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Abstract

Hyperparameter optimization (HPO), formulated as black-
box optimization (BBO), is recognized as essential for au-
tomation and high performance of machine learning ap-
proaches. The CMA-ES is a promising BBO approach with
a high degree of parallelism, and has been applied to HPO
tasks, often under parallel implementation, and shown supe-
rior performance to other approaches including Bayesian op-
timization (BO). However, if the budget of hyperparameter
evaluations is severely limited, which is often the case for
end users who do not deserve parallel computing, the CMA-
ES exhausts the budget without improving the performance
due to its long adaptation phase, resulting in being outper-
formed by BO approaches. To address this issue, we propose
to transfer prior knowledge on similar HPO tasks through the
initialization of the CMA-ES, leading to significantly short-
ening the adaptation time. The knowledge transfer is designed
based on the novel definition of task similarity, with which the
correlation of the performance of the proposed approach is
confirmed on synthetic problems. The proposed warm start-
ing CMA-ES, called WS-CMA-ES, is applied to different
HPO tasks where some prior knowledge is available, showing
its superior performance over the original CMA-ES as well as
BO approaches with or without using the prior knowledge.

1 Introduction
Hyperparameter optimization (HPO) is an essential for
achieving effective performance in a wide range of machine
learning algorithms (Feurer and Hutter 2019). HPO is for-
mulated as a black-box optimization (BBO) problem be-
cause the objective function of the task of interest (referred
to as the target task) cannot be described using an algebraic
representation in general. One way to accelerate the opti-
mization for HPO on the target task is to exploit results from
a related task (referred to as the source task). This transfer
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learning setting on HPO often appears in practical situations
and is actively studied in HPO literature (Vanschoren 2019).

The covariance matrix adaptation evolution strategy
(CMA-ES) (Hansen and Ostermeier 2001; Hansen 2016) is
one of the most powerful methods for BBO and has a high
degree of parallelism. The CMA-ES facilitates optimiza-
tion by updating the parameters of the multivariate Gaus-
sian distribution (MGD). Subsequently, the CMA-ES sam-
ples candidate solutions, which can be evaluated in paral-
lel, from the MGD. It has been applied widely in prac-
tice, including in HPO often under parallel evaluation set-
tings (Loshchilov and Hutter 2016; Friedrichs and Igel 2005;
Watanabe and Le Roux 2014). The CMA-ES is particu-
larly useful for solving difficult BBO problems such as non-
separable, ill-conditioned, and rugged problems (Rios and
Sahinidis 2013); furthermore, it has shown the best per-
formance among more than 100 optimization methods for
various BBO problems (Loshchilov, Schoenauer, and Sebag
2013) with moderate to large evaluation budgets (> 100×
the number of variables).

However, the CMA-ES does not necessarily outperform
Bayesian optimization (BO) (Frazier 2018) in the context
of HPO, in which the evaluation budget is severely lim-
ited (Loshchilov and Hutter 2016). This is because the
CMA-ES requires a relatively long adaptation phase to sam-
ple solutions into promising regions, especially at the begin-
ning of optimization. Thus, the CMA-ES has received much
less attention in the context of HPO, despite the excellent
performance verified empirically in BBO.

In this work, to address the inefficiency of the CMA-ES
when the evaluation budget is severely limited, we introduce
a simple and effective warm starting method WS-CMA-ES.
This warm starting strategy can shorten the CMA-ES adap-
tation phase significantly by utilizing the relationship be-
tween source and target tasks.

We first define a promising distribution in the search
space and task similarity. The proposed method is de-
signed to perform successful warm starting when the de-
fined task similarity between a source task and a tar-
get task is high. To warm-start the optimization, we es-
timate a promising distribution of the source task. The
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mean vector and the covariance matrix that are the param-
eters of the MGD in the CMA-ES are initialized by mini-
mizing the Kullback–Leibler (KL) divergence between the
MGD and the promising distribution. In this study, we per-
formed experiments on synthetic and HPO problems for
several warm starting settings. In particular, we have com-
pared the proposed method with the original CMA-ES,
Gaussian process expected improvement (GP-EI) (Snoek,
Larochelle, and Adams 2012), tree-structured Parzen esti-
mator (TPE) (Bergstra et al. 2011), multi-task Bayesian opti-
mization (MTBO) (Swersky, Snoek, and Adams 2013), and
multi-task BOHAMIANN (MT-BOHAMIANN) (Springen-
berg et al. 2016).

In summary, the contributions of this work are as follows:
• We formally defined a promising distribution and task

similarity to give us the insight required to design a warm
starting strategy for the CMA-ES.

• We proposed a warm starting method called the WS-
CMA-ES that speeds up HPO by reducing the adaptation
phase of the CMA-ES.

• We demonstrated that the performance of WS-CMA-ES
is correlated with the defined task similarity through nu-
merical experiments.

• We verified by synthetic problems that the WS-CMA-ES
is more effective than naive warm starting methods even
when a source task and a target task are not very similar.

• We demonstrated that the WS-CMA-ES converges faster
than the existing methods for HPO problems.

2 Background
In this study, we considered the following BBO problem:
minimizing a black-box function f : X → R over a com-
pact measurable subset X ⊆ Rd, where d is the number of
variables. Let ΛLeb be the Lebesgue measure on X . In HPO,
a solution x ∈ X corresponds to one hyperparameter set-
ting, and f(x) is generally a validation error of the trained
model.

2.1 CMA-ES
The CMA-ES is a BBO method that uses an MGDN (m,Σ),
wherein m ∈ Rd, Σ ∈ Rd×d is a positive-definite sym-
metric matrix. This algorithm generates λ solutions follow-
ing the MGD and evaluates each solution in every iteration,
which is defined as a generation. The mean vector m and
the covariance matrix Σ are updated according to the rank-
ing of the solutions in the latest generation, and the CMA-
ES learns to sample solutions from the promising region. 1

The update of the CMA-ES is strongly related to the natural
gradient descent (Akimoto et al. 2010; Ollivier et al. 2017);
m and Σ in the CMA-ES are updated to decrease the ex-
pected evaluation value. For more details, see the CMA-ES
tutorial (Hansen 2016).2

1Note that we followed the standard formulation of the CMA-
ES. Therefore, Σ was decomposed into Σ = σ2C where σ > 0
and C ∈ Rd×d.

2Among several versions of the CMA-ES, we use the recent
standard version described in (Hansen 2016).

The CMA-ES is invariant with order-preserving transfor-
mations of the objective function because the CMA-ES uses
only a ranking of solutions, not the evaluation value itself. In
addition, the CMA-ES has the affine invariance to the search
space. These invariances allow us to generalize the success-
ful empirical results of the CMA-ES to a more wide range
of problems (Hansen and Auger 2014).

2.2 CMA-ES for Hyperparameter Optimization

The invariances mentioned above make the CMA-ES suit-
able for HPO. For example, when transferring HPO to dif-
ferent dataset or different objectives, the scale of each objec-
tive may significantly vary. However, the CMA-ES is robust
to such a heterogeneous scale owing to the use of rank, not
the evaluation value itself. Further, hyperparameters are of-
ten dependent on each other, such as the batch size and the
learning rate in deep neural networks (Keskar et al. 2017;
Smith et al. 2018). The CMA-ES can address this depen-
dency by learning the covariance matrix appropriately. In-
deed, Loshchilov and Hutter (Loshchilov and Hutter 2016)
reported that the CMA-ES outperformed BO in HPO when
a moderate evaluation budget was available. However, the
evaluation budget is often severely limited and is insufficient
for the CMA-ES to adapt the covariance matrix, particularly
for the end users whose computational resources are limited.
In such cases, the CMA-ES does not yield better solutions
than other approaches such as BO approaches (Loshchilov
and Hutter 2016).

The possible reason for the lower performance of the
CMA-ES is a long adaptation phase of the covariance ma-
trix; we explain the reason below. The CMA-ES attempts
to adapt the covariance matrix to approximate the shape of
the level set of the objective function by that of MGD. In the
case of a convex quadratic objective function, the covariance
matrix approximates the inverse Hessian of the function.
Once the covariance matrix is well-adapted, the CMA-ES
exhibits a linear convergence, where the convergence speed
is as high as the one for the spherical function, f(x) = ‖x‖2.
However, as the degree of freedom of the covariance matrix
is Θ(d2), the learning rate for the covariance matrix update
is set to Θ(1/d2) by default for stability. Therefore, O(d2)
iterations are required to adapt the covariance matrix.

Two approaches can be considered to mitigate this prob-
lem. One is increasing λ, which is the number of solutions
per iteration, and evaluating them in parallel. The number of
iterations for the adaptation decreases as λ increases (Aki-
moto and Hansen 2020). However, this approach is useful
only for those users who can afford parallel computational
environments. The other approach is employing variants of
the CMA-ES with a restricted covariance matrix model,
such as the diagonal model (Ros and Hansen 2008). Be-
cause the covariance matrix model has few degrees of free-
dom, the learning rate can be set higher, thereby acceler-
ating the adaptation, while compromising rotational invari-
ance. Hence, we also propose another method which uses a
restricted matrix model, in addition to the proposed method
with the full covariance matrix.
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3 Warm Starting CMA-ES
We consider a transfer HPO setting, where we have pairs
(hyperparameter, performance) on a source task. This set-
ting often appears in the practical use of HPO (Vanschoren
2019). The original CMA-ES and other variants aiming to
mitigate the problem of the long adaptation phase, which
are described in Section 2.2, do not have any mechanism to
exploit such observational data on the source task.

In this work, we propose a simple and effective warm
starting CMA-ES (WS-CMA-ES). First, we construct the
definitions of a promising distribution and a task similarity.
Next, the details of WS-CMA-ES are given.

3.1 Definition of Task Similarity
To define task similarity, it is necessary to identify which
parts of the objective function characterize the task. Because
the goal of optimization is to identify the best solution, one
possible definition of a task feature is a promising distribu-
tion, which represents the regions wherein promising solu-
tions exist with a higher probability. Herein, we define the
γ-promising distribution as follows:

Definition 3.1 (γ-Promising Distribution). Suppose that f :
X → R is a measurable function defined over the com-
pact measurable subset X ⊆ Rd. For γ ∈ (0, 1], let
Fγ = {x ∈ X | f(x) ≤ fγ}, where fγ is defined such that
γ = ΛLeb(Fγ)/ΛLeb(X ). We define γ-promising distribu-
tion P γ , whose probability density function pγ is defined as

pγ(x) =
1

Z

∫
x′∈Fγ

exp
(
−‖x− x

′‖2
2α2

)
dx′, (1)

where Z =
∫
x∈X

∫
x′∈Fγ exp

(
−‖x−x

′‖2
2α2

)
dx′dx and α ∈

R>0 is a prior parameter.

Our definition of the γ-promising distribution is based
on two HPO problem assumptions: (1) the continuity be-
tween hyperparameters and objective function and (2) the
local convexity of a promising region.

The first assumption is the continuity of the objective
function. When a hyperparameter varies slightly, its perfor-
mance also changes to a small extent. More precisely, the
continuity of the objective function leads to the smooth-
ness of the promising distribution. Another possible defini-
tion for the promising distribution is a uniform distribution
1{x ∈ Fγ}/ΛLeb(Fγ), where 1 is the indicator function.
An advantage of the uniform distribution is its simplicity.
However, the measure of the regions not withinFγ becomes
0 when the promising distribution is based on the uniform
distribution. In other words, this distribution considers the
regions in Fγ as promising to the same extent and consid-
ers the other regions totally unpromising. The main prob-
lem with the uniform distribution is that it ignores the im-
portance of the proximity of the boundaries around Fγ . In
fact, the magnitudes of importance for the boundary regions
should not fluctuate greatly depending on whether the re-
gions are inside or beyond Fγ . The promising distribution
should measure such slight variations of importance over the
entire search space. This condition requires the promising

distribution to be smooth. Therefore, the uniform distribu-
tion, which does not satisfy the smoothness, is not suitable
for defining the promising distribution.

The second assumption is related to the local convexity of
the promising region. From the first assumption, the inside
of the level set is likely to be more promising, and it naturally
leads to the local convexity. The γ-promising distribution
can represent these assumptions more appropriately than the
uniform distribution 1{x ∈ Fγ}/ΛLeb(Fγ).

Next, γ-similarity, which measures task similarity, is for-
mulated using the γ-promising distribution as follows:
Definition 3.2 (γ-Similarity). Suppose that f1, f2 : X → R
are measurable functions defined over the compact measur-
able subset X ⊆ Rd. Let γ1, γ2 ∈ (0, 1] and let P γii be γi-
promising distribution of fi for i = 1, 2 defined in Definition
3.1. We define γ-similarity from f1 to f2 as

s(γ1, γ2) := DKL(P∗||P γ22 )−DKL(P γ11 ||P γ22 ), (2)

where DKL(P ||Q) is the KL divergence between P and Q,
and P∗ is a non-informative prior distribution.

A non-informative prior distribution is used when no
information is available on the objective function. In the
CMA-ES, for the search space X = [0, 1]d, N (0.5, 0.22) is
given as an initial distribution for each variable (Loshchilov
and Hutter 2016). BO uses a uniform distribution as a non-
informative prior distribution in many cases.

Intuitively, if s(γ1, γ2) > 0, i.e., DKL(P γ11 ||P γ22 ) <
DKL(P∗||P γ22 ), the promising distribution P γ11 for task 1 is
closer to the promising distribution P γ22 for task 2 than a
non-informative prior distribution P∗.

3.2 Algorithm Construction
We assume a source task (task 1) is similar to a target
task (task 2). Hence, the γ-similarity holds s(γ1, γ2) >
0, i.e., DKL(P γ11 ||P γ22 ) < DKL(P∗||P γ22 ). Note that the
non-informative prior distribution P∗ is used as an ini-
tial distribution for the CMA-ES if there is no information
on the source task. Because we assume knowledge trans-
fer from the source task, we obtain DKL(P γ11 ||P γ22 ) <
DKL(P∗||P γ22 ). Therefore, the CMA-ES can begin opti-
mization from the location close to the promising region by
exploiting the information for the promising region of the
source task from P γ11 instead of P∗. In this study, the initial
parameters of the MGD were estimated by minimizing the
KL divergence between the MGD and the empirical version
of P γ11 . The empirical version of P γ11 uses Gaussian mixture
models (GMM) as shown in Eq. (3).

This method transfers prior knowledge as follows. First,
the top γ × 100% solutions are selected from a set of so-
lutions on a source task. Second, a GMM, i.e., a promising
distribution of the source task, is built using the solutions
selected above. Finally, the parameters of the MGD are ini-
tialized via the approximation of the GMM. Further details
of each operation are described in the next section.

3.3 Details of Each Operation
Estimation of a Promising Distribution of a Source Task
LetN be the number of observations in a source task. Based
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on the definition of γ-promising distribution, a probability
density function p(x) that represents a promising distribu-
tion of the source task is estimated using the top γ × 100 %
solutions as follows:

p(x) =
1

Nγ

Nγ∑
i=1

N (x | xi, α2I), (3)

where α ∈ R>0 is a prior parameter, I ∈ Rd×d is the iden-
tity matrix, Nγ = bγ · Nc, and xi, which is an observation
in the source task, is sorted so that f(x1) ≤ f(x2) ≤ · · · ≤
f(xNγ ) ≤ · · · ≤ f(xN ). The robustness of these two pa-
rameters, γ and α, is shown in Appendix.

Transferring Prior Knowledge to the CMA-ES Based
on the aformentioned promising distribution definition, we
introduced the estimation method for the initial parameters
of the MGD for the CMA-ES. The initial parameters were
determined by minimizing the KL divergence between the
promising distribution p(x) and the MGD q(x) = N (x |
m,Σ).

Based on Theorem 3.2 and Eqs. (2)–(4) of (Runnalls
2007), we can easily identify the parameters that minimize
the KL divergence as follows:

m∗ =
1

Nγ

Nγ∑
i=1

xi, (4)

Σ∗ = α2I +
1

Nγ

Nγ∑
i=1

(xi −m∗)(xi −m∗)>. (5)

We can observe that Eq. (5) agrees with the formula for
the maximum a posteriori estimation (Bishop 2006), which
implies that the first term in Eq. (5) has the effect of the
regularization. We can also derive a variant that restricts the
covariance matrix to a diagonal: Σ∗ = diag(l1, · · · , ld). For
j ∈ {1, · · · , d}, it can be easily calculated as follows, con-
sidering the independence of the variables:

lj = α2 +
1

Nγ

Nγ∑
i=1

([xi]j − [m∗]j)
2, (6)

where [x]j denotes the j-th element of the vector x. We call
this restricted variant WS-sep-CMA-ES; its performance is
validated in Section 4.2.

4 Experiments on Synthetic Problems
4.1 Performance Depending on Task Similarity
As defined in the previous section, WS-CMA-ES is expected
to achieve faster convergence on problems with higher γ-
similarity (i.e. s(γ1, γ2) > 0). To confirm this correlation,
we measured the γ-similarity and the performance of WS-
CMA-ES using two synthetic problems:
• Sphere Function: f(x) = (x1 − b)2 + (x2 − b)2
• Rotated Ellipsoid Function: f(x) = fell(Rx)

where fell(x) = (x1 − b)2 + 52(x2 − b)2, R ∈ R2×2

is a rotation matrix rotating π/6 around the origin, and b

is the coefficient for each problem. The sphere function is
a simple problem. On the other hand, the characteristics
of the rotated ellipsoid function are non-separable and ill-
conditioned. Non-separable characteristic is related to the
dependencies between the variables, and the ill-conditioned
characteristic is that the contribution to the objective func-
tion varies widely depending on each variable.

We optimized each synthetic problem using two meth-
ods: the WS-CMA-ES and the original CMA-ES. The tar-
get task for each problem is the function with a coefficient
b = 0.6. As prior knowledge for both settings, we evaluated
each function with a coefficient from b = 0.4, · · · , 0.8 in in-
crements of 0.1. In other words, we optimized the synthetic
problems by the WS-CMA-ES using each prior knowledge
for each case (for b = 0.4, 0.5, · · · , 0.8). Each optimization
was performed 20 times. We employedN (0.5, 0.22), which
is a non-informative distribution used in Definition 3.2, as
an initial distribution for each variable in the CMA-ES. In
all the experiments, α and γ in WS-CMA-ES were set to 0.1
for each. For more details, see Appendices A and B.

The results are presented in Figure 1. To visualize the cor-
relation between the performance improvement and the γ-
similarity, we measured the γ-similarity between the cases
of b = 0.4, · · · , 0.8 and b = 0.6 and plotted it along with
the results. In both settings, the variation of the γ-similarity
almost corresponds to that of the improvement achieved by
WS-CMA-ES compared with the CMA-ES with respect to
the value b. In brief, WS-CMA-ES successfully transferred
prior knowledge when a source task resembled the target
task in terms of γ-similarity; in contrast, when the task sim-
ilarity was low, the WS-CMA-ES did not perform well.

4.2 When Naı̈ve Transfer Fails
If we know in advance that the source and target task is sim-
ilar enough, transferring the knowledge of the source task is
relatively easy. For example, one intuitive and naı̈ve method,
in this case, is to sample a solution near the solution with
good performance in the source task. Alternatively, if the
CMA-ES is performed for the source task, we can reuse the
final MGD obtained on the source task as the initial MGD
for the target task. The assumption that the tasks are simi-
lar is reasonable in practical cases (Vanschoren 2019). How-
ever, it is difficult to guarantee it before performing opti-
mization. Therefore, it is desirable to alleviate dramatic per-
formance degradation even when these tasks are not very
similar. To confirm the robustness of our proposed warm
starting method in such situations, we compare the behavior
of the proposed method with the following naı̈ve transfer-
ring methods:

• ReuseGMM : This method samples solutions from the
GMM which represents a promising distribution esti-
mated on the source task; that is, the solutions are sam-
pled from the distribution defined in Eq. (3) throughout
the optimization.

• ReuseNormal : This method uses the final mean and co-
variance matrix obtained on the source task as the initial
MGD on the target task. This method is the same as the
(WS-)CMA-ES except for the initialization of MGD.
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Figure 1: Results of the experiments to confirm the correlation between γ-similarity and performance. The horizontal axis
represents the prior parameter b used for each warm starting setting where the prior knowledge was the result with b = 0.6. The
vertical axis for red and blue lines denote the subtraction f̄ cma

best − f̄ws
best of the mean of the best evaluation value in the CMA-ES

and the WS-CMA-ES (20 runs for each) and γ-similarity in Definition 3.2, respectively. f̄ cma
best − f̄ws

best > 0 implies that the
result of the WS-CMA-ES is better than that of the CMA-ES.

Random search is used as the optimization of a source
task for all methods except for ReuseNormal; in ReuseNor-
mal, the result of the CMA-ES is used as the source task. We
consider the sphere function and the rotated ellipsoid func-
tion defined in Section 4.1; the experimental settings remain
the same.

In addition to these transferring methods, we experi-
ment with the CMA-ES and the sep-CMA-ES, which are
not transferring methods, as references. When the offset
changes largely between the source and target tasks, these
non-transferring methods become advantageous, as shown
in Section 4.

Figure 2 presents the results of the experiments over 20
runs. As expected, ReuseNormal shows the best perfor-
mance on offset b = 0.6 where the source and target tasks
are the same. However, the performance of ReuseNormal
deteriorates drastically when the offset is changed. This is
because ReuseNormal converges more than necessary near
the optimal solution of the source task even when the op-
timal solution of the target task is largely different. In this
case, it takes significant time to move from the promising re-
gion estimated by the source task, which impairs the perfor-
mance of ReuseNormal. In contrast, the proposed methods,
WS-CMA-ES and WS-sep-CMA-ES, are less dependent
on how long the optimization is performed on the source
task, which leads to relatively less performance degrada-
tion even in such cases. Similar to the case of ReuseNor-
mal, ReuseGMM, which does not adapt during optimiza-
tion, is strongly affected by the dissimilarity of the tasks.
This demonstrates the necessity of the adaptation toward the
optimal solution direction of the target task by the CMA-ES
(or sep-CMA-ES). In conclusion, compared with the naı̈ve
transferring methods, which strongly assume that the tasks
are similar, the proposed method is more robust and efficient
to the difference between the source and target tasks.

5 Experiments for Hyperparameter
Optimization

We applied WS-CMA-ES to several HPO problems to ver-
ify its effectiveness on HPO. The experiments comprise the
following two practical scenarios:

• Warm starting using a result of HPO for a subset of a
dataset (Section 5.1), and

• Warm starting using a result of HPO for another dataset
(Section 5.2).

As the baseline methods, we select the (1) CMA-ES, (2) ran-
dom search (RS) (Bergstra and Bengio 2012), (3) random
sampling from the initial MGD used in WS-CMA-ES (WS-
only), (4) GP-EI (Snoek, Larochelle, and Adams 2012), (5)
TPE (Bergstra et al. 2011), (6) MTBO (Swersky, Snoek, and
Adams 2013), and (7) MT-BOHAMIANN (Springenberg
et al. 2016). MTBO, which is an extension of GP-EI, and
MT-BOHAMIANN are warm starting methods for BO. TPE
is known to provide strong performance in HPO. Note that
we do not use WS-sep-CMA-ES because the performance is
similar to WS-CMA-ES in the severely limited budget set-
ting, which is confirmed in Section 4.2. We evaluated 100
hyperparameter settings by RS as prior knowledge in all the
experiments to allow every method to transfer the same data
fairly. Each optimization was run 12 times. Details of the
experimental settings are shown in Appendix.

5.1 Warm Starting using a Result of a Subset
We evaluated hyperparameter settings of each machine
learning algorithm trained on 10% of a full dataset. This re-
sult was considered as the source task and was used by the
warm starting methods.

LightGBM on Multilabel Classification LightGBM (Ke
et al. 2017) is used as an ML model. Six hyperparameters
shown in Appendix were optimized in the experiments. We
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Figure 2: Comparing the proposed methods with naive transferring methods. The mean (line) and the standard error (shadow)
over 20 runs are shown. The results of the CMA-ES and the sep-CMA-ES, which are not transferring methods, are included as
references.

used the Toxic Comment Classification Challenge data3 as
a dataset. As a metric in the experiments, the mean column-
wise area under the receiving operating characteristic curve
(ROC AUC) was used. Note that this measurement is better
when the value is higher, so we used 1 – AUC as the objec-
tive function.

MLP on MNIST and Fashion-MNIST The proposed
method was applied to the HPO of multilayer perceptrons
(MLPs). We used the MNIST handwritten digits dataset (Le-
Cun et al. 1998) and the Fashion-MNIST clothing articles
dataset (Xiao, Rasul, and Vollgraf 2017). We optimized
eight hyperparameters as shown in Appendix.

CNN on CIFAR-100 We further applied the proposed
method to more sophisticated 8-layer convolutional neural
networks (CNNs). The CNNs were trained on the CIFAR-
100 dataset (Krizhevsky 2009) and have ten types of hyper-
parameters as described in Appendix.

Results and Discussion on Knowledge Transfer of a Sub-
set Figure 3 shows the experiment results. In each experi-
ment, the proposed method and the WS-only identified bet-
ter objective metrics much faster than the CMA-ES did. Fur-
ther, we found that MTBO yielded better solutions quickly
than GP-EI. Clearly, there was high task similarity between
the given tasks that could be exploited by warm starting
methods. WS-CMA-ES and WS-only found better hyperpa-
rameter settings in the earlier stage of the optimizations than
the others. In the later stage of the optimization, WS-CMA-
ES adapted successfully and converged to better solutions
than that of WS-only. Figure 3 (a) shows that WS-CMA-ES
and WS-only behave similarly. This is because the evalua-
tion budget is quite limited, and the update of MGD only
happens a few times.

To observe the correlation between the performance of the
WS-CMA-ES and a subset ratio, we applied WS-CMA-ES
using prior knowledge of MNIST and Fashion-MNIST of
different subset ratios 2%, 10%, and 50%. Figure 4 shows

3https://www.kaggle.com/c/jigsaw-toxic-comment-
classification-challenge

the results of the experiments. We observe that a higher sub-
set ratio tends to result in faster convergence. The results
imply that the sets of relatively good hyperparameters in
the source tasks are spatially closer to those in the target
tasks, while the best values may not be close, as is claimed
in (Swersky, Snoek, and Adams 2013).

5.2 Warm Starting using a Result of Another
Dataset

This section examines what happens when prior knowledge
of a different dataset is utilized by warm starting methods.
We carried out experiments to demonstrate the effectiveness
of the proposed method in such a practical situation.

Using the Knowledge of MLP on MNIST for MLP on
Fashion-MNIST We first trained MLPs on MNIST and
then transferred the result to the HPO of Fashion-MNIST.
The architecture of the MLPs and their hyperparameters are
the same as those described in Section 5.1.

Using the Knowledge of CNN on SVHN for CNN on
CIFAR-10 We optimized the 8-layer CNNs. Hyperparam-
eters for this model are the same as those of the model
optimized earlier (see Section 5.1). CNNs initially learned
the Street View House Numbers (SVHN) dataset (Netzer
et al. 2011). Next, the warm starting methods employed the
knowledge to obtain the optimal hyperparameter settings for
CNNs trained on CIFAR-10.

Results and Discussion on the Knowledge Transfer of
Another dataset Figure 5 shows the results of the experi-
ments. The proposed method exhibited outstanding conver-
gence speed in the experiments and found better hyperpa-
rameter settings far more quickly than the CMA-ES. Al-
though MTBO also successfully found better solutions than
GP-EI, the performance of MTBO was not considerably bet-
ter than that of RS. In fact, MTBO required approximately
25 evaluations to find better hyperparameter settings than
GP-EI in the results described in Figure 3 (b), (d). Accord-
ing to Figure 5, however, it required approximately 40 eval-
uations in these experiments. Contrarily, the WS-CMA-ES
identified better hyperparameter settings than the CMA-ES
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(a) HPO of LightGBM on full Toxic Challenge data. (b) HPO of MLPs on full MNIST.

(c) HPO of MLPs on full Fashion-MNIST. (d) HPO of CNNs on full CIFAR-100.

Figure 3: Experiments with warm starting optimization using a result of the HPO for a subset of each dataset. Warm starting
methods used a result of the HPO on 1/10th of each dataset as prior knowledge. The horizontal axis represents the number of
evaluations. We plotted the mean and the standard error of the best evaluation value over 12 runs.

in approximately 25 and 30 evaluations in the experiments
using a small dataset and experiments using another dataset,
respectively. This is probably because knowledge transfer
from other datasets is more difficult than knowledge trans-
fer from a subset of a dataset. MTBO obtains promising so-
lutions using the approximation of the entire search space,
but the WS-CMA-ES obtains promising solutions using that
of only the promising region. The former approximation re-
quires more observations to yield promising solutions com-
pared with the latter. This may be the reason for the effec-
tiveness of WS-CMA-ES in knowledge transfer from an-
other dataset. This behavior can also be confirmed with the
transfer HPO experiments with other datasets, which are
provided in Appendix.

6 Related Work and Discussion
Various types of warm starting methods for BO have been
actively studied in the HPO context. These methods model
the relationship between tasks using a variety of ways, such
as a Gaussian process (Swersky, Snoek, and Adams 2013;
Poloczek, Wang, and Frazier 2017; Feurer, Letham, and
Bakshy 2018), deep neural networks (Springenberg et al.
2016; Kim, Kim, and Choi 2017), and Bayesian linear
regression (Perrone et al. 2018). However, the CMA-ES,
which shows outstanding performance in BBO, has not been
thoroughly considered in HPO.

One difference between our method and the warm start-
ing methods for BO is in the usage of the source tasks’ re-
sult. Most warm starting methods for BO repeatedly con-
struct a probabilistic model using prior knowledge in each
iteration. In contrast, WS-CMA-ES uses prior knowledge
only at the inception of optimization. Therefore, the compu-

tational complexity of WS-CMA-ES does not depend on the
number of observations. This enables users to implement the
method even when numerous results are available. Although
the meta-feature based warm starting (Feurer, Springenberg,
and Hutter 2015) can alleviate this computational problem,
it is not always possible to prepare such meta-feature for
the dataset. The method of initializing the search space us-
ing the result of the source task does not incur extra com-
putational complexity and can be used without such a meta
feature (Wistuba, Schilling, and Schmidt-Thieme 2015; Per-
rone et al. 2019).

Another difference is that it is usually challenging for
most BO approaches to handle the scale variation of ob-
jective functions across tasks. This situation often appears
when exploiting prior knowledge in transfer HPO; for exam-
ple, the validation error may significantly change across dif-
ferent datasets. This situation also appears when transferring
between different objectives, such as transferring between
the result of misclassification error and that of cross entropy.
Salinas et al. introduced a sophisticated semi-parametric ap-
proach to deal with such a heterogeneous scale (Salinas,
Shen, and Perrone 2020).

7 Conclusion and Future Work
We proposed the WS-CMA-ES, a simple and effective warm
starting strategy for the CMA-ES. The proposed method was
designed based on the theoretical definitions of a promis-
ing distribution and task similarity. It initializes MGD in the
CMA-ES by approximating the promising distribution on a
source task. This knowledge transfer performs well espe-
cially when a target task is similar to a source task in terms
of the defined task similarity, which is confirmed by our ex-
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(a) MLPs trained on full MNIST (b) MLPs trained on full Fashion-MNIST

Figure 4: Relationship between task similarity and the performance of WS-CMA-ES over 12 times. As the size of the dataset
approaches that of the complete dataset, the WS-CMA-ES attains faster convergence.

(a) MLPs trained on Fashion-MNIST. As prior knowledge, the
result of HPO of MLPs trained on MMIST was used.

(b) CNNs trained on CIFAR-10. As prior knowledge, the result
of HPO of CNNs trained on SVHN was used.

Figure 5: Experiments with warm starting optimizations using the result of HPO on another dataset.

periments. Experiments with synthetic and HPO problems
confirm that WS-CMA-ES is effective, even with low bud-
gets or when the source and target tasks are not very similar.

The main limitation of this study is the assumption of task
similarity. From our experiments and the desirable results
of warm starting methods that assume task similarity (e.g.,
(Bardenet et al. 2013; Yogatama and Mann 2014)), we hy-
pothesize that HPO tasks are often similar as long as so are
they intuitively. However, WS-CMA-ES can be worse than
the CMA-ES when the similarity between the source and
target tasks is low, as shown in Figure 1. Automatic detec-
tion of task dissimilarity and switching back to the original
CMA-ES is essential for this method to be more convincing
and reliable.

Acknowledgements

The authors thank Shota Yasui, Yuki Tanigaki, Yoshiaki
Bando for valuable feedback and suggestion. This paper is
based on the results obtained from a project commissioned
by the New Energy and Industrial Technology Development
Organization (NEDO). Computational resource of AI Bridg-
ing Cloud Infrastructure (ABCI) provided by National Insti-
tute of Advanced Industrial Science and Technology (AIST)
was used.

References
Akimoto, Y.; and Hansen, N. 2020. Diagonal Accelera-
tion for Covariance Matrix Adaptation Evolution Strategies.
Evolutionary computation 28(3): 405–435.
Akimoto, Y.; Nagata, Y.; Ono, I.; and Kobayashi, S. 2010.
Bidirectional Relation between CMA Evolution Strategies
and Natural Evolution Strategies. In International Confer-
ence on Parallel Problem Solving from Nature, 154–163.
Bardenet, R.; Brendel, M.; Kégl, B.; and Sebag, M. 2013.
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