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Abstract

Mobile devices are becoming an important carrier for deep
learning tasks, as they are being equipped with powerful, high-
end mobile CPUs and GPUs. However, it is still a challenging
task to execute 3D Convolutional Neural Networks (CNNs)
targeting for real-time performance, besides high inference
accuracy. The reason is more complex model structure and
higher model dimensionality overwhelm the available com-
putation/storage resources on mobile devices. A natural way
may be turning to deep learning weight pruning techniques.
However, the direct generalization of existing 2D CNN weight
pruning methods to 3D CNNs is not ideal for fully exploiting
mobile parallelism while achieving high inference accuracy.
This paper proposes RT3D, a model compression and mobile
acceleration framework for 3D CNNs, seamlessly integrating
neural network weight pruning and compiler code generation
techniques. We propose and investigate two structured sparsity
schemes i.e., the vanilla structured sparsity and kernel group
structured (KGS) sparsity that are mobile acceleration friendly.
The vanilla sparsity removes whole kernel groups, while KGS
sparsity is a more fine-grained structured sparsity that enjoys
higher flexibility while exploiting full on-device parallelism.
We propose a reweighted regularization pruning algorithm to
achieve the proposed sparsity schemes. The inference time
speedup due to sparsity is approaching the pruning rate of
the whole model FLOPs (floating point operations). RT3D
demonstrates up to 29.1× speedup in end-to-end inference
time comparing with current mobile frameworks supporting
3D CNNs, with moderate 1% ∼ 1.5% accuracy loss. The end-
to-end inference time for 16 video frames could be within 150
ms, when executing representative C3D and R(2+1)D models
on a cellphone. For the first time, real-time execution of 3D
CNNs is achieved on off-the-shelf mobiles.

Introduction
Since the Convolutional Neural Networks (CNNs) were ex-
emplified by the performance improvements obtained by
AlexNet (Krizhevsky, Sutskever, and Hinton 2012) in 2012,
neural network based computer vision has achieved superhu-
man performance. Mobile devices are becoming an important
carrier for deep learning tasks. However, real-time execution
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is the most critical requirement given computation/storage
resource constraints on mobiles for deep learning tasks.

Recently, many efforts (Han et al. 2016; Yao et al. 2017;
Huynh, Lee, and Balan 2017; Chen et al. 2018; Jiang et al.
2020; Abadi et al. 2016; Paszke et al. 2019) aim to accel-
erate CNN execution on off-the-shelf mobile devices and
some of them achieve significant advancements. However,
most of these optimizations focus on traditional 2D CNNs in
the image domain. On the other hand, 3D CNNs have been
proposed for video domain tasks such as video classifica-
tion, and action recognition/detection (Ji et al. 2012; Wang
et al. 2017; Carreira and Zisserman 2017; Qiu, Yao, and Mei
2017; Köpüklü et al. 2019) It is still an open problem to
execute 3D CNNs on off-the-shelf mobile devices targeting
for real-time performance. For example, C3D (Tran et al.
2015), a mainstream 3D CNN takes over 2.5 seconds to com-
plete the inference (of 16 frames) on a representative mobile
CPU (Kryo 585 in Qualcomm Snapdragon platform) with
Pytorch Mobile (Paszke et al. 2019), which is clearly far from
real-time execution.1 The extra dimension in 3D convolution
(CONV) significantly increases storage size and computation
workload comparing with 2D CONV.2 The large memory
footprint of 3D CNN models often exceeds the on-chip cache
size of off-the-shelf mobile devices. As a result, 3D CNNs
are currently supported only by very few mobile acceleration
frameworks i.e., PyTorch Mobile (Paszke et al. 2019) and
Alibaba MNN (Jiang et al. 2020) with relatively low compu-
tation efficiency, let alone real-time execution performance.

A natural way to bridge the gap is to turn to model com-
pression techniques, particularly weight pruning (Wen et al.
2016; Han, Mao, and Dally 2016; Guo, Yao, and Chen 2016;
Dong and Yang 2019; Zhuang et al. 2018; Yu et al. 2018;
He et al. 2019) which has demonstrated its efficacy on ac-
celerating 2D CNN executions. Nevertheless, generalizing
weight pruning methods from 2D to 3D CNNs is more than
a straightforward task owing to the higher dimensionality of
weight tensors and thus the larger search space of weight
pruning. It is especially challenging to derive the best-suited

1Real-time performance requires to compute 30 frames/second
according to state-of-the-art industry standard.

22D CONV is a special case of 3D CONV with the temporal
dimension size equal to 1.
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weight pruning method in order to achieve real-time per-
formance on off-the-shelf mobile devices. Two fundamental
problems need to be solved: the sparsity scheme and the prun-
ing algorithm. The former refers to the regularity in pruning,
i.e., the specific structural characteristics of CNNs after prun-
ing. The two representative cases for 2D CNNs are the most
flexible, irregular pruning scheme that can prune arbitrary
weights (Han, Mao, and Dally 2016; Guo, Yao, and Chen
2016), and the computing platform-friendly filter/channel
pruning scheme that prunes whole filters/channels (Wen et al.
2016; He et al. 2019; Yu et al. 2018). The latter refers to
the appropriate algorithm to determine the target weights to
remove and train the remaining, non-zero weights. For 2D
CNNs, there is also rich literature in heuristic pruning (Han,
Mao, and Dally 2016; Guo, Yao, and Chen 2016; Dong and
Yang 2019) or regularization-based pruning algorithms (Wen
et al. 2016; Yu et al. 2018; He et al. 2019).

This work develops RT3D framework, including the deriva-
tion of best-suited (structured) sparsity scheme and pruning
algorithm of 3D CNNs, and the design of the associated
compiler-aided acceleration, for off-the-shelf mobile devices.
We propose and investigate two structured sparsity schemes
that are highly mobile acceleration friendly. The first vanilla
sparsity scheme achieves sparsity by removing kernel groups
in 3D CONV layers. It can achieve straightforward acceler-
ation for on-device inference with the aid of compiler code
generation, but it suffers from relatively high accuracy loss
as whole kernel groups are pruned. The second, more op-
timized one is the kernel group structured (KGS) sparsity
scheme. It is a more fine-grained structured sparsity that en-
joys higher flexibility, and will result in a higher accuracy
under the same pruning rate. Moreover, it is important to note
that the KGS sparsity scheme is beyond a mere tradeoff of ac-
curacy and mobile performance. In fact, with proper support
of compiler code generation, the KGS sparsity can achieve
almost the same mobile acceleration (e.g., in frames/second)
as the vanilla sparsity, under the same pruning rate. This
is owing to the delicate design of KGS sparsity to match
the parallelization mechanism in compiler-assisted mobile
acceleration, such that the full on-device parallelism can be
exploited.

We further present three pruning algorithms to achieve the
proposed structured sparsity schemes for 3D CNNs. The first
two, i.e., the heuristic algorithm and regularization-based
algorithm, are natural generalization from state-of-the-art
algorithms on 2D CNN weight pruning. However, they are
either greedy algorithm, or suffer from the limitation that all
weights will be equally penalized even after convergence of
the pruning process. Both result in potential accuracy loss. To
overcome these shortcomings, we propose a novel reweighted
regularization pruning algorithm. The basic idea is to sys-
tematically and dynamically reweight the penalties, reducing
the penalties on weights with large magnitudes (which are
likely to be more critical), and increasing the penalties on
weights with smaller magnitudes. It possesses other advan-
tages, such as not introducing additional hyperparameters,
and being flexible for either parameter reduction or FLOPs
(floating-point operations) reduction, etc.

Seamlessly integrated with above innovations, RT3D also

develops the first end-to-end, compiler-assisted acceleration
framework of 3D CNNs on both mobile CPUs and GPUs
(the few prior work are limited to mobile CPUs), and also the
first to support different structured sparsity schemes. RT3D
achieves up to 29.1× speedup in end-to-end inference time
comparing with current mobile frameworks supporting 3D
CNNs, with moderate 1%-1.5% accuracy loss, on representa-
tive CNNs (C3D, R(2+1)D, S3D). The end-to-end inference
time for 16 video frames could be within 150 ms.

A brief contribution summary is: (a) sparsity schemes for
3D CNNs which are both flexible and mobile acceleration
friendly, (b) highly effective pruning algorithm to achieve
such sparsity schemes, (c) compiler-assisted mobile acceler-
ation framework, and (d) for the first time, real-time perfor-
mance of 3D CNNs can be achieved on off-the-shelf mobile
devices using a pure software solution.

Related Work
Weight Pruning for 2D CNNs
The rich literature in weight pruning for 2D CNNs can be cat-
egorized into heuristic pruning algorithms and regularization-
based pruning algorithms. The former starts from the early
work on irregular, unstructured weight pruning where arbi-
trary weights can be pruned. (Han, Mao, and Dally 2016)
adopts an iterative algorithm to eliminate weights with small
magnitude and perform retraining to regain accuracy. (Guo,
Yao, and Chen 2016) incorporates connection splicing into
the pruning process to dynamically recover the pruned con-
nections that are found to be important. Later, heuristic prun-
ing algorithms have been generalized to the more hardware-
friendly structured sparsity schemes. In (Dong and Yang
2019), Transformable Architecture Search (TAS) is adopted
to realize the pruned network and knowledge is transferred
from the unpruned network to the pruned version. The
work (Luo, Wu, and Lin 2017) leverages a greedy algorithm
to guide the pruning of the current layer with input infor-
mation of the next layer. The work (Yu et al. 2018) defines
a “neuron importance score” and propagates this score to
conduct the weight pruning process.

Regularization-based pruning algorithms, on the other
hand, are more mathematics-oriented and have the unique ad-
vantage for dealing with structured pruning problems through
group Lasso regularization (Yuan and Lin 2006; Liu et al.
2018). Early work (Wen et al. 2016; He, Zhang, and Sun
2017) incorporate `1 or `2 regularization in loss function to
solve filter/channel pruning problems. However, there is also
one limitation of the direct application of regularization terms
– all weights will be penalized equally even after pruning con-
vergence, resulting in potential accuracy loss. A number of
subsequent work are dedicated to making the regularization
penalty a dynamic and ”soft” term. The method in (He et al.
2018) selects filters based on `2 norm and updates the filters
that have been previously pruned. (Zhang et al. 2018; Li et al.
2019) incorporate the advanced optimization solution frame-
work ADMM (Alternating Direction Methods of Multipliers)
to achieve dynamic regularization penalty, thereby improv-
ing accuracy. (He et al. 2019) proposes to adopt Geometric
Median, a classic robust estimator of centrality for data in
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Euclidean spaces. A common limitation of these improved
versions is that the pruning rate for each layer needs to be
manually set, which is difficult to derive in prior.

Mobile Acceleration Frameworks of CNNs
TVM (Chen et al. 2018), TFLite (Abadi et al. 2016), Alibaba
Mobile Neural Network (MNN) (Jiang et al. 2020) and Py-
Torch Mobile (PyTorch) (Paszke et al. 2019) are representa-
tive compiler-assisted deep learning acceleration frameworks
on mobile devices. They mainly focus on end-to-end accel-
eration for 2D CNNs. Only MNN and PyTorch support 3D
CONV on mobile CPUs (no mobile GPU support); while
other popular ones (like TVM and TFLite) do not support 3D
CONV computation. To the best of our knowledge, our RT3D
is the first end-to-end deep learning acceleration framework
for 3D CNNs on both mobile CPUs and GPUs. More than
that, it is also the first to support the acceleration of vari-
ous sparsity schemes of 3D CNNs. Moreover, several hard-
ware solutions for 3D CNN acceleration have been proposed,
e.g. (Hegde et al. 2018; Shen et al. 2018; Chen et al. 2019).
Different from these valuable solutions that require special
hardware design, RT3D employs a pure software solution
on off-the-shelf mobile devices that is more cost-effective.

Structured Sparsity Schemes for 3D CNNs
This section proposes two structured sparsity schemes of
3D CNNs. We focus on the most computationally inten-
sive convolutional (CONV) layers of 3D CNNs. Let Wl ∈
RM×N×Kh×Kw×Kd denote the 5-dimensional weight tensor
of the l-th CONV layer of a 3D CNN, where M is the num-
ber of filters; N is the number of input channels; Kw, Kh,
and Kd are the width, height, and depth, respectively, of the
3D CONV kernels. Different from the 2D CONV kernel, the
3D CONV kernel has an additional dimension on the kernel
depth, making Wl a 5-dimensional tensor.

Figure 1 demonstrates the proposed two structured sparsity
schemes for 3D CNNs: Vanilla Structured Sparsity Scheme
and Kernel Group Structured (KGS) Sparsity Scheme. The
weight tensor Wl is first partitioned into groups of kernels
along the filter and input channel dimensions. Each kernel
group consists of gM×gN (2×2 in Figure 1) 3D kernels. The
Vanilla sparsity scheme is shown in Figure 1 (a), where whole
kernel groups are determined to be pruned or not. On the
other hand, our proposed KGS sparsity scheme as shown in
Figure 1 (b) is that for the kernels in the same group, weights
are pruned at the same locations. This is illustrated better on
the right of Figure 1 (b), where 3D kernels are reshaped into
vectors with Ks = Kh ×Kw ×Kd weights. Consider the
gM × gN kernels in a group, i.e., kernels Wl(m : m+ gM −
1, n : n+gN−1, :, :, :). Weights at the same location in these
kernels i.e., Wl(m : m+gM−1, n : n+gN−1, h, w, d) are
determined to be pruned or not together, where (:, :, h, w, d)
describes the same location (coordinate) in kernels.

The Vanilla sparsity scheme is a relatively straightforward
generalization from structured sparsity schemes (Wen et al.
2016; Liu et al. 2017; Luo, Wu, and Lin 2017) for 2D CNNs.
It can achieve straightforward acceleration for on-device in-
ference with the aid of compiler code generation, but it will

obviously suffer from relatively high accuracy loss as whole
kernel groups are pruned. On the other hand, the proposed
KGS sparsity scheme is a more fine-grained structured spar-
sity that enjoys higher flexibility. In fact, the Vanilla sparsity
scheme is just a special case of KGS sparsity, and therefore,
one can confidently state that the KGS sparsity will result in
a higher accuracy under the same pruning rate, as long as ef-
fective pruning algorithm has been developed and employed.

It is important to note that the KGS sparsity scheme is
beyond a mere tradeoff of accuracy and mobile performance.
In fact, with proper support of compiler code generation, the
KGS sparsity can achieve almost the same mobile accelera-
tion performance (e.g., in frames/second) as Vanilla sparsity,
under the same pruning rate. This is owing to the delicate
design of KGS sparsity to match compiler-assisted mobile
acceleration. For effective mobile acceleration, the whole
kernel group will be transformed into matrix multiplication
(with input feature map) (Chetlur et al. 2014) as shown in the
reshaping step of Figure 1 (b). Accordingly, the KGS sparsity
is equivalent to whole column removals in the weight ma-
trix of a kernel group. The computation overhead in whole
column removal is minor and can be mitigated by compilers,
and the remaining computation is still based on full matrices
(albeit smaller). A key observation is that the parallelism de-
gree on off-the-shelf mobile devices is limited, and thus the
smaller matrices of remaining weights have enough size to
fully exploit the parallelism provided by mobile devices. As
an illustrative example, suppose that the mobile device can
execute 10 operations in parallel while the matrix contains
100 remaining operations. Then the reduced-size matrix can
be executed in 10 iterations, achieving full parallelism. As the
hardware parallelism can be fully exploited in both Vanilla
and KGS schemes (if compiler overhead is negligible), the
mobile acceleration performance in terms of FLOPs/second
will be almost the same for both pruning schemes, and so
does the frames/second performance under the same pruning
rate (and FLOPs count). As a result, the proposed KGS spar-
sity can fully enjoy the benefit of high flexibility in terms of
higher accuracy or higher pruning rate.

Please note that the gM × gN group size needs to be de-
termined in Vanilla and KGS sparsity schemes, in order to
achieve the maximum on-device parallelism with low com-
putation overhead. The group size is determined offline with
actual mobile testings using synthesized CNN layers. In other
words, it will NOT become a hyperparameter in the pruning
algorithm. gN = 4 and gM = 4 or 8 are preferred to match
the SIMD (Single Instruction, Multiple Data) parallelism pro-
vided by current mobile CPUs and GPUs. These values are
large enough to exploit the on-device parallelism and small
enough to provide enough pruning flexibility and accuracy,
as shall be seen in the experimental results.

Structured Sparsity Learning Algorithms
This section describes three pruning algorithms to achieve
the proposed structured sparsity schemes for 3D CNNs. The
first two are natural generalization from state-of-the-art algo-
rithms on 2D CNN weight pruning, and the last one is specif-
ically designed to address the limitations in the prior two.
Consider a general 3D CNN consisting of L convolutional
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Figure 1: Proposed structured sparsity schemes: (a) The Vanilla Structured Sparsity. (b) The Kernel Group Structured (KGS)
Sparsity for 3D CNNs. A CONV weight tensor is first split into multiple kernel groups, each consisting of gM × gN (2× 2 in
the figure) 3D kernels. Within the same kernel group, kernels are pruned at the same locations (marked by the grey entries).

(CONV) layers. Besides the l-th CONV layer weight tensor
Wl, the bias is denoted by bl. The loss function associated
with a 3D CNN can be denoted by F ({Wl}Ll=1, {bl}Ll=1).
To achieve the proposed group-wise sparsity schemes, weight
tensor Wl is partitioned into a set of kernel groups along the
dimensions of filters and channels, i.e., {WGp,q

l }, for p ∈ [P ]
and q ∈ [Q], where P = dM/gMe, Q = dN/gNe, and [n]
denotes the integer set {1, 2, . . . , n}. Figure 2 provides an
illustrative example of kernel groups.

1. Heuristic Pruning Algorithm: As discussed in Sec-
tion , the prior work has investigated heuristic pruning for
2D CNNs, for both irregular and structured sparsity schemes.
The prior work (Luo, Wu, and Lin 2017; Yu et al. 2018) are
mostly relevant to this work as we also focus on structured
sparsity. Motivated by these work, we assign a similar “neu-
ron importance score” to each kernel group (or the same
location of kernels in the group), and perform pruning on the
current layer with input information of the next layer in a
back propagated manner (similar procedure as (Luo, Wu, and
Lin 2017)). This serves as our heuristic pruning algorithm
for the proposed sparsity schemes of 3D CNNs.

2. Regularization-based Pruning Algorithm: adds an
additional regularization term to the loss function to achieve
the Vanilla or KGS sparsity scheme. Then, the regularization-
based pruning can be formulated as

minimize
{Wl},{bl}

F
(
{Wl}Ll=1, {bl}Ll=1

)
+ λ

L∑
l=1

Rg

(
Wl

)
, (1)

where Rg

(
Wl

)
is the regularization term for the Vanilla

or KGS sparsity and λ is the penalty measuring its im-
portance. Motivated by group Lasso (Yuan and Lin 2006),
the regularization term can be defined as Rg

(
Wl

)
=∑P

p=1

∑Q
q=1

∥∥∥WGp,q
l

∥∥∥
g
, where ‖·‖g denotes kernel group

`p norm. We can choose from `1 norm (Liu et al. 2017), `2
norm (He et al. 2018; Li et al. 2019) or their combination for
this group-wise regularization.

In more details, the regularization-based pruning can be
achieved by

minimize
{Wl},{bl}

F
(
{Wl}Ll=1, {bl}Ll=1

)
+

λ

L∑
l=1

P∑
p=1

Q∑
q=1

Kh∑
h=1

Kw∑
w=1

Kd∑
d=1

∥∥∥WGp,q
l (:, :, h, w, d)

∥∥∥
g
.

(2)

3. Reweighted Regularization Pruning Algorithm: As
discussed in Section , the fixed regularization-based pruning
algorithm has a limitation, – all weights will be equally penal-
ized even after convergence of the pruning process, resulting
in potential accuracy loss. We propose a novel reweighted
regularization pruning algorithm to overcome this limitation.
The basic idea is to systematically and dynamically reweight
the penalties. Especially, we will reduce the penalties on
weights with large magnitudes (which are likely to be more
critical), and increase the penalties on weights with smaller
magnitudes. This shall be performed in a systematic, grad-
ual way to avoid the greedy solution which prunes a large
number of weights at the early stage. Moreover, our proposed
algorithm does not need to manually set the pruning rate for
each layer, as a limitation in prior works based on ADMM or
Geometric Median-based regularizations.

For reweighted regularization, we minimize the following
objective function:

minimize
{Wl},{bl}

F
(
{Wl}Ll=1, {bl}Ll=1

)
+ λ

[ L∑
l=1

P∑
p=1

Q∑
q=1

Kh∑
h=1

Kw∑
w=1

Kd∑
d=1

(
PGp,ql,t ◦

∥∥∥WGp,q
l (:, :, h, w, d)

∥∥∥
g

)]
,

(3)

where ◦ denotes element-wise multiplication. PGp,ql,t is the
collection of penalty parameters and is updated in every it-
eration t to facilitate the degree of sparsity. In each iteration,
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Figure 2: An example of kernel groups, each consisting of gM × gN (2× 2) 3D kernels. Within the same kernel group, kernels
are pruned at the same locations (marked by the grey entries). To achieve the same sparsity pattern for kernels in the same group,
group lasso is calculated as

∥∥∥WGp,q
l (:, :, h, w, d)

∥∥∥
g
= g

√∑
(i,j)∈Gp,q |Wl(:, :, h, w, d)|g .

the instance of WGp,q
l is denoted by W

Gp,q
l,t and we update

PGp,ql,t by setting

PGp,ql,(t+1) =
1∥∥∥WGp,q

l,t (:, :, h, w, d)
∥∥∥2
g
+ ε

,

where ε is a small positive number avoiding the zero denomi-
nator. The reweighted regularization process updates penalty
parameters based on the current weight values, will not incur
extra hyperparameters, and has a fast convergence rate as
analyzed in (Candes, Wakin, and Boyd 2008). After 3∼4
iterations, we will prune the weights that converge to zero,
and perform a slight retraining on the non-zero weights (with
a few epochs) to regain accuracy.

While overcoming the limitation in fixed regularization-
based algorithms, the advantage and flexibility in such al-
gorithms will be preserved. There is only one λ as the ma-
jor hyperparameter, without the need of manually deciding
per-layer pruning rate. Also similar to fixed regularization
algorithms, we can multiply the per-layer FLOPs value to
each layer l in the above optimization function. In this way
we can target at the overall FLOPs reduction, which is more
relevant to the actual acceleration. In the experiments, we set
the FLOPs reduction as the optimization target, and report the
corresponding FLOPs reduction rates and actually measured
mobile accelerations.

Experimental Results
Evaluation on Sparsity Schemes and Pruning
Algorithms
Experimental Setup. We test the proposed two structured
sparsity schemes i.e., Vanilla and KGS sparsity and three
pruning algorithms on 3D CNN models (including one
(2+1)D CNN): C3D (Tran et al. 2015), R(2+1)D (Tran et al.
2018), and S3D (Xie et al. 2018). Besides the two proposed
sparsity schemes, a filter sparsity scheme is also implemented,
where the filters may be pruned as a whole, and which is a
direct generalization of the filter pruning of 2D CNNs. The
models are all pretrained on the Kinetics dataset (Carreira and
Zisserman 2017) and transferred onto the UCF101 (Soomro,
Zamir, and Shah 2012) and HMDB51 (Kuehne et al. 2011)
datasets as the pretrained dense models. The hyperparameter
settings are the same for all pruning algorithms and sparsity
schemes for fair comparisons. The batch size is fixed to 32,
and the video clip length is 16 frames. The initial learning
rate is 5e−3 when training the dense model, and is reduced to
2e−4 in the weight pruning and retraining for stability. The
learning rate is fixed in the pruning process, while adjusted in
retraining with a scheduler following the cosine function. For
different types of sparsity schemes and pruning algorithms,
the total number of epochs is fixed to 240 epochs.3 For the
pruning of all the models, we have used the best combination
of `1 and `2 norms in the regularization term. The penalty fac-
tor λ is set to 5e−4. The pruning and retraining processes are
carried out with eight NVIDIA GeForce GTX 1080 Ti GPUs

3Although the reweighted pruning algorithm is iterative, its latter
iterations require significantly fewer epochs. Thus we can set the
total epochs the same for different algorithms.
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Model Pruning Sparsity Overall FLOPs Pruning Rate Base Top-1 Pruning Top-1
Algorithm Scheme after Pruning of FLOPs Accuracy Accuracy

C3D
(299MB)

Heuristic

Filter 15.2G 2.6×
81.6%

78.6%
Vanilla 15.2G 2.6× 78.8%
KGS 15.2G 2.6× 79.0%
KGS 10.8G 3.6× 78.5%

Regularization

Filter 15.2G 2.6×
81.6%

78.8%
Vanilla 15.2G 2.6× 79.0%
KGS 15.2G 2.6× 79.6%
KGS 10.8G 3.6× 79.3%
Filter 15.2G 2.6×

81.6%

79.3%
Reweighted Vanilla 15.2G 2.6× 79.7%

Regularization KGS 15.2G 2.6× 80.5%
KGS 10.8G 3.6× 80.2%

R(2+1)D
(120MB)

Heuristic

Filter 15.9G 2.6×
94.0%

89.0%
Vanilla 15.9G 2.6× 89.4%
KGS 15.9G 2.6× 90.4%
KGS 12.7G 3.2× 89.9%

Regularization

Filter 15.9G 2.6×
94.0%

89.8%
Vanilla 15.9G 2.6× 90.8%
KGS 15.9G 2.6× 91.7%
KGS 12.7G 3.2× 91.3%
Filter 15.9G 2.6×

94.0%

90.5%
Reweighted Vanilla 15.9G 2.6× 91.7%

Regularization KGS 15.9G 2.6× 92.5%
KGS 12.7G 3.2× 92.0%

Table 1: 3D CNN pruning results on the UCF101 dataset.

on Ubuntu operating system and the PyTorch 1.3 framework
with CUDA 10.1. The total required memory is up to 38.8GB.

Results. The pruning results on C3D, R(2+1)D models on
UCF101 dataset with various pruning algorithms and sparsity
schemes are provided in Table 1. For each pruning algorithm,
the three sparsity schemes are compared under the same prun-
ing rate (FLOPs reduction on the overall model), and KGS
results of two pruning configurations are compared. As can be
observed in the table, the KGS sparisity scheme consistently
outperforms the vanilla sparsity, and these two schemes both
perform better than filter pruning. The reweighted regulariza-
tion algorithm consistently outperforms the other two pruning
algorithms. The advantages of KGS sparsity and reweighted
regularization are stated in Section 3 and Section 4. With
reweighted regularization and KGS sparsity scheme, both
C3D and R(2+1)D could achieve only 1%∼1.5% accuracy
loss under pruning rate of 2.6×.

Evaluation on Mobile Acceleration Performance
Mobile Acceleration Framework Implementation. We
design and implement an end-to-end, compiler-assisted CNN
acceleration framework that supports 3D CNNs. Without any
pruning-related optimizations, RT3D is already faster than
state-of-the-art CNN execution frameworks (such as MNN
and PyTorch Mobile) on mobile CPUs, because we include
more advanced optimizations like fine-tuned high-efficient
SIMD (Single Instruction, Multiple Data) execution, fine-

tuned weight layout organization, etc. Our framework is also
the first to support 3D CNN executions on mobile GPUs. It
is general, supporting both 2D and 3D CNNs. Comparing to
other popular CNN acceleration frameworks that support 2D
CONV (like TVM and MNN) on standard 2D benchmarks
like VGG-Net, ResNet, MobileNet-V2, etc., our developed
framework also yields consistently better performance.

Moreover, RT3D is also the first to support various spar-
sity schemes, including Filter, and proposed Vanilla and KGS
sparsity. Based on the sparsity scheme, it employs a compiler-
based automatic code generation approach to reorganize the
model weights, regularize the computations, tune the com-
putation configuration, and generate the optimized model
inference codes. Our framework can automatically generate
both optimized CPU (vectorized C++) and GPU (OpenCL)
codes to support both dense and sparse 3D CNN executions.

Test-bed and Evaluation Setup. The evaluations are con-
ducted on a Samsung Galaxy S20 cellphone with the latest
Qualcomm Snapdragon 865 platform consisting of a Qual-
comm Kryo 585 Octa-core CPU and a Qualcomm Adreno
650 GPU. All experiments run 50 times with 8 threads on mo-
bile CPU, and all pipelines on mobile GPU. Because different
runs do not vary severely, only the average inference execu-
tion time is reported for readability. All models are tuned
to their best configurations, e.g., with computational graph
optimizations, the best tiling size, unrolling size, etc. 32-bit
floating point is applied for CPU runs, and 16-bit floating
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Framework MNN PyTorch RT3D (Dense) RT3D (Sparse)

Device CPU
(ms)

CPU
(ms)

CPU
(ms) Speedup GPU

(ms) Speedup CPU
(ms) Speedup GPU

(ms) Speedup

C3D 948 2544 902 2.8× 488 5.2× 357 7.1× 142 17.9×
R(2+1)D - 4104 1074 3.8× 513 8.0× 391 10.5× 141 29.1×

S3D - 6617 1139 5.8× 565 11.7× 611 10.8× 293 22.6×

Table 2: Inference latency comparison of RT3D, MNN, and PyTorch on mobile CPU and GPU. MNN does not support R(2+1)D
and S3D yet. For RT3D (Sparse), all models are pruned by reweighted regularization algorithm with KGS sparsity. The pruning
rate (in FLOPs) is 3.6× for C3D, 3.2× for R(2+1)D, and 2.1× for S3D, and the accuracy is 80.2%, 92.0%, and 90.2%,
respectively.

Model Sparsity Base Top-1 Pruning Top-1 FLOPs Pruning Rate Latency (ms)
Scheme Accuracy Accuracy after Pruning of FLOPs CPU GPU

C3D Vanilla 81.6% 80.0% 16.4G 2.4× 525 236
KGS 9.7G 4.0× 329 134

R(2+1)D Vanilla 94.0% 91.8% 15.5G 2.5× 523 225
KGS 10.2G 4.0× 360 127

Table 3: Comparison between Vanilla and KGS sparsity schemes: pruning rate, and inference latency with the same pruning
Top-1 accuracy on the UCF101 dataset. Reweighted regularization pruning is applied for all models.

point is used for GPU runs. This is the same for both baseline
mobile acceleration frameworks and our RT3D framework
for a fair comparison, as quantization is not supported by
baseline frameworks.

Mobile Acceleration Results. We next evaluate RT3D by
comparing it with MNN (Jiang et al. 2020) and PyTorch
Mobile (PyTorch) (Paszke et al. 2019).4 Table 2 compares the
end-to-end 3D CNN inference time (latency). RT3D supports
both dense (original) and sparse 3D CNNs on both mobile
CPU and mobile GPU, PyTorch supports dense models on
CPU only, and MNN supports dense C3D on CPU only. For
sparse models, RT3D uses pruned models by reweighted
regularization pruning algorithms with KGS sparsity with the
pruning rate of 3.6× for C3D, 3.2× for R(2+1)D, and 2.1×
for S3D, and the accuracy of 80.2%, 92.0%, and 90.2%5,
respectively. In the table, the RT3D speedups are compared
with PyTorch. RT3D outperforms MNN and PyTorch on
mobile CPU for all cases. RT3D on mobile GPU performs
even better than on CPU. For example, for C3D, the fully
optimized RT3D (Sparse) outperforms the CPU version of
PyTorch and MNN with the speedup of 7.1× and 2.7× on
CPU, and 17.9× and 6.7× on GPU, respectively. Notably, on
mobile GPU, the fully optimized RT3D can infer 16 frames
by using C3D, R(2+1)D, and S3D within 142 ms, 141 ms,
and 293 ms, respectively, achieving real-time execution (say
30 frames per second) of 3D CNNs on mobile devices.

Importantly, although RT3D’s dense implementations have
already been fully optimized, our sparse implementations es-
pecially on mobile GPU can fully transform the pruning rate
of FLOPs into inference latency speedup. For example, on

4Other popular mobile CNN acceleration frameworks like TVM
and TFLite do not support 3D CNNs.

5The base accuracy of S3D is 90.6%.

C3D, from RT3D (dense) to RT3D (sparse) on GPU, the im-
provement on inference latency is 3.43×, while the pruning
rate of the sparse model is 3.6×. This validates the statement
in Section 3 that the proposed KGS sparsity scheme can ex-
ploit the parallelism degree on device. Moreover, 3D CONV
is memory-intensive, bounded by both memory bandwidth
and latency (which is more severe on mobile GPU due to its
even limited cache capacity), and our pruning/compilation co-
design is able to mitigate this issue with incurring negligible
overhead. Our cache access count results validate this.

Ablation Study. We also compare two sparsity schemes,
Vanilla and KGS in terms of pruning rate and inference la-
tency on mobiles by controlling the same pruning top-1 ac-
curacy (as shown in Table 3). It shows that KGS scheme
achieves both higher pruning rate (in FLOPs) and lower infer-
ence latency under the same pruning accuracy on both C3D
and R(2+1)D due to KGS’s high flexibility and seamless
match with compiler-level optimizations.

Conclusion
This paper presents RT3D, a mobile acceleration framework
for 3D CNNs that includes two novel, mobile-friendly struc-
tured sparsity schemes (Vanilla and KGS) and best-suited
pruning algorithms, that can achieve low inference latency
and high accuracy, simultaneously. Based on them, RT3D
employs a compiler-assisted code generation framework to
transform pruning benefits to performance gains. The eval-
uation results show that RT3D beats two state-of-the-art ac-
celeration frameworks with speedup up to 29.1×. RT3D can
infer 16 video frames within 150 ms, for the first time, achiev-
ing real-time inference of 3D CNNs on off-the-shelf mobile
devices with a pure software solution.
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real-time execution of 3D CNNs on mobile devices without
notable accuracy loss–which can only be achieved by special
(and more expensive) hardware solutions previously. This
research will significantly encourage the general research of
deep learning acceleration with software-based techniques
while reducing the demand for some hardware-based acceler-
ations. RT3D will enable many machine learning applications
of behavior/activity detection on mobile platforms that have
to run on the cloud previously.

The ethical aspects and future societal consequences of
this research are highly application-dependent. This work
has the following potential positive impact in society: First,
because machine learning applications can run on the mobile
(edge) side only without transmitting user data to the cloud
server, data privacy is significantly enhanced, thus these ap-
plications can run in a more private environment. Second,
this work may also significantly broaden the usage of ma-
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e.g., combining motion sensors and high-precision 3D CNN
inferences to support short-latency motion recognition can
enable a real-time Parkinson treatment. At the same time,
this work may have some negative consequences: due to the
low-cost and easy-accessible nature of machine learning on
mobile, this work has the potential of increasing the possibil-
ity of misusing machine learning techniques. Furthermore,
we should be cautious of the result of the failure of the system
which could cause wrong decision making, thus jeopardizing
the safety of the public and individuals. In addition, all exper-
iments in our work are based on the public dataset and our
task/method does not leverage biases in the data.
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Köpüklü, O.; Kose, N.; Gunduz, A.; and Rigoll, G. 2019.
Resource efficient 3d convolutional neural networks. In 2019
IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), 1910–1919. IEEE.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012. Im-
agenet classification with deep convolutional neural net-
works. In Advances in neural information processing systems
(NeurIPS), 1097–1105.
Kuehne, H.; Jhuang, H.; Garrote, E.; Poggio, T.; and Serre,
T. 2011. HMDB: a large video database for human motion
recognition. In Proceedings of the IEEE International Con-
ference on Computer Vision (ICCV), 2556–2563. IEEE.
Li, T.; Wu, B.; Yang, Y.; Fan, Y.; Zhang, Y.; and Liu, W. 2019.
Compressing convolutional neural networks via factorized
convolutional filters. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 3977–
3986.
Liu, Z.; Li, J.; Shen, Z.; Huang, G.; Yan, S.; and Zhang, C.
2017. Learning efficient convolutional networks through
network slimming. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 2736–2744.
Liu, Z.; Sun, M.; Zhou, T.; Huang, G.; and Darrell, T. 2018.
Rethinking the value of network pruning. arXiv preprint
arXiv:1810.05270 .
Luo, J.-H.; Wu, J.; and Lin, W. 2017. Thinet: A filter level
pruning method for deep neural network compression. In Pro-
ceedings of the IEEE international conference on computer
vision (ICCV), 5058–5066.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. PyTorch: An imperative style, high-performance
deep learning library. In NeurIPS.
Qiu, Z.; Yao, T.; and Mei, T. 2017. Learning spatio-temporal
representation with pseudo-3d residual networks. In Pro-
ceedings of the IEEE International Conference on Computer
Vision (ICCV), 5533–5541.
Shen, J.; Huang, Y.; Wang, Z.; Qiao, Y.; Wen, M.; and Zhang,
C. 2018. Towards a uniform template-based architecture for
accelerating 2D and 3D CNNs on FPGA. In Proceedings
of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, 97–106.
Soomro, K.; Zamir, A. R.; and Shah, M. 2012. UCF101: A
dataset of 101 human actions classes from videos in the wild.
arXiv preprint arXiv:1212.0402 .

Tran, D.; Bourdev, L.; Fergus, R.; Torresani, L.; and Paluri,
M. 2015. Learning spatiotemporal features with 3d convolu-
tional networks. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), 4489–4497.
Tran, D.; Wang, H.; Torresani, L.; Ray, J.; LeCun, Y.; and
Paluri, M. 2018. A closer look at spatiotemporal convolutions
for action recognition. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition (CVPR), 6450–
6459.
Wang, Z.; Lan, Q.; He, H.; and Zhang, C. 2017. Winograd
algorithm for 3D convolution neural networks. In Interna-
tional Conference on Artificial Neural Networks (ICANN),
609–616. Springer.
Wen, W.; Wu, C.; Wang, Y.; Chen, Y.; and Li, H. 2016. Learn-
ing structured sparsity in deep neural networks. In Advances
in neural information processing systems (NeurIPS), 2074–
2082.
Xie, S.; Sun, C.; Huang, J.; Tu, Z.; and Murphy, K. 2018.
Rethinking spatiotemporal feature learning: Speed-accuracy
trade-offs in video classification. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 305–321.
Yao, S.; Hu, S.; Zhao, Y.; Zhang, A.; and Abdelzaher, T.
2017. Deepsense: A unified deep learning framework for
time-series mobile sensing data processing. In Proceedings
of the 26th International Conference on World Wide Web,
351–360.
Yu, R.; Li, A.; Chen, C.-F.; Lai, J.-H.; Morariu, V. I.; Han, X.;
Gao, M.; Lin, C.-Y.; and Davis, L. S. 2018. Nisp: Pruning
networks using neuron importance score propagation. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 9194–9203.
Yuan, M.; and Lin, Y. 2006. Model selection and estimation
in regression with grouped variables. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 68(1):
49–67.
Zhang, T.; Ye, S.; Zhang, Y.; Wang, Y.; and Fardad, M. 2018.
Systematic Weight Pruning of DNNs using Alternating Direc-
tion Method of Multipliers. arXiv preprint arXiv:1802.05747
.
Zhuang, Z.; Tan, M.; Zhuang, B.; Liu, J.; Guo, Y.; Wu, Q.;
Huang, J.; and Zhu, J. 2018. Discrimination-aware channel
pruning for deep neural networks. In Advances in Neural
Information Processing Systems (NeurIPS), 875–886.

9187


