algorithm 1 LearnCMTA(T,C,H,B).

1 Initialize B ← ∅, T ← ∅, C ← {�}
2 Complete(T,C,H,B,Σ0)
3 while true do
4 A ← ExtractCMTA(T,C,H,B)
5 t← SEQ(A)
6 if t is null then
7 return A
8 Complete(T,C,H,B, Pref(t))

6A CFG G = 〈V,Σ, R, S〉 is said to be invertible if and only if
A→ α and B → α in R implies A = B (Sakakibara 1992).

Algorithm 2 Close(T,C,H,B).

1 while ∃t ∈ Σ(T ) s.t. H[t] is co-linearly independent
from T do

2 B ← B ∪ {t}
3 T ← T ∪ {t}

Algorithm 3 Consistent(T,C,H,B)

1 for t ∈ T s.t. H[t] = 0 do
2 for c ∈ Σ(T, �), c′ ∈ C do
3 if H[c′Jc[t]K] 6= 0 then
4 C ← C ∪ {cJc′K}
5 for t1, t2 ∈ T s.t. t1 nαH t2 do
6 for c ∈ Σ(T, �), c′ ∈ C do
7 if H[c′][cJt1K] 6= αH[c′][cJt2K] then
8 C ← C ∪ {cJc′K}

Algorithm 4 Complete(T,C,H,B, S).

1 T ← T ∪ S
2 while (T,C,H,B) is not closed or not consistent do
3 Close(T,C,H,B)
4 Consistent(T,C,H,B)

Given a set of trees T we use Σ(T ) for the set of trees
{σ(t1, . . . , tk) | ∃Σk ∈ Σ, σ ∈ Σk, ti ∈ T , ∀1 ≤ i ≤ k}.
The procedure Close(T,C,H,B), Alg. 2, checks if H[t][C]
is co-linearly independent from T for some tree t ∈ Σ(T ).
If so it adds t to both T and B and loops back until no such
trees are found, in which case the table is termed closed.

We use Σ(T, t) for the set of trees in Σ(T ) satisfying that
one of the children is the tree t. We use Σ(T, �) for the set
of contexts all of whose children are in T . An observation
table (T,C,H,B) is said to be zero-consistent if for every
tree t ∈ T for which H[t] = 0 it holds that H[cJt′K] = 0
for every t′ ∈ Σ(T, t) and c ∈ C. It is said to be co-linear
consistent if for every t1, t2 ∈ T s.t. t1nαH t2 and every con-
text c ∈ Σ(T, �) we have that cJt1KnαH cJt2K. The procedure
Consistent, given in Alg. 3, looks for trees which violate the
zero-consistency or co-linear consistency requirement, and
for every violation, the respective context is added to C.

The procedure Complete(T,C,H,B, S), given in Alg. 4,
first adds the trees in S to T , then runs procedures Close and
Consistent iteratively until the table is both closed and con-
sistent. When the table is closed and consistent the algorithm
extracts from it a CMTA as detailed in Alg. 5.

Overall we can show that the algorithm always termi-
nates, returning a correct CMTA whose dimension is min-
imal, namely it equals the rank n of Hankel matrix for the
target language. It does so while asking at most n equiv-
alence queries, and the number of membership queries is
polynomial in n, and in the size of the largest counterexam-
ple m, but of course exponential in p, the highest rank of the
a symbol in Σ. Hence for a grammar in Chomsky Normal
Form, where p = 2, it is polynomial in all parameters.

Theorem 5.1. Let n be the rank of the target language, let
m be the size of the largest counterexample given by the
teacher, and let p be the highest rank of a symbol in Σ. Then
the algorithm makes at most n·(n+m·n+|Σ|·(n+m·n)p)
SMQs and at most n SEQs.
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Algorithm 5 Extract CMTA

1 d← |B|
2 for 0 ≤ k ≤ p do
3 for σ ∈ Σ(k) do
4 for (i1, i2, . . . , ik) ∈ {1, 2, . . . , d}k do
5 Let t = σ(bi1 , bi2 , . . . , bik)
6 if H[t] = 0̄ then
7 for 1 ≤ j ≤ d do
8 σji1,i2,...,ik ← 0

9 else
10 Let bi ∈ B,α ∈ R be s.t. ti1,i2,...,iknαHbi
11 for 1 ≤ j ≤ d do
12 if j = i then
13 σji1,i2,...,ik ← α
14 else
15 σji1,i2,...,ik ← 0

16 Let µσ be the d × dk matrix obtained from the
respective coefficients.

17 for 1 ≤ j ≤ d do
18 λ[j]← H(�, bj)
19 return A = (Σ,R, d, µ, λ)

6 Demonstration
As a demonstration, we apply our algorithm to the learning
of gene cluster grammars — which is an important prob-
lem in functional genomics. A gene cluster is a group of
genes that are co-locally conserved, not necessarily in the
same order, across many genomes (Winter et al. 2016). The
gene grammar corresponding to a given gene cluster de-
scribes its hierarchical inner structure and the relations be-
tween instances of the cluster succinctly; assists in predict-
ing the functional association between the genes in the clus-
ter; provides insights into the evolutionary history of the
cluster; aids in filtering meaningful from apparently mean-
ingless clusters; and provides a natural and meaningful way
of visualizing complex clusters.

PQ trees have been advocated as a representation for
gene-grammars (Booth and Lueker 1976; Bergeron, Gin-
gras, and Chauve 2008). A PQ-tree represents the possible
permutations of a given sequence, and can be constructed
in polynomial-time (Landau, Parida, and Weimann 2005). A
PQ-tree is a rooted tree with three types of nodes: P-nodes,
Q-nodes and leaves. In the gene grammar inferred by a given
PQ-tree, the children of a P-node can appear in any order,
while the children of a Q-node must appear in either left-to-
right or right-to-left order.

However, the PQ tree model suffers from limited speci-
ficity, which often does not scale up to encompass gene clus-
ters that exhibit some rare-occurring permutations. It also
does not model tandem gene-duplications, which are a com-
mon event in the evolution of gene-clusters. We exemplify
how our algorithm can learn a grammar that addresses both
of these problems. Using the more general model of context-
free grammar, we can model evolutionary events that PQ-
trees cannot, such as tandem gene-duplications. While the
probabilities in our PCFGs grant our approach the capability
to model rare-occurring permutations (and weighing them as
such), thus creating a specificity which PQ-trees lack.

S → R N7 [0.456] | R N3 [0.185] | C N1 [0.137] | N7 R [0.078] |
R N6 [0.053] | N1 C [0.034] | N5 R [0.028] | N6 R [0.013] |
N3 R [0.012] | R N5 [0.004]

N1→ R N2 [0.640] | N2 R [0.160] | R N4 [0.160] | N4 R [0.040]
N2→ A B [1.000] N3→ C N2 [1.000] N4→ B A [1.000]
N5→ N4 C [1.000] N6→ C N4 [0.882] | N8 A [0.095] | A N8 [0.024]
N7→ N2 C [1.000] N8→ B C [0.800] | C B [0.200]
R→ AcrR [1.000] A→ AcrA [1.000] B → AcrB [1.000]
C → TolC [1.000]

S

R
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Figure 4: The PCFG learned from the MDR dataset. Also
shown are the most probable tree according to the grammar
(left) with p = 0.456, a non-probable tree (right) with p =
0.001, and the PQ-tree (middle) showing a complete lack of
specificity.

In the extended version of this paper, we give two ex-
amples of gene-cluster grammars. The first is a PCFG de-
scribing a gene cluster corresponding to a multi-drug ef-
flux pump (MDR). MDR’s are used by some bacteria as a
mechanism for antibiotic resistance, and hence are the fo-
cus of research aimed towards the development of new ther-
apeutic strategies. In this example, we exemplify learning
of a gene-cluster grammar which models distinctly ordered
merge events of sub-clusters in the evolution of this pump.
The resulting learned gene-cluster grammar is illustrated in
Fig. 4. See the extended version for a biological interpreta-
tion of the learned grammar, associating the highly probable
rules with possible evolutionary events that explain them.

Note that, in contrast to the highly specific PCFG learned
by our algorithm (Fig. 4, top), the PQ-tree constructed for
this gene cluster (Fig. 4, middle) places all leaves under a
single P-node, resulting in a complete loss of specificity re-
garding conserved gene orders and hierarchical swaps —
this PQ tree will accept all permutations of the four genes,
without providing information about which permutations are
more probable, as our learned PCFG does.

In a second example, we exemplify learning of a gene-
cluster grammar which models tandem duplication events.
The yielded grammar demonstrates learning of an infinite
language, with exponentially decaying probabilities.

7 Discussion

We have presented an algorithm for learning structurally un-
ambiguous PCFGs from a given black-box language model
using structured membership and equivalence queries. To
our knowledge this is the first algorithm provided for this
question. A recent paper (Weiss, Goldberg, and Yahav 2019)
advocates one can obtain an interpretable model of practi-
cally black-box models such as recurrent neural networks,
using PDFA learning. The present work extends on this and
offers obtaining intrepretable models also in cases where the
studied object exhibits non-regular (yet context-free) behav-
ior, as is the case, e.g. in Gene Cluster grammars.
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M.; Stoye, J.; and Böcker, S. 2016. Finding approximate
gene clusters with Gecko 3. Nucleic Acids Research 44(20):
9600–9610.

9178


