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Abstract
Modern society is heavily dependent on large scale
client-server systems with applications ranging from In-
ternet and Communication Services to sophisticated lo-
gistics and deployment of goods. To maintain and im-
prove such a system, a careful study of client and server
dynamics is needed – e.g. response/service times, aver-
age number of clients at given times, etc. To this end,
one traditionally relies, within the queuing theory for-
malism, on parametric analysis and explicit distribution
forms. However, parametric forms limit the model’s ex-
pressiveness and could struggle on extensively large
datasets.
We propose a novel data-driven approach towards queu-
ing systems: the Deep Generative Service Times. Our
methodology delivers a flexible and scalable model for
service and response times. We leverage the represen-
tation capabilities of Recurrent Marked Point Processes
for the temporal dynamics of clients, as well as Wasser-
stein Generative Adversarial Network techniques, to
learn deep generative models which are able to repre-
sent complex conditional service time distributions. We
provide extensive experimental analysis on both empir-
ical and synthetic datasets, showing the effectiveness of
the proposed models.

Introduction
The ultimate success of any service provider rests on its abil-
ity to quickly and efficiently satisfy its customers: a mobility
system is only successful as long as its users arrive on time;
a block-chain is reliable provided low latency of its transac-
tion times is ensured; Internet services can only retain users
if they provide quick and fast response. To operate systems
like these, one needs to understand not only when customers
will require a service but also how the system is able to re-
act and respond to demands. Moreover, one should be able
to dynamically adapt the system to external events. Exam-
ples include sudden disruptions of a mobility system due to
car accidents or weather conditions, or financial crises and
breaking news affecting block-chain transactions.
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From the point of view of deep learning, recent research
has primarily focused on the client side of a service sys-
tem. This research analyses Customer Dynamics through
Point Process Theory, in which user behavior is modeled via
parametric forms such as Poisson or Hawkes processes. In
cases where these parametric forms turn out to be restrictive,
some practitioners turn to models such as Recurrent Neural
Networks (RNN) in order to learn representations encoding
the customer dynamics, and use Maximum Likelihood to fit
them (Du et al. 2016; Mei and Eisner 2017; Jing and Smola
2017); while others dispense with density forms altogether,
and learn instead how to sample from the distribution of in-
terest via Generative Adversarial schemes (Xiao et al. 2017,
2018).

The other side of service system modelling deals with the
service itself, in particular with service times, and mainly
lies outside the scope of deep learning. This research typ-
ically resorts to Queuing Theory, in which a customer ex-
presses a demand and the system responds, according to
the available servers and server load. Within this theory, the
customer arrival dynamics is modeled with a point process,
while the service system is specified through either a single
queue (with a given scheduling policy) or networks of them,
and, yet again, parametric forms are assumed for both arrival
and service time distributions. Results are usually limited to
moments of the system size distribution (Asmussen 2008;
Daw and Pender 2018; Boxma, Kella, and Mandjes 2019)
or are, in some cases, based on Bayesian inference (Sut-
ton and Jordan 2011; Wang, Casale, and Sutton 2016; Perez,
Hodge, and Kypraios 2018). Yet, the latter often have strong
built-in assumptions (e.g. Poisson arrival processes) which
makes them too restrictive, and involve expensive sampling
schemes, which renders them not scalable enough to handle
the millions of customers in modern service systems.

The work presented here aims to provide a scalable algo-
rithm for service time inference suitable to the large datasets
of modern systems, and a first bridge between queuing sys-
tem modelling and deep learning through deep generative
models. In recent years Generative Adversarial Networks
(GANs) have shown to be able to capture complex data dis-
tributions, achieving impressive results in image and text
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generation (Goodfellow et al. 2014; Mirza and Osindero
2014; Lin et al. 2017). Here, instead of assuming the un-
derlying queues and service disciplines within the systems
we study, we use adversarial techniques to learn conditional
service time distributions. The result is a simple methodol-
ogy, flexible enough to serve in a wide range of applications.

In what follows we develop a deep non-parametric1 gen-
erative model for service times. The model leverages dy-
namic representations of general arrival point processes, in-
corporates covariate information and yields a practical solu-
tion to the G/G/∞ problem (see notation below) of queu-
ing theory. We evaluate our methodology on both, syn-
thetic datasets simulated from known queueing models and
various real-world datasets, ranging from Internet services
(GitHub, Stackoverflow) to mobility service systems (New
York taxi cab). We compare our model against other deep
non-adversarial service time models, as well as against ex-
act theoretical estimates of the queue length.

Background
The theory of queues deals with the study of the distribution
of service times and queue lengths in service systems. One
would like to know, for example, how much time a client is
likely to wait for a service, or how much time this service
is expected to last. It corresponds to a central topic in the
field of operations research, as it is of fundamental interest
to efficiently allocate time and resources in a given service
system. Historically, the field emerged from the studies re-
lated to telephone exchange and call arrivals (Erlang 1909).

In order to define a queuing system one must specify the
nature of the client arrival process, as well as the specifics of
the service system. The arrival of clients may follow a Pois-
son process, but its rate may jump due to external events.
Likewise, one system might allow for a fixed number of
clients to be served at a time, or the service times might dy-
namically change with every incoming client. The standard
notation used to specify the characteristics of the different
queuing systems consists of characters separated by slashes
thus ·/ · /· (Kendall 1953). The first character describes the
customer arrival process, namely the inter-arrival distribu-
tion. Typical examples are “M” for memoryless (Poisson),
“D” for deterministic times and “G” for general distribu-
tions. The second character specifies the service time distri-
bution, and the third one the number of servers available to
the system. For example, theM/M/1 queue denotes a queu-
ing system with Poisson arrivals, exponentially distributed
service times and a single server. Various scheduling poli-
cies or service disciplines can also be employed by a given
queue. For example, the customers can be served one at a
time, in the order that they arrive (first-come first-served
discipline); or they can all be served simultaneously, each
receiving an equal fraction of the server capacity (processor
sharing discipline). And service systems may just as well be
modeled by networks of queues. We refer the reader to e.g.

1By non-parametric we mean that we do not impose any para-
metric form (as e.g. Gamma or exponential) on the distributions we
model. Instead we learn directly how to generate data following the
distribution of interest.

(Gross et al. 2011) for an introduction to these concepts.
Let us denote the arrival time of the ith client as ai ∈ R+.

After arriving to the system, the client waits to be served.
We denote this waiting as wi ∈ R+. Once the service is
completed the client leaves the system at departure time
di ∈ R+. The sequence of departure times also defines a
point process, to which we refer in the following as depar-
ture process. The service time si ∈ R+ is defined as the
amount of time the ith client spends being served after the
waiting period, that is si = di − ai − wi. Finally, the re-
sponse time ri ∈ R+ corresponds to the total time the cus-
tomer requires to be processed, including the waiting time
i.e. ri = di−ai. In this work we provide a simple methodol-
ogy to infer service time distributions for theG/G/∞ queu-
ing problem2.

Notation. In what follows we shall use capital letters
for random variables and lowercase letters for their values.
Likewise we denote probability distributions with capital
letters, e.g. P (S), and densities with lowercase letters, e.g.
p(s).

Related Work
Queuing Theory has a long history of both exact and ap-
proximated results, and these apply to single queues as
well as to networks of them (Williams 2016). Often these
studies focus on Markovian queues, i.e. queues for which
both inter-arrival and service times are exponentially dis-
tributed. In such cases the queue-length process (that is,
the number of clients in service process) is given by a
continuous-time Markov chain, which makes it an object
suitable for theoretical analysis (Bertsimas 1990; Mandel-
baum, Massey, and Reiman 1998). For example, recent ef-
forts investigate infinite-server queues whose arrivals follow
a (Markovian) Hawkes process, and whose service time dis-
tributions are either phase-type or deterministic (Daw and
Pender 2018). Their results include exact moments and the
moment generating function of the queue-length process.
Similarly, infinite-server queues whose arrival process is
driven by a Cox process have also been considered (Boxma,
Kella, and Mandjes 2019).

In contrast to queue-length processes, the departure pro-
cess is not in general a discrete-time Markov chain, even for
Markovian queues. This makes sense simply because keep-
ing a client longer in service, or finishing serving her sooner,
can cause slow reallocation of resources which, in turn,
may affect the departure times of clients who have arrived
much later. Despite this fact, Sutton and Jordan (2011) were
able to infer service time distributions using Markov Chain
Monte Carlo (MCMC) methods, defined via deterministic
transformations between data and independent service times
with different service disciplines, to model queuing net-
works with missing data. In fact, they argued that such long-
range non-Markovian effects within the departure process

2Due to the non-parametric nature of our solutions, the rich dis-
tributional forms we obtain allow for a solution of the G/G/k
problem, where the number of available servers “k” is unknown.
Under this interpretation of the data, one should reinterpret our re-
sults as delivering the response time of the system.
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Figure 1: Left: the arrival times ai are modeled with the RPP
model with hidden state hai . Right: The service time models
take hai and covariates xi as input. Here Φ labels the gener-
ator and f labels the critic.

take place only for “large” departure times, which were un-
likely to occur. Later, Wang, Casale, and Sutton (2016) used
Gibbs sampling techniques to model closed queueing net-
works (for which the total number of customers in the net-
work is constant) that admit product-form equilibrium distri-
butions; and Perez, Hodge, and Kypraios (2018) proposed a
slice sampling technique for queueing networks which em-
ploys auxiliary variables, drawing some intuition from re-
cent MCMC contributions (Rao and Teh 2013). These ap-
proaches, however, focus on specific type of systems and,
due to the long mixing times and strong correlation proper-
ties across variables within their MCMC sampling schemes,
suffer from scalability problems (Perez and Casale 2018).
In fact, the large datasets we consider (of the order of & 106

datapoints) encompass different time scales and may worsen
the non-Markovian effects inherent in the departure process.
Nonparametric alternatives to sampling methods are (Gold-
enshluger and Koops 2019; Senderovich et al. 2019).

From the neural network community, early approaches
use neural networks as meta-models for queuing networks
(Chambers and Mount-Campbell 2002), while more recent
ones encode the average dynamics of closed queuing net-
works into RNNs (Garbi, Incerto, and Tribastone 2020).
Also recently, and most related to our work, Chapfuwa et al.
(2018) modeled time-to-event distributions using covariate
information via Generative Adversarial Networks (GANs).
We build on top of this work to capture the dynamic charac-
ter of the client arrival process, and the independent dynam-
ics of the server system.

Deep Generative Service Times
Given a series of N arrivals and associated departure times
{ai, di}Ni=1, each represented in continuous time R+, we
consider the G/G/∞ queuing system for which waiting
timeswi are zero and service times are given by si = di−ai.
Let each arrival have a set of covariates {xi ∈ Rc}Ni=1 asso-
ciated to it (as, for example, the pick-up and drop-off lo-
cations for taxi rides on which the ride’s duration depends
strongly). We assume our service times are sampled from an
unknown distribution PD(S|xi,Hi), conditioned on the co-
variates and the history of arrivals Hi ≡ {a1, ..., ai}. The

task is to learn a generative model with implicit probability
distribution Pθ, which approximates PD. In a nutshell, our
approach consists in modelling the client’s arrival and ser-
vice times separately:

Arrival Times Modelling – We first model the sequence
of arrival times {ai}Ni=1 using the Recurrent Point Process
(RPP) model of Du et al. (2016), which is both scalable and
robust to model misspecification. The RPP Section below
outlines the approach.

Service Times Modelling – We then use the hidden states
of the trained RPP model encodingHi, together with the co-
variates {xi}, as input to our service time model: the Recur-
rent Adversarial Service Times (RAS). The RAS model de-
terministically maps these inputs together with random vec-
tors from some latent space to the space of observations, and
is parametrized by a second RNN, which is expected to cap-
ture the independent dynamic character of the server system.
Details are presented in the RAS Section below

As such, the Deep Generative Service Times is a hi-
erarchical model which treats service systems as a single
G/G/∞ queue, while making no assumption about its ser-
vice discipline. Fig. 1 provides a basic outline of our pro-
posed models.

One can briefly motivate our modelling strategy by exam-
ining the relation between arrival and service times. On one
hand, and in accordance with queuing theory, the client ar-
rival process is independent of the service system states, thus
justifying our initial RPP arrival modelling. On the other
hand, experience suggests that the service time distribution
of a given system depends on the (dynamic) rate at which
clients arrive. Thus, our service time models should be able
to exploit the dynamic information encoded in the customer
arrival process. Furthermore, many server systems are dy-
namic and time-dependent in nature: service times of new
clients depend on how fast previous clients were served (re-
member the non-Markovian character of the departure pro-
cess discussed above); service times may be heavily influ-
enced by previous disrupting events, etc. Our construction
should be capable of incorporating such a dynamic charac-
ter. Hence the recurrent component of RAS.

Recurrent Point Process (RPP)
Within queuing theory the customer arrivals define a one-
dimensional Point Process. In what follows we define f∗(t)
as the likelihood of a Point Process induced by an inten-
sity function λ∗(t). We define λ∗ through a RNN, follow-
ing the procedure stated in (Du et al. 2016; Mei and Eisner
2017). Let us consider a point process with compact support
S ⊂ R. Formally, the likelihood is written as an inhomo-
geneous Poisson process between arrivals, conditioned on
the history of arrivalsHi3 (Daley and Vere-Jones 2007). For
one-dimensional processes the conditional likelihood that
the next arrival happens at time t reads

f∗(t) = λ∗(t) exp

{∫ t

ai

λ∗
(
t′
)
dt′
}
, (1)

where the intensity function λ∗ is a (locally) integrable func-
tion. The functional dependence of the intensity function is

3a.k.a. filtration
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given by a RNN with hidden state hai ∈ Rh, where an expo-
nential function guarantees that the intensity is non-negative

λ∗(t) = exp
{
vt · hai + wt (t− ai) + bt

}
. (2)

Here the vector vt ∈ Rh and the scalars wt and bt are train-
able variables. The update equation for the hidden variables
of the RNN can be written as a general nonlinear function

hai = gθ(ai,h
a
i−1), (3)

where θ denotes the network’s parameters.
RPP Loss – Inserting Eq. (2) into (1) and integrating over

time immediately yields the likelihood f∗ as a function of
haj . We learn the model parameters by maximizing the joint
model log-likelihood

LRPP =

N∑
i=1

log f∗(δi+1|hai ), (4)

where δi+1 = ai+1 − ai denotes the inter-arrival time and
N is the total number of observed arrivals.

Recurrent Adversarial Service Times (RAS)
In order to model general service time distributions, and
avoid the need to specify any service discipline, we consider
a generative model defined by the following two-step pro-
cess: (i) sample a random vector z ∈ RD from a known
and easy-to-sample distribution P (Z) (e.g. a Normal dis-
tribution); (ii) pass z, together with the RPP representation
hai and covariate xi of the ith arrival, through a parametric
function Φθ : RD × Rh × Rc → R+, with parameter set θ,
that generates service time samples following a distribution
Pθ. We will move this distribution “close” to the empirical
service time distribution PD by varying θ to minimize some
reasonable distance between them.

The Service-Time Generator Φθ – For every arrival time
ai, we first sample a normally distributed random variable
zi ∼ N (0, 1) and define the (stochastic) hidden representa-
tion ui ∈ RD thus

ui = ReLU (Wu
ah

a
i + Wu

xxi + Wu
z zi + bu) , (5)

where Wu
a , Wu

x , Wu
z and bu ⊂ θ are trainable parameters.

Note that this representation encodes information about both
the covariate xi and the arrival historyHi through hai , which
is defined in Eq. (3).

Second, we model the system’s dynamic response to
newly arrived customers with a RNN whose hidden state
hΦ
i ∈ RD is defined through the update equation

hΦ
i = gθ(ui,h

Φ
i−1). (6)

Finally, we compute service times via

si = exp
(
Ws

hh
Φ
i + Ws

zzi + bs
)
, (7)

where zi ∼ N (0, 1) and Ws
h, Ws

z and bs ⊂ θ are train-
able parameters, and the exponential is chosen to restrict the
samples to R+. The composition of the functions in Eq. (5),
(6) and (7) defines our generator Φθ = Φθ(z,h

a
i ,xi). Note

that we introduced an additional noise source in Eq. (7) to

increase the variance of the samples {si} (Chapfuwa et al.
2018).

This generative process implicitly defines a conditional
probability distribution of the form Pθ(S|xi,Hi), which
depends on both covariates and the stochastic arrival pro-
cess. By implicit we mean here that, while we can sam-
ple data from Pθ(S|xi,Hi) through the generative process,
its likelihood is intractable (since Φθ is not invertible). To
train implicit generative models of this type, one usually re-
sorts to minimising a distance (or divergence) between Pθ
and the empirical distribution PD, that can be computed
through their samples. The Wasserstein-1 distance and the
f -divergences are examples of these, and the Adversarial
approaches in (Arjovsky, Chintala, and Bottou 2017) and
(Goodfellow et al. 2014; Nowozin, Cseke, and Tomioka
2016), respectively, minimize them. Below we introduce
the Wasserstein-1 distance and follow the Wasserstein GAN
(WGAN) methodology to train our model.

Wasserstein Loss and Training – The Earth-Mover or
Wasserstein-1 distance between two distributions PD and Pθ
is defined as

W (PD, Pθ) = inf
γ∈Π(PD,Pθ)

E(x,y)∼γ [||x− y||] , (8)

where Π(PD, Pθ) denotes the set of all joint distributions
γ(x, y) whose marginals are, respectively, PD and Pθ. Since
the infimum above is, in general, intractable, we turn to the
Kantorovich-Rubinstein duality (Villani 2009) which tells
us that

W (PD, Pθ) = sup
f∈L1

Es∼PD [f(s)]− Es∼Pθ [f(s)] , (9)

where the supremum is over all 1-Lipschitz functions, and is
still (in general) intractable. The trick is then to restrict the
search space to that of a parametrized family of functions fϕ,
the critic function, which one models with neural networks
and learns under the 1-Lipschitz contraint. Now, our goal is
to learn distributions not only conditioned on a set of covari-
ates, but also on the stochastic arrival process. This is why
we cannot directly use, in a straightforward way, the well
known optimal solution of Eq. (8) in one dimension (Villani
2003; Santambrogio 2015). We instead define our critic as
function of both hai and xi, i.e. fϕ = fϕ(s,hai ,xi), and ef-
fectively learn one distance for each conditional. Putting all
this together, we write our RAS loss function as

L(θ) = max
ϕ

E(ai,xi)∼PD

{
Esi∼PD [fϕ(si,h

a
i ,xi)]

− Esi∼Pθ [fϕ(si,h
a
i ,xi)]

− Esi∼P∗
[(

max
{

0, |∇sifϕ(si,h
a
i ,xi)| − 1

})2
]}

, (10)

with hai = hai (ai) defined in Eq. (3) and P ∗ defined by
sampling uniformly along the straight lines connecting sam-
ples from PD and Pθ. Note that the last term in Eq. (10) ap-
proximately imposes the 1-Lipschitz contraint by forcing the
gradient norm of fϕ to be at most 1 along the straight lines
sampled from P ∗ (Gulrajani et al. 2017; Petzka, Fischer, and
Lukovnikov 2018). Therefore, minimizing L(θ) above with
respect to θ under an optimal critic function minimizes the
Wasserstein-1 distance between PD and Pθ – this defines
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Algorithm 1: Recurrent Adversarial Service Time
1: Requires: Dataset D = {(ai, si,xi)}Ni=1, Critic Iterations

Number nc and the penalty weight λ.
2: while θ not converged do
3: for i = 1, ..., N do
4: Draw {(ai, si,xi)} ∼ PD
5: for k = 1, ..., nc do
6: Draw z ∼ P (Z) and δ ∼ Uniform(0, 1),
7: hai ← gρ(ai,h

a
i−1),

8: s̃i ← Φθ(z,h
a
i ,xi),

9: ŝi ← δsi + (1− δ)s̃i,
10: Lθ,ϕ ← fϕ(s̃i,h

a
i ,xi)− fϕ(si,h

a
i ,xi)

11: +λ (max {0, |∇ŝifϕ(ŝi,h
a
i ,xi)| − 1})2,

12: ϕ← Adam(∇ϕLθ,ϕ)
13: end for
14: Draw z ∼ P (Z)
15: θ ← Adam(∇θ(−fϕ(Φθ(z,h

a
i ,xi))))

16: end for
17: end while
18: return Φθ

the adversarial game. Alg 1 summarizes the RAS model al-
gorithm. Please note that the parameters of the RPP model
(labeled ρ in line 7 of Alg 1) are fixed and optimal.

Relations to Formal Analysis of Queuing Systems
Being non-parametric, our constructions do not allow a for-
mal theoretical treatment in the spirit of traditional queu-
ing system results (Williams 2016). However, one could em-
ploy neural network analysis to obtain estimates of service
times, which could eventually be related to formal results
from the queuing community. To illustrate, assume the sim-
plified service time model s̃i := θk ◦ σk . . . σ1 ◦ θ1(hi),
where hi := concat(hai , z), with hai defined in Eq. (3) and
z ∈ RD sampled from some simple distribution P (Z) as
above; σ = ReLU and θj labels the weights of the jth layer.

Lemma 1. Suppose that the simplified model above fits the
data within a mean average error of ε. Then the average
service time is bounded above as follows

〈s̃i〉 ≤Mk lim sup
i
‖hai ‖+

Mk+1 − 1

M − 1
+ ε. (11)

Here M is a positive constant bounding the operators
norm ‖θj‖ for all j. This straightforward estimate is proved
and related to the average queue length in the Supplementary
Material.

Baseline Models
Given that there are not many scalable nonlinear models for
service time estimation, we now introduce a set of service
time models to be used as baselines in the Experiment Sec-
tion below. These baselines will not only provide a fair com-
parison, but also help us understand the role of some of the
properties of our Deep Generative Service Times model.

Adversarial Baselines – First of all, we compare against
the Adversarial Time-to-Event (ATE) model of Chapfuwa

et al. (2018) to test the importance of conditioning on the ar-
rival history, as dictated by Queueing Theory. We also com-
pare against RATE, a recurrent version of the ATE model
defined as in Eqs. (5-7), but without hai as input.

We would also like to test how relevant is the explicit time
dependence of RAS. To do so we introduce the Adversarial
Service (AS) model, defined by composing only the func-
tions in Eqs. (5) and (7), but with hΦ

i replaced with ui in the
latter.

Maximum-Likelihood-Based Baselines – We introduce
parametric (i.e. non-adversarial) service time models: the
Neural Service model (NS)

si ∼ Pθ(S|hai ,xi), (12)

where hai is the hidden state of the (trained) RPP model,
xi are covariates and Pθ is chosen to be one of the follow-
ing five distributions: Gamma (NS-G), Exponential (NS-E),
Pareto (NS-P), Chi-square (NS-C) or Log-normal (NS-L),
whose parameter set Pθ are defined via Multi-Layer Per-
ceptrons, with θ labelling the trainable variables. These out-
put distributions are common solutions to stationary service
time distributions in theoretical models (Asmussen 2008).
The NS models are thus an attempt to have a scalable rep-
resentation of these theoretical approaches. Finally, let us
also define the Neural Time-to-Event (NTE) models, which
correspond to a non-adversarial version of ATE. We define
them with an equation similar to Eq. (12), but without con-
ditioning on hai . We train all these models via maximum
log-likelihood.

Experimental Setting
In this section we introduce our experimental framework.
We provide synthetic datasets with well-established models
for both arrivals and service processes, as well as empirical
datasets. modelling these datasets demonstrates the ability of
our approach to handle diverse application areas in a flexible
and scalable manner.

Synthetic Datasets – In order to provide a controlled en-
vironment to test the behavior of our methodology we intro-
duce the following datasets for different arrival and service
processes:

(1) Arrival processes: we consider two different arrival
processes, namely (i) the Hawkes Process (H), which is a
model for self-exciting phenomena where user arrivals in-
crease the probability of other users to arrive (Hawkes and
Oakes 1974), and which is defined via the conditional inten-
sity function

λH(t) = λ∗ + e−βt(λ0 − λ∗) +
∑

ai:t>ai

αµ(t− ai), (13)

where λ0 and λ∗ are the initial and baseline values of the
process intensity for exogenous (arrival) events, α, β are its
jump and decay parameter, and the memory kernel µ(t) =
e−βt yields the intensity given by past arrivals ai; (ii) the
Non-linear Hawkes Process (NH), which is an extension
of the Hawkes process that allows for inhibitory behavior
through a nonlinear function over the history of arrivals (Zhu
2013).
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NH-PT NH-PS H-PS Github NY Stackoverflow
mean (s̄) 0.052 0.0004 2.125e-5 0.0113 0.0068 0.0193

error KS error KS error KS error KS error KS error KS
NTE 0.410 0.289 0.0450 0.410 2.44e-2 0.766 0.071 0.388 0.062 0.321 0.380 0.502
NS 0.209 0.154 0.0006 0.082 2.18e-5 0.401 0.096 0.341 0.025 0.154 0.378 0.466

ATE 0.219 0.193 0.0371 0.870 3.96e-3 0.199 0.217 0.517 0.078 0.126 0.382 0.233
AS 0.215 0.113 0.0016 0.448 1.24e-4 0.121 0.071 0.039 0.006 0.094 0.383 0.226

RATE 0.218 0.124 0.0031 0.062 1.37e-4 0.136 0.112 0.240 0.098 0.165 0.388 0.492
RAS 0.207 0.094 0.0005 0.042 1.09e-4 0.110 0.072 0.034 0.005 0.030 0.369 0.281

Table 1: Models evaluation on all data sets (in arb. units). KS - Kolmogorov–Smirnov test.

(2) Service models: we introduce two service system dis-
ciplines, namely (i) the Phase-Type Distribution (PT) (Daw
and Pender 2018), in which one decomposes the service as
a series of exponential service steps, and which is defined
with the time taken between the initial and absorbing state4

in a Continuous Time Markov Chain (CTMC); (ii) the Pro-
cessor Sharing Distribution (PS) (Kleinrock 1976), a queu-
ing model in which the system handles an infinite amount
of clients simultaneously, but must reallocate resources with
each new client arrival or departure. One can think that each
client in the system instantaneously receives 1/Q(t) of ser-
vice power, at any time, where Q(t) is the queue length
(clients still on service) (Sutton and Jordan 2011).

The combinations of the two arrival and the two service
models yields four different synthetic datasets, which we la-
bel H-PT, H-PS, NH-PT and NH-PS. We simulated about
5× 106 datapoints for the Hawkes models, and 5× 105 dat-
apoints for its nonlinear extensions. For space reasons we
present our results on the H-PT model in the Sup. Material.

Empirical Datasets – We gathered datasets from a vari-
ety of internet services, as to provide an in-depth analysis of
the temporal patterns of users in different domains.

(1) Stackoverflow: a question-answering platform for pro-
grammers. We define the customer arrivals as the points in
time when questions are posted by the users of the web page,
and the service time as the elapsed time between a question
and its subsequent accepted answer. As covariates we take
the first five tags of each question. This view establishes the
ensemble of users which provide answers as the service sys-
tem. We analyse a total of 2× 107 questions.

(2) Github: The version control repository and Internet
hosting service. We define the creation of an issue in a given
repository as the customer arrivals. The departure times are
the moments the given issues are closed. We chose no co-
variates for this dataset. The set of users associated with
a given repository can be then thought of as the service
system. We analyse the top (ranked by the number of is-
sues) 500 repositories in the platform in 2015, for a total of
1.5× 106 different issues.

(3) New York City Taxi Dataset (NY): The dataset con-
tains data of individual taxi trips in New York city. Cus-
tomers arrivals are defined as the starting time of the trip and
the departure time as the time when the trip ends. As covari-
ates we choose the starting and ending points of the trips

4a type of first passage time

w.r.t the NY taxi zones5. Here the service system is given
by both the taxi providing the service and the transportation
network of roads, streets and highways pertaining to the city
of New York. We analyse about 1.1× 107 trips.

Reproducibility and Training Details
We split all datasets into training and test sets, the latter be-
ing defined as ∼ 5% of the complete dataset6. Details of the
neural networks architectures, learning parameters and any
other hyperparameters as required in the model specification
can be found in the Supplementary Material.

Results
In order to quantify the performance of our model, we first
focus on two aspects, namely its prediction capabilities and
its ability to uncover rich distributional forms. Thus we con-
sider the prediction error defined as 1/N

∑
i|si − 〈s̃i〉|,

where N is the size of the test dataset, si denotes the empir-
ical value and 〈s̃i〉 denotes the average prediction obtained
via Monte Carlo sampling. To quantify the descriptiveness
of the obtained distributional form, we then calculate the
Kolmogorov-Smirnov (KS) statistics between the empiri-
cal and generated distributions, and also provide Q-Q plots
against the empirical distributions. Later we also test how
the model compares with exact theoretical estimates of a re-
lated observable: the queue length (i.e. the number of clients
on service).

Comparison with Baselines – The comparison of the
different models based on the predictive error and the KS
statistics for both synthetic and empirical datasets is shown
in Table 1. Here we present only the best7 NTE and NS
models, out of their five different possibilities (see Base-
line Section above). The complete set of results for all ten
models can be found in the Suplementary Material. These
results show that the RAS model outperforms most base-
lines w.r.t. both measures, demonstrating a clear advantage
of our solutions. In particular, we note that: (i) all service
time models are found to describe better the empirical dis-
tributions, as compared to the time-to-event models, which
ignore the arrival information and hence the hierarchical na-
ture of queuing systems. Indeed, conditioning the generative

5https://www1.nyc.gov/site/tlc/about/data-and-research.page
6We can provide the reader with the datasets used in this work

upon request.
7with respect to the KS test.
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(a) Github (b) Stackoverflow (c) NY Taxi

Figure 2: (Top) Comparison between empirical service time distributions (test set) and data generated by RAS. (Bottom) Q-Q
plots against empirical distributions for both best NS model and RAS model.

models on the customer RPP process significantly improves
their performance in either metric (see e.g. NS vs NTE; AS
vs ATE; RAS vs RATE). These models successfully use the
vector representation hai encoding the arrival dynamics; (ii)
RAS outperforms the AS model in almost all datasets. This
corroborates our assumption that including a model for the
service system’s dynamic response helps in describing the
system’s behavior.

The strength of RAS is even more apparent in their dis-
tributional forms. Fig. 2 shows histograms of data generated
with RAS against the empirical data distribution, as well as
Q-Q plots of both the best NS model and RAS model versus
the data. Similar plots for the synthetic datasets can be found
in the Supplementary Material. Note that the timescales in
these datasets encompass up to four orders of magnitude.
The RAS model provides a much better fit to the data than
the NS models (see Q-Q plots). In particular, RAS uniquely
captures both long and short term behavior. The latter is ap-
parent from the upper left corner of the histogram plots. The
NS model, in contrast, only provides correct long tail be-
havior as it is constrained by the distributional forms of the
outputs (see also the Figures in the Sup. Mat.).

Comparison with Theory – Let us now consider again
the Hawkes/Phase-Type/∞ queue for which the time-
dependent average queue length has been shown to be

〈Q(t)〉 = λ∞(−S>)−1(1 − eS
>t)ω − (λ0 − λ∞)×

(S> + (β − α)1)−1(1 e−(β−α)t − eS
>t)ω, (14)

where λ0, α and β are parameters of the Hawkes process
(see Eq. (13)) and λ∞ = βλ∗

β−α is the the steady-state value
of its intensity. The matrix S ∈ Rn×n is the transient state
subgenerator for a Phase-Type distribution with n phases, 1
is the n × n identity matrix and ω ∈ Rn is the initial ar-
rival distribution over the phases (Daw and Pender 2018).
We simulated a Hawkes/Phase-Type/∞ queue and trained

RAS on the resulting dataset (see Sup. Mat. for details on
the parameters we used). We can then estimate 〈Q(t)〉 us-
ing RAS by sampling one service time for each arrival time
in our test set, counting and keeping track of the number of
clients in service and averaging over the test set. Figure 3
shows our results as compared with the exact moment, Eq.
(14), and the simulated test set. Our methodology is thus
able to capture the dynamic queue length of the service sys-
tem, thereby inferring information about its workload.

Conclusion
In this work we presented a novel (deep) non-parametric
solution for service-time distribution learning in Queuing
Systems with general arrival distributions. Our methodology
outperformed all baselines and reproduced complex service
time distributions, inferring both multi-modal and long-tail
features. Future lines of work include incorporating richer
representations encoding the arrival process. In mobility sys-
tems, for example, the geographic information and user in-
teractions can be encoded through hidden relation networks.

Figure 3: Time-dependent averaged queue length 〈Q(t)〉 for
a Hawkes/PhaseType/∞ (H-PT) queue.
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