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Abstract

We consider a sequential assortment selection problem where
the user choice is given by a multinomial logit (MNL) choice
model whose parameters are unknown. In each period, the
learning agent observes a d-dimensional contextual informa-
tion about the user and the N available items, and offers
an assortment of size K to the user, and observes the ban-
dit feedback of the item chosen from the assortment. We
propose upper confidence bound based algorithms for this
MNL contextual bandit. The first algorithm is a simple and
practical method which achieves an Õ(d

√
T ) regret over T

rounds. Next, we propose a second algorithm which achieves
a Õ(

√
dT ) regret. This matches the lower bound for the MNL

bandit problem, up to logarithmic terms, and improves on the
best known result by a

√
d factor. To establish this sharper

regret bound, we present a non-asymptotic confidence bound
for the maximum likelihood estimator of the MNL model that
may be of independent interest as its own theoretical contri-
bution. We then revisit the simpler, significantly more practi-
cal, first algorithm and show that a simple variant of the algo-
rithm achieves the optimal regret for a broad class of impor-
tant applications.

Introduction
In many of the human-algorithm interactions today, a learn-
ing agent (algorithm) makes sequential decisions and re-
ceives user (human) feedback only for the chosen decisions.
The multi-armed bandit (Lattimore and Szepesvári 2019)
is a model for this sequential decision making with partial
feedback. It is a classic reinforcement learning problem that
exemplifies the dilemma of exploration vs. exploitation. This
multi-armed bandit model has found diverse applications,
e.g. learning click-through rates in search engines, prod-
uct recommendations in online retailing, movie suggestions
on streaming services, news feeds, etc. Note that in several
of the applications, the goal is to maximize an appropri-
ate “clickthrough” rate. Often information about the features
of the agent’s actions and contextual information about the
user are available. The contextual bandit extends the multi-
armed bandit by making the decision conditional on this
context and feature information. In many real-world prob-
lems including the aforementioned examples, the agent of-
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fers a menu of options to the user, rather than a single option
as in traditional bandit action selection. The user chooses
at most one of the offered options, and the agent receives a
reward associated with the user choice.

In this paper, we consider a sequential assortment selec-
tion problem which is a combinatorial variant of the bandit
problem. The goal is to offer a sequence of assortments of
at most K items from a set of N possible items. The se-
quence can be chosen as a function of the contextual infor-
mation of items, and possibly users, in order to minimize
the expected regret, which is defined as the gap between the
expected revenue generated by the algorithm and the offline
optimal expected revenue when the true parameter is known.
The d-dimensional contextual information, or a set of feature
vectors, is revealed at each round t, allowing the feature in-
formation of items to change over time. The feedback here
is the particular item chosen by the user from the offered
assortment. We assume that the item choice follows a multi-
nomial logistic (MNL) distribution (McFadden 1978). This
is one of the most widely used model in dynamic assort-
ment optimization literature (Caro and Gallien 2007; Rus-
mevichientong, Shen, and Shmoys 2010; Sauré and Zeevi
2013; Agrawal et al. 2019, 2017; Aouad, Levi, and Segev
2018).

For sequential decision-making with contextual informa-
tion, (generalized) linear bandits (Abe and Long 1999; Auer
2002; Filippi et al. 2010; Rusmevichientong and Tsitsik-
lis 2010; Abbasi-Yadkori, Pál, and Szepesvári 2011; Chu
et al. 2011; Li, Lu, and Zhou 2017) and their variants have
been widely studied. However, these methods are only lim-
ited to a single item selection which is increasingly rarer in
practice as compared to multiple item offering that we con-
sider in this work. There are a line of works in combinato-
rial variants of contextual bandit problems (Qin, Chen, and
Zhu 2014; Wen, Kveton, and Ashkan 2015; Kveton et al.
2015; Zong et al. 2016) mostly with semi-bandit feedback
or cascading feedback. However, these methods do not take
the user choice into account. Hence, substitution effect is
not considered. In contrast to these contextual bandit prob-
lems and their combinatorial variants, in the multinomial
logit (MNL) contextual bandit, the item choice (feedback)
is a function of all items in the offered assortment. The key
challenges are how to design an algorithm that offers as-
sortments to simultaneously learn the unknown parameter
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METHOD CONTEXT REGRET

AGRAWAL ET AL. (2019) UCB NO Õ(
√
NT ), Ω(

√
NT/K)

AGRAWAL ET AL. (2017) TS NO Õ(
√
NT )

CHEUNG AND SIMCHI-LEVI (2017) TS YES Õ(d
√
T )∗

CHEN AND WANG (2017) N/A N/A Ω(
√
NT ) (≡ Ω(

√
dT ))

OU ET AL. (2018) UCB YES Õ(Kd
√
T )

CHEN, WANG, AND ZHOU (2018) UCB YES Õ(d
√
T ), Ω(d

√
T/K)

OH AND IYENGAR (2019) TS YES Õ(d
√
T )∗ , Õ(d3/2

√
T )

THIS WORK (ALGORITHM 1) UCB YES Õ(d
√
T )

THIS WORK (ALGORITHMS 2) UCB YES Õ(
√
dT )

Table 1: Comparison of regret bounds in related works on MNL bandits. T is the number of total rounds, K is the assortment
size, N is the total number of items, and d is the feature dimension. UCB denotes upper-confidence bound and TS denotes
Thompson sampling, and starred (∗) regrets denote Bayesian regrets. Õ is a big-O notation up to logarithmic factors.

and maximize the expected revenue through sequential in-
teractions with users and how to guarantee its performance.
There has been an emerging body of literature on MNL ban-
dits in both non-contextual and contextual settings (Agrawal
et al. 2017, 2019; Cheung and Simchi-Levi 2017; Ou et al.
2018; Chen, Wang, and Zhou 2018; Oh and Iyengar 2019).
However, an open question in the MNL contextual bandit
problem is whether one can close the gap between lower
and upper bounds of regret. Often, meeting such a criterion
comes at the cost of practicality. Hence, designing a practi-
cal algorithm that achieves the provable optimality becomes
a greater challenge. Our contributions are as follows:

• UCB-MNL (Algorithm 1) is an upper confidence bound
based algorithm for MNL contextual bandits that, to our
knowledge, is the first polynomial time algorithm that
achieves an N independent Õ(d

√
T ) regret. This result

matches the previous best upper bound (up to logarithmic
factors).

• We show that Õ(
√
dT ) regret is achievable in the MNL

contextual bandits (Theorem 3). This improves on the best
previous result by

√
d factor, and matches the lower bound

for the MNL bandit problem to within logarithmic factor.
However, the resulting algorithm is not practical as with
other provably optimal bandit algorithms that rely on a
framework proposed in Auer (2002).

• DBL-MNL (Algorithms 2), a simple variant of UCB-MNL,
achieves Õ(

√
dT ) regret when revenue is uniform for all

items — a setting that arises in a wide range of applica-
tions. DBL-MNL does not rely on the framework in Auer
(2002), and has state-of-the-art computational efficiency.
Thus, this work is the first one to provide a practical algo-
rithm with provable

√
d dependence on the dimension of

the context.

• To establish a sharper regret bound, we prove a non-
asymptotic confidence bound for the maximum likelihood
estimator of the MNL model, which may be of indepen-
dent interest.

Problem Formulation
Notations
For a vector x ∈ Rd, we use ‖x‖ to denote its `2-norm. The
weighted `2-norm associated with a positive-definite ma-
trix V is defined by ‖x‖V :=

√
x>V x. The minimum and

maximum eigenvalues of a symmetric matrix V are writ-
ten as λmin(V ) and λmax(V ) respectively. The trace of a
matrix V is trace(V ). For two symmetric matrices V and
W of the same dimensions, V � W means that V − W
is positive semi-definite. For a positive integer n, we de-
fine [n] = {1, 2, ..., n}. Finally, we define S to be the set
of candidate assortments with size constraint at most K, i.e.
S = {S ⊂ [N ] : |S| ≤ K}. Although we treat S as station-
ary for ease of exposition, we can allow S (as well as the
item set [N ]) to change over time.

MNL Contextual Bandits
The MNL contextual bandits problem is defined as follows.
The agent has a set of N distinct items. At each round t, the
agent observes feature vectors xti ∈ Rd for every item i ∈
[N ]. Given this contextual information, at every round t, the
agent offers an assortment St = {i1, . . . , i`} ∈ S , ` ≤ K,
and observes the user purchase decision ct ∈ St∪{0}, where
{0} denotes “outside option” which means the user did not
choose any item offered in St. This selection is given by a
multinomial logit (MNL) choice model (McFadden 1978)
under which the choice probability for item ik ∈ St (and the
outside option) is defined as

pt(ik|St, θ∗) =
exp{x>tikθ

∗}
1 +

∑
j∈St

exp{x>tjθ∗}
,

pt(0|St, θ∗) =
1

1 +
∑
j∈St

exp{x>tjθ∗}

where θ∗ ∈ Rd is a time-invariant parameter unknown to the
agent. The choice response for each item ik ∈ St is defined
as ytik := 1(ct = ik) ∈ {0, 1} and yt0 := 1(ct = 0)
for the outside option. Hence the choice response variable
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yt = (yt0, yti1 , ..., yti`) is a sample from this multinomial
distribution:

yt ∼ multinomial {1, (pt(0|St, θ∗), ..., pt(i`|St, θ∗))}
where the parameter 1 indicates that yt is a single-trial sam-
ple, i.e. yt0 +

∑`
k=1 ytik = 1. For each i ∈ St ∪ {0}

and t, we define the noise εti := yti − pt(i|St, θ∗). Since
each εti is a bounded random variable in [0, 1], εti is σ2-
sub-Gaussian with σ2 = 1/4; however, εti is not indepen-
dent across i ∈ St due to the substitution effect in the MNL
model. The revenue parameter rti for each item is also given
at round t. rti is the revenue from the sale if item i is sold in
round t. Without loss of generality, assume |rti| ≤ 1 for all
i and t. Then, the expected revenue of the assortment St is
given by

Rt(St, θ
∗) =

∑
i∈St

rtipt(i|St, θ∗) (1)

Note that for a very broad class of MNL applications, includ-
ing search ranking and media recommendation, the goal is to
maximize the click-through rate; therefore, the item revenue
is uniform.

We define S∗t to be the offline optimal assortment at time
t when θ∗ is known apriori, i.e. when the true MNL proba-
bilities pt(i|S, θ∗) are known a priori:

S∗t = argmax
S⊂S

Rt(S, θ
∗). (2)

The learning agent does not know the value of θ∗, and there-
fore, can only choose the assortment St in period t based
on the choices Sτ for periods τ < t, and the observed re-
sponses. We measure the performance of the agent by the
regret RT for the time horizon of T periods, which is the
gap between the expected revenue generated by the assort-
ment chosen by the agent and that of the offline optimal as-
sortment, i.e.,

RT = E

[
T∑
t=1

(
Rt(S

∗
t , θ
∗)−Rt(St, θ∗)

)]
where Rt(S∗t , θ

∗) is the expected revenue corresponding to
the offline optimal assortment in period t, i.e., the high-
est revenue which can be obtained with the knowledge of
θ∗. Hence, maximizing the cumulative expected revenue is
equivalent to minimizing the cumulative expected regret.

MLE for Multinomial Logistic Regression
We briefly discuss the maximum likelihood estimation of
the unknown parameter θ∗ for the MNL model. First, re-
call that yt ∈ {0, 1}|St|+1 is the user choice response vari-
able where yti is the i-th component of yt. Then, the nega-
tive log-likelihood function under parameter θ is then given
by `n(θ) := −

∑n
t=1

∑
i∈St∪{0} yti log pt(i|St, θ) which is

also known as the cross-entropy error function for the multi-
class classification problem. Taking the gradient of this neg-
ative log-likelihood with respect to θ, we obtain

∇θ`(θ) =
n∑
t=1

∑
i∈St

(pt(i|St, θ)− yti)xti

As the sample size n goes to infinity, the MLE θ̂n is
asymptotically according to the classical likelihood the-
ory (Lehmann and Casella 2006), with θ̂n − θ∗ →
N (0, I−1θ∗ ) where Iθ∗ is the Fisher information matrix.
We show in the proof of Theorem 2 that Iθ∗ is lower
bounded by

∑
t

∑
i∈St

pt(i|θ∗)pt(0|θ∗)xtix>ti . Hence, if
pt(i|θ∗)pt(0|θ∗) ≥ κ > 0, then we can ensure that Iθ∗ is
invertible and prevent asymptotic variance of x>θ̂ from go-
ing to infinity for any x.

Algorithms and Main Results
In this section, we present algorithms for the MNL contex-
tual bandit problem and their regret bounds.

Algorithm: UCB-MNL
The basic idea of our first algorithm is to maintain a confi-
dence set for the parameter θ∗. The techniques of upper con-
fidence bounds (UCB) have been widely known to be effec-
tive in balancing the exploration and exploitation trade-off
in many bandit problems, including K-arm bandits (Auer,
Cesa-Bianchi, and Fischer 2002; Lattimore and Szepesvári
2019), linear bandits (Auer 2002; Dani, Hayes, and Kakade
2008; Abbasi-Yadkori, Pál, and Szepesvári 2011; Chu et al.
2011) and generalized linear bandits (Filippi et al. 2010; Li,
Lu, and Zhou 2017).

For each round t, the confidence set Ct for θ∗ is con-
structed from the feature vectors {xt′i, i ∈ St′}t′≤t and
the observed feedback of selected items y1, ..., yt−1 from all
previous rounds. Let θ̂t denote the estimate of the unknown
parameter θ∗ after t periods, and suppose we are guaranteed
that θ∗ lies within the confidence set Ct centered at MLE θ̂t
with radius αt > 0 with a high probability. The radius αt has
to be chosen carefully: larger αt induces more exploration;
however, too large αt can cause regret to increase. In the
MNL setting, exploitation is to offer argmaxS∈S Rt(S, θ̂t),
whereas exploration is to choose a set S that has the potential
for high expected revenueRt(S, θ) as θ varies over Ct. Thus,
a direct way to introduce optimism, and induce exploration,
is to define an optimistic revenue for each

(
N
K

)
assortments.

This is the approach taken in Chen, Wang, and Zhou (2018);
however, this enumeration has exponential complexity when
N is large and K is relatively small. We show that one can
induce sufficient exploration by defining an optimistic util-
ity zti for each item, and defining the optimistic revenue for
any assortment S using the optimistic utility.

zti := x>ti θ̂t−1 + αt‖xti‖V −1
t−1

(3)

where Vt =
∑t
t′=1

∑
i∈St

xt′ix
>
t′i ∈ Rd×d is a symmetric

positive definite matrix. The optimistic utility zti consists of
two components: mean utility estimate x>ti θ̂t−1 and standard
deviation αt‖xti‖V −1

t−1
. In the proof of the regret bound of

the algorithm, we show that zti is, indeed, an upper bound
of x>tiθ

∗ if θ∗ lies within in the confidence ellipsoid centered
at θ̂t−1. Based on zti, we construct the following optimistic
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Algorithm 1 UCB-MNL
1: Input: initialization T0, confidence radius αt
2: Initialization: for t ∈ [T0]
3: Randomly choose St with |St| = K
4: Vt ← Vt−1 +

∑
i∈St

xtix
>
ti

5: for all t = T0 + 1 to T do
6: Compute zti = x>ti θ̂t−1 + αt‖xti‖V −1

t−1
for all i

7: Offer St = argmaxS⊂S R̃t(S) and observe yt
8: Update Vt ← Vt−1 +

∑
i∈St

xtix
>
ti

9: Compute MLE θ̂t by solving∑t
t′=1

∑
i∈St′

(
pt′(i|St′ , θ̂t)− yt′i

)
xt′i = 0

10: end for

estimate of the expected revenue

R̃t(S) :=

∑
i∈S rti exp (zti)

1 +
∑
j∈S exp (ztj)

. (4)

We assume an access to an assortment optimization method
which returns the assortment at time t for a given param-
eter estimate, St = arg maxS⊂S R̃t(S). There are efficient
polynomial-time algorithms available to solve this optimiza-
tion problem (Rusmevichientong, Shen, and Shmoys 2010;
Davis, Gallego, and Topaloglu 2014). We now have all the
ingredients for our algorithm, UCB-MNL (see Algorithm 1).

In Algorithm 1, during the initialization phase, we first
randomly choose an assortment St with exactly K items
(after initialization, St can be smaller than K) to ensure
a unique MLE solution. The initialization T0, specified in
Theorem 1, is chosen to ensure that λmin(VT0) is large
enough.

Regret Bound for UCB-MNL Algorithm
We present the regret upper-bound of UCB-MNL under the
following assumptions on the context process and the MNL
model, both standard in the literature.
Assumption 1. Each feature vector xti is drawn i.i.d. from
an unknown distribution px, with ‖xti‖ ≤ 1 all t, i and there
exists a constant σ0 > 0 such that E[xtix

>
ti ] ≥ σ0.

The boundedness is used to make the regret bounds scale-
free. The i.i.d. assumption is also made in generalized linear
bandit (Li, Lu, and Zhou 2017) and MNL contextual bandit
(Chen, Wang, and Zhou 2018; Oh and Iyengar 2019) litera-
ture.
Assumption 2. There exists κ > 0 such that for ev-
ery item i ∈ S and any S ∈ S and all round t,
min‖θ−θ∗‖≤1 pt(i|S, θ)pt(0|S, θ) ≥ κ.

The asymptotic normality of MLE implies the necessity
of this assumption. This is a standard assumption in MNL
contextual bandits (Cheung and Simchi-Levi 2017; Chen,
Wang, and Zhou 2018; Oh and Iyengar 2019), which is also
equivalent to the standard assumption for the link function in
generalized linear contextual bandits (Filippi et al. 2010; Li,
Lu, and Zhou 2017) to ensure the Fisher information matrix
is invertible.

Theorem 1 (Regret of UCB-MNL). Suppose Assump-
tions 1 and 2 hold and we run UCB-MNL with confi-

dence width αt = 1
2κ

√
2d log

(
1 + t

d

)
+ 2 log t and T0 =

O(max{κ−2 (d log(T/d) + 4 log T ) ,K/σ2}). Then the ex-
pected regret of UCB-MNL is upper-bounded by

RT = O
(
d
√
T log (1 + T/d) log(T/d)

)
.

Discussion of Theorem 1. In terms of key problem prim-
itives, Theorem 1 demonstrates Õ(d

√
T ) regret bound for

UCB-MNL which is independent of N ; hence, it is appli-
cable to the case with a very large number of candidate
items. Chen, Wang, and Zhou (2018) established the lower
bound result Ω(d

√
T/K) for MNL bandits. When K is

small, which is typically true in many applications, the re-
gret upper-bound in Theorem 1 demonstrates that UCB-MNL
is almost optimal. The established regret of UCB-MNL im-
proves the previous worst-case regret bound of Oh and Iyen-
gar (2019) by

√
d factor and that of Chen, Wang, and Zhou

(2018) in both logarithmic and additive factors. Moreover,
although having the same rate of Õ(d

√
T ) regret up to log-

arithmic factors, the UCB method in Chen, Wang, and Zhou
(2018) has exponential computational cost, since it needs to
enumerate all of the possible (N choose K) assortments.
Therefore, UCB-MNL is the first polynomial-time algorithm
that achieves Õ(d

√
T ) worst-case regret.

Extension to online parameter update. UCB-MNL is sim-
ple to implement and works very well in practice. We fur-
ther improve both the time and space complexities of the
algorithm by using an online parameter update version (Al-
gorithm 3 in the appendix). Exploiting the fact that the loss
for the MNL model is strongly convex over bounded do-
main, we apply a variant of the online Newton step inspired
by Hazan, Koren, and Levy (2014); Zhang et al. (2016) to
find an approximate solution rather than computing the ex-
act MLE. We show that the modified algorithm still enjoys
the same order of the statistical efficiency with Õ(d

√
T ) re-

gret even with the online update.

Corollary 1. UCB-MNL with online parameter update still
has Õ(d

√
T ) regret.

Non-asymptotic Normality of the MLE for
the MNL Model
We have shown that UCB-MNL is both statistically and com-
putationally efficient. The algorithm also shows state-of-the-
art practical performances as we report later in the numerical
experiments. However, the regret bound in Theorem 1 has a
linear dependence on feature dimension d and, therefore, is
not very attractive when the feature vectors are high dimen-
sional. We next investigate whether a sublinear dependence
on d is possible. In the regret analysis for UCB-MNL, we
upper-bound the prediction error x>(θ∗− θ̂t) using Hölder’s
inequality, |x>θ̂t−x>θ∗| ≤ ‖x‖V −1

t
‖θ̂t− θ∗‖Vt

, where we
show each of the terms on the right hand side is bounded by
Õ(
√
d), hence resulting in a linear dependence on d when

combined. A potential solution to circumvent this challenge
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is to control the prediction error directly without bounding
two terms separately.

In Theorem 2, we propose a non-asymptotic normality
bound for the MLE for the MNL model in order to estab-
lish a sharper concentration result for |x>(θ̂t − θ∗)|. This is
a generalization of Theorem 1 in Li, Lu, and Zhou (2017)
to the MNL model. To the best of our knowledge, there was
no existing finite-sample normality results for the prediction
error of the utility for the MNL model. This concentration
result can be of independent interest beyond the bandit prob-
lem we address in this work.
Theorem 2 (Non-asymptotic normality of MLE). Sup-
pose we have independent responses y1, ..., yn condi-
tioned on feature vectors {xti}n,Kt=1,i=1. Define Vn =∑n
t=1

∑
i∈St

xtix
>
ti , and let δ > 0 be given. Furthermore,

assume that λmin(Vn) ≥ max
{

9D4

κ4 log(1/δ) ,
144D2

κ4

}
where

D := min
{

4
√

2d+ log 1
δ ,
√
d log(n/d) + 2 log 1

δ

}
. Then,

for any x ∈ Rd, the maximum likelihood estimator θ̂n of the
MNL model satisfies with probability at least 1− 3δ that

|x>θ̂n − x>θ∗| ≤
5

κ

√
log

1

δ
‖x‖V −1

n
.

Hence, the prediction error can be bounded by Õ(
√
d)

with high probability as long as the conditions on indepen-
dence of samples and the minimum eigenvalue are satisfied.
Note that although the statement of Theorem 2 is similar to
that of the generalized linear model version in Li, Lu, and
Zhou (2017), the extension to the MNL model is non-trivial
because choice probability for any given item i ∈ St is func-
tion of the all the items in the assortment St, and hence the
analysis is much more involved. Theorem 2 implies that we
can control the behavior of the MLE in every direction al-
lowing us to handle the prediction error in a tighter fashion.

Provably Optimal but Impractical
Unfortunately, we cannot directly apply the tight bound for
the MLE shown in Theorem 2 to UCB-MNL since Theo-
rem 2 requires independent samples (as well as the minimum
eigenvalue being large enough, but this condition can be sat-
isfied by initial exploration). UCB-MNL is not guaranteed to
produce independent samples since the algorithm chooses
assortments based on previous observations, causing depen-
dence between collected samples. This issue can be handled
by generating independent samples using a framework in
Auer (2002), which we denote as “Auer-framework.” This
Auer-framework has been previously used in several vari-
ants of (generalized) linear bandits (Chu et al. 2011; Li, Lu,
and Zhou 2017; Zhou, Xu, and Blanchet 2019). We show
that the adaptation of the Auer-framework to the MNL con-
textual bandit problem is possible1 and establish the follow-
ing regret bound.
Theorem 3 (Provably optimal regret). Suppose Assump-
tions 1 and 2 hold. There exists an algorithm which estab-
lishes Õ(

√
dT ) regret for the MNL contextual bandits.

1We defer the details of the algorithm to the appendix since this
is not the focus of the paper.

Algorithm 2 DBL-MNL
1: Input: sampling parameter qk, confidence radius βk
2: Set τ1 ← d, t← 1, V0 ← 0d×d
3: Initialization: for t ∈ [d]
4: Randomly choose St ∈ S with |St| = K
5: Vt ← Vt−1 +

∑
i∈St

xtix
>
ti

6: for each episode k = 2, 3, ... do
7: Set the last round of k-th episode: τk ← 2k−1

8: Compute MLE θ̂k by solving∑τk−1

t=τk−2+1

∑
i∈St

(
pt(i|St, θ̂k)− yti

)
xti = 0

9: Update Wk−1 ← Vτk−1+1; Reset Vτk−1+1 ← 0d×d
10: for each round t = τk−1 + 1, ..., τk do
11: if τk − t ≤ qk and λmin(Vt) ≤ Kqkσ0

2 then
12: Randomly choose St ∈ S with |St| = K
13: else
14: Offer St = argmaxS∈S R̃t(S)
15: end if
16: Update Vt+1 ← Vt +

∑
i∈St

xtix
>
ti

17: end for
18: end for

Ω(
√
NT ) lower bound was shown in Chen and Wang

(2017) for the non-contextual MNL bandits. This lower
bound can be translated to Ω(

√
dT ) if each item is repre-

sented as one-hot encoding. Hence the regret bound in The-
orem 3 matches the lower bound for the MNL bandit prob-
lem with finite items. To our knowledge, this is the first re-
sult that achieves the rate of Õ(

√
dT ) regret and establishes

the provable optimality in the MNL contextual bandit prob-
lem. However, this comes at a cost. The algorithm based on
the Auer-framework, although provably optimal, is not prac-
tical (see the numerical experiments)! In fact, this is true
for all optimal methods (Chu et al. 2011; Li, Lu, and Zhou
2017; Zhou, Xu, and Blanchet 2019) that rely on the Auer-
framework (Auer 2002) because the framework wastes too
many samples with random exploration.2 Next, we investi-
gate whether Õ(

√
dT ) regret can be achieved in a practical

manner for the class of applications where the revenue for
each item is uniform. As discussed earlier that this class in-
cludes web search and media recommendations.

Algorithm: DBL-MNL

We propose a new algorithm, DBL-MNL (Algorithm 2) that
is both provably optimal and practical. DBL-MNL operates
in an episodic manner. At the beginning of each episode,
the MLE is computed using the samples from a previous
episode. Within an episode, the parameter is not updated, but
the algorithm takes an UCB action based on the parameter
computed at the beginning of the episode. In particular, for
round t in the k-th episode, the upper-bound of an utility

2These previous methods (Chu et al. 2011; Li, Lu, and Zhou
2017; Zhou, Xu, and Blanchet 2019) that use techniques in (Auer
2002) do not provide numerical evaluations.
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estimate is computed as

z̃ti = x>ti θ̂k + αk‖xti‖W−1
k−1

where Wk−1 =

τk−1∑
t′=τk−1+1

∑
i∈St′

xt′ix
>
t′i

and τk−1 is the last round of the k − 1-th episode. Note
that the Gram matrix resets every episode. Under this ac-
tion selection, samples within each episode are indepen-
dent of each other. Episode lengths are doubled over time
such that the length of the k-th episode is twice as large as
the k − 1-th episode. This doubling technique is inspired
by Jaksch, Ortner, and Auer (2010); Javanmard and Naz-
erzadeh (2019). Towards the end of each episode, the al-
gorithm checks whether λmin(Vt) is suitably large. If not,
it performs random exploration. Since episode lengths are
growing exponentially and the threshold for λmin(Vt) is only
logarithmic in t, even in the worst case, the algorithm draws
O(log T ) random samples. Note that the algorithm may not
even take these exploratory actions since λmin(Vt) may al-
ready surpass the threshold for large enough episodes (this
is clearly observed in numerical evaluations). This makes
DBL-MNL much more practical since it would perform mini-
mal random exploration. Furthermore, the algorithm is com-
putationally efficient with only logarithmic number of pa-
rameter updates instead of updating in every period.

Regret Bound of DBL-MNL
We analyze the regret of DBL-MNL for which we aim to es-
tablish Õ(

√
dT ) regret. For our analysis, we add the fol-

lowing mild assumption which encompasses many canoni-
cal distributions.
Assumption 3 (Relaxed symmetry). For a joint distribution
pX , there exists ρ0 <∞ such that pX(−x)

pX(x) ≤ ρ0 for all x.

This assumption is also used in the analysis of sparse ban-
dits Oh, Iyengar, and Zeevi (2020). Assumption 3 states that
the joint distribution pX can be skewed but this skewness is
bounded. For symmetrical distributions, ρ0 = 1. One can
see that a large class of continuous and discrete distribu-
tions satisfy Assumption 3, e.g., Gaussian, truncated Gaus-
sian, uniform distribution, and Rademacher distribution, and
many more. Under this suitable regularity, we establish the
following regret bound for DBL-MNL.
Theorem 4 (Regret bound of DBL-MNL). Suppose Assump-
tions 1-3 hold and the revenue ri ≡ r is uniform. Then
the expected regret of DBL-MNL over horizon T is RT =
O
(√

dT log (T/d) log(TN) log(T )
)
.

Discussion of Theorem 4. DBL-MNL achieves Õ(
√
dT )

regret when the revenue for each item is uniform. This en-
compasses all applications where the goal is to maximize
an appropriate “click-through rate” from offering the assort-
ment. Theorem 4 provides insights beyond the MNL con-
textual bandits: it shows that under the suitable regularity
condition, it is possible for a practical algorithm to attain
Õ(
√
dT ) regret. We expect this technique to yield practi-

cal provably optimal algorithms for other variants of con-
textual bandit problems. The regret bound of UCB-MNL is N

independent; in contrast, DBL-MNL has a logarithmic depen-
dence on N (as is common for Õ(

√
dT ) regret algorithms).

In fact, the numerical experiments suggest that performance
does have at least logarithmic dependence onN for all meth-
ods (as indicated by Theorem 4 for DBL-MNL).

Proof Outline of Theorem 4
Since the length of an episode grows exponentially, the num-
ber of episodes up to round T is logarithmic in T . In par-
ticular, the T -th round belongs to the L-th episode with
L = blog2 T c + 1. Let Tk := {τk−1 + 1, ..., τk} denote
an index set of rounds that belong to the k-th episode. Note
that the length of the k-th episode is |Tk| = τk/2. Then,
we let Reg(k-th episode) denote the cumulative regret of the
k-th episode, i.e.,

Reg(k-th episode) := E

[∑
t∈Tk

(
Rt(S

∗
t , θ
∗)−Rt(St, θ∗)

)]
so that the cumulative expected regret over T rounds is
R(T ) =

∑L
k=1 Reg(k-th episode). Therefore, it suffices

to bound each Reg(k-th episode). Now, for each episode
k ∈ [L], we consider the following two cases.

(i) |Tk| ≤ qk: In this case, the length of an episode is not
large enough to have the concentration of the prediction
error due to the failure of ensuring the lower bound on
λmin(Vt). Therefore, we cannot control the regret in this
case. However, the total number of such rounds is only
logarithmic in T , hence the regret corresponding to this
case contributes minimally to the total regret.

(ii) |Tk| > qk: We can apply the fast convergence result in
Theorem 2 as long as the lower bound on λmin(Vt) is
guaranteed — note that the independence condition is al-
ready satisfied since samples in each episode are indepen-
dent of each other. We show that λmin(Vt) grows linearly
as t increases in each episode with high probability. In
case of λmin(Vt) not growing as fast as the rate we re-
quire, we perform random sampling to satisfy this crite-
rion towards the end of each episode. Therefore, with high
probability, the lower bound on λmin(Vt) is satisfied.
For case (i), clearly qk ≤ qL for any k ∈ {1, ..., L}. |Tk|

eventually grows to be larger than qL for some k since qL
is logarithmic in T . Let k′ be the first episode such that
|Tk′ | ≥ qL. Hence, |Tk′ | ≤ 2qL. Thus, the cumulative regret
prior to the k′-th episode is O

(
log d+ d2 + log2(TN)

)
.

Then, letting k′′ be the first episode such that |Tk′′ | ≥ qk′′
and noting that k′′ ≤ k′ gives

k′′−1∑
k=1

Reg(k-th episode) ≤
k′−1∑
k=1

Reg(k-th episode) .

Hence, the cumulative regret corresponding to case (i) is at
most poly-logarithic in T .

For case (ii), it suffices to show random sampling ensures
the growth of λmin(Vt). We show that random sampling with
duration qk specified in Theorem 4 ensures the minimum
eigenvalue condition for the Gram matrix, i.e., λmin(Vτk) ≥
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Figure 1: The regret plots show that UCB-MNL and DBL-MNL perform at start-of-the-art levels across different problem instances.
Evaluations are for features drawn from a multivariate Gaussian (first row) and uniform (second row) distributions.

max
{

9D4
k

κ4 log(τkN/2)
,
144D2

k

κ4

}
with high probability for each

episode k ∈ [L]. We then apply the confidence bound in
Theorem 2 to the k-th episode which requires samples in the
(k − 1)-th episode are independent and λmin(Vτk−1

) at the
end of the (k − 1)-th episode is large enough. That is, with
a lower bound guarantee on λmin(Vτk−1

) and the fact that
samples are independent of each other in each episode, we
have with high probability

|x>ti(θ̂k − θ∗)| ≤ βk‖xti‖W−1
k−1

, ∀i ∈ [N ], ∀t ∈ Tk

with suitable confidence width βk specified in Theorem 4.
Therefore, the expected regret in the k-th episode can be
bounded by Õ(

√
dτk). Then we combine the results over

all episodes to establish Õ(
√
dT ) regret.

Numerical Experiments
In this section, we evaluate the performances of our pro-
posed algorithms: UCB-MNL (Algorithm 1) and DBL-MNL
(Algorithm 2) in numerical experiments. In our evalua-
tions, we report the cumulative regret for each round t ∈
{1, ..., T}. For each experimental configuration, we evalu-
ate the algorithms on 20 independent instances and report
average performances. In each instance, the underlying pa-
rameter θ∗ is sampled from the d-dimensional uniform dis-
tribution, with each element of θ∗ uniformly distributed in
[0, 1]. The underlying parameters are fixed during each prob-
lem instance but not known to the algorithms. For efficient
evaluations, we consider uniform revenues, i.e., rti = 1 for
all i and t. Therefore, the combinatorial optimization step
to solve for the optimal assortment reduces to sorting items
according to their utility estimate. Also, recall that the re-
gret bound for DBL-MNL (Theorem 4) is derived under the

Horizon (T )
Method 1000 5000

TS-MNL (Oh and Iyengar 2019) 6.65 73.99

TS-MNL Opt. (Oh and Iyengar 2019) 6.81 77.18

UCB-MNL (Algorithm 1) 6.62 74.28

DBL-MNL (Algorithm 2) 1.20 5.92

Table 2: Runtime evaluation (sec), N = 100,K = 5, d = 5

uniform revenue assumption, therefore, the uniform revenue
setting provides a suitable test bed for all methods consid-
ered in this section.

We compare the performances of the proposed algorithms
with those of the state-of-the-art Thompson sampling based
algorithms, TS-MNL and “optimistic” TS-MNL, proposed in
Oh and Iyengar (2019). Additionally, we evaluate the per-
formance of the provably optimal but impractical algorithm,
supCB-MNL (see Algorithm 5 in the appendix), that is based
on the Auer-framework. Figure 1 shows that the perfor-
mances of UCB-MNL and DBL-MNL are superior to or com-
parable to the state-of-the-art Thompson sampling methods.
Moreover, the runtime evaluation shows that DBL-MNL is sig-
nificantly faster than the other methods due to its logarithmic
number of parameter updates.

Ethical Statement

We conform that our work meets the standards listed in the
ethics and malpractice statement of the AAAI.
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Parametric bandits: The generalized linear case. In Advances
in Neural Information Processing Systems, 586–594.
Hazan, E.; Koren, T.; and Levy, K. Y. 2014. Logistic regres-
sion: Tight bounds for stochastic and online optimization. In
Conference on Learning Theory, 197–209.
Jaksch, T.; Ortner, R.; and Auer, P. 2010. Near-optimal re-
gret bounds for reinforcement learning. Journal of Machine
Learning Research 11(Apr): 1563–1600.

Javanmard, A.; and Nazerzadeh, H. 2019. Dynamic pric-
ing in high-dimensions. The Journal of Machine Learning
Research 20(1): 315–363.

Kveton, B.; Szepesvari, C.; Wen, Z.; and Ashkan, A. 2015.
Cascading bandits: Learning to rank in the cascade model.
In International Conference on Machine Learning, 767–
776.
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