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Abstract

Can meta-learning discover generic ways of processing time
series (TS) from a diverse dataset so as to greatly improve
generalization on new TS coming from different datasets?
This work provides positive evidence to this using a broad
meta-learning framework which we show subsumes many
existing meta-learning algorithms. Our theoretical analysis
suggests that residual connections act as a meta-learning adap-
tation mechanism, generating a subset of task-specific param-
eters based on a given TS input, thus gradually expanding
the expressive power of the architecture on-the-fly. The same
mechanism is shown via linearization analysis to have the
interpretation of a sequential update of the final linear layer.
Our empirical results on a wide range of data emphasize the
importance of the identified meta-learning mechanisms for
successful zero-shot univariate forecasting, suggesting that it
is viable to train a neural network on a source TS dataset and
deploy it on a different target TS dataset without retraining,
resulting in performance that is at least as good as that of
state-of-practice univariate forecasting models.

1 Introduction
Time series (TS) forecasting is both a fundamental scientific
problem and one of great practical importance. It is central
to the actions of intelligent agents: the ability to plan and
control as well as to appropriately react to manifestations
of complex partially or completely unknown systems often
relies on the ability to forecast relevant observations based on
past history. Moreover, for most utility-maximizing agents,
gains in forecasting accuracy broadly translate into utility
gains; as such, improvements in forecasting technology can
have wide impacts. Unsurprisingly, forecasting methods have
a long history that can be traced back to the very origins
of human civilization (Neale 1985), modern science (Gauss
1809) and have consistently attracted considerable research
attention (Yule 1927; Walker 1931; Holt 1957; Winters 1960;
Engle 1982; Sezer, Gudelek, and Ozbayoglu 2019). The appli-
cations of forecasting span a variety of fields, including high-
frequency control (e.g. vehicle and robot control (Tang and
Salakhutdinov 2019), data center optimization (Gao 2014)),
business planning (supply chain management (Leung 1995),
workforce and call center management (Chapados et al. 2014;
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Ibrahim et al. 2016), as well as such critically important areas
as precision agriculture (Rodrigues Jr et al. 2019). In business
specifically, improved forecasting translates in better pro-
duction planning (leading to less waste) and less transporta-
tion (reducing CO2 emissions) (Kahn 2003; Kerkkänen, Kor-
pela, and Huiskonen 2009; Nguyen, Ni, and Rossetti 2010).
The progress made in univariate forecasting in the past four
decades is well reflected in the results and methods consid-
ered in associated competitions over that period (Makridakis
et al. 1982, 1993; Makridakis and Hibon 2000; Athanasopou-
los et al. 2011; Makridakis, Spiliotis, and Assimakopoulos
2018a). Recently, growing evidence has started to emerge
suggesting that machine learning approaches could improve
on classical forecasting methods, in contrast to some ear-
lier assessments (Makridakis, Spiliotis, and Assimakopoulos
2018b). For example, the winner of the 2018 M4 competition
(Makridakis, Spiliotis, and Assimakopoulos 2018a) was a
neural network designed by Smyl (2020).

On the practical side, the deployment of deep neural time-
series models is challenged by the cold start problem. Before
a tabula rasa deep neural network provides a useful forecast-
ing output, it should be trained on a large problem-specific
time-series dataset. For early adopters, this often implies data
collection efforts, changing data handling practices and even
changing the existing IT infrastructures on a large scale. In
contrast, advanced statistical models can be deployed with
significantly less effort as they estimate their parameters on
single time series at a time. In this paper we address the prob-
lem of reducing the entry cost of deep neural networks in
the industrial practice of TS forecasting. We show that it is
viable to train a neural network model on a diversified source
dataset and deploy it on a target dataset in a zero-shot regime,
i.e. without explicit retraining on that target data, resulting
in performance that is at least as good as that of advanced
statistical models tailored to the target dataset. We would like
to clarify that we use the term “zero-shot” in our work in the
sense that the number of history samples available for the
target time series is so small that it makes training a deep
learning model on this time series infeasible.

Addressing this practical problem provides clues to fun-
damental questions. Can we learn something general about
forecasting and transfer this knowledge across datasets? If
so, what kind of mechanisms could facilitate this? The abil-
ity to learn and transfer representations across tasks via
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task adaptation is an advantage of meta-learning (Raghu
et al. 2020). We propose here a broad theoretical framework
for meta-learning that encompasses several existing meta-
learning algorithms. We further show that a recent successful
model, N-BEATS (Oreshkin et al. 2020), fits this framework.
We identify internal meta-learning adaptation mechanisms
that generate new parameters on-the-fly, specific to a given
TS, iteratively extending the architecture’s expressive power.
We empirically confirm that meta-learning mechanisms are
key to improving zero-shot TS forecasting performance, and
demonstrate results on a wide range of datasets.

1.1 Background
The univariate point forecasting problem in discrete time
is formulated given a length-H forecast horizon and a
length-T observed series history [y1, . . . ,yT ] ∈ RT . The
task is to predict the vector of future values y ∈ RH =
[yT+1,yT+2, . . . ,yT+H ]. For simplicity, we will later consider
a lookback window of length t ≤ T ending with the last
observed value yT to serve as model input, and denoted
x ∈ Rt = [yT−t+1, . . . ,yT ]. We denote ŷ the point forecast
of y. Its accuracy can be evaluated with sMAPE, the sym-
metric mean absolute percentage error (Makridakis, Spiliotis,
and Assimakopoulos 2018a),

sMAPE =
200
H

H

∑
i=1

|yT+i− ŷT+i|
|yT+i|+ |ŷT+i|

. (1)

Other quality metrics (e.g. MAPE, MASE, OWA, ND) are pos-
sible and are defined in Appendix A.
Meta-learning or learning-to-learn (Harlow 1949; Schmi-
dhuber 1987; Bengio, Bengio, and Cloutier 1991) is usually
linked to being able to (i) accumulate knowledge across tasks
(i.e. transfer learning, multi-task learning) and (ii) quickly
adapt the accumulated knowledge to the new task (task adap-
tation) (Ravi and Larochelle 2016; Bengio et al. 1992).
N-BEATS algorithm has demonstrated outstanding perfor-
mance on several competition benchmarks (Oreshkin et al.
2020). The model consists of a total of L blocks connected
using a doubly residual architecture. Block ` has input x`
and produces two outputs: the backcast x̂` and the partial
forecast ŷ`. For the first block we define x1 ≡ x, where x
is assumed to be the model-level input from now on. We
define the k-th fully-connected layer in the `-th block; having
RELU non-linearity, weights Wk, bias bk and input h`,k−1, as
FCk(h`,k−1)≡ RELU(Wkh`,k−1 +bk). We focus on the con-
figuration that shares all learnable parameters across blocks.
With this notation, one block of N-BEATS is described as:

h`,1 = FC1(x`), h`,k = FCk(h`,k−1), k = 2 . . .K;
x̂` = Qh`,K , ŷ` = Gh`,K ,

(2)

where Q and G are linear operators. The N-BEATS parame-
ters included in the FC and linear layers are learned by min-
imizing a suitable loss function (e.g. sMAPE defined in (1))
across multiple TS. Finally, the doubly residual architecture is
described by the following recursion (recalling that x1 ≡ x):

x` = x`−1− x̂`−1, ŷ =
L

∑
`=1

ŷ`. (3)

1.2 Related Work
From a high-level perspective, there are many links with
classical TS modeling: a human-specified classical model is
typically designed to generalize well on unseen TS, while
we propose to automate that process. The classical models
include exponential smoothing with and without seasonal
effects (Holt 1957, 2004; Winters 1960), multi-trace expo-
nential smoothing approaches, e.g. Theta and its variants (As-
simakopoulos and Nikolopoulos 2000; Fiorucci et al. 2016;
Spiliotis, Assimakopoulos, and Nikolopoulos 2019). Finally,
the state space modeling approach encapsulates most of the
above in addition to auto-ARIMA and GARCH (Engle 1982;
see Hyndman and Khandakar (2008) for an overview). The
state-space approach has also been underlying significant
amounts of research in the neural TS modeling (Salinas et al.
2019; Wang et al. 2019; Rangapuram et al. 2018). However,
those models have not been considered in the zero-shot sce-
nario. In this work we focus on studying the importance
of meta-learning for successful zero-shot forecasting. The
foundations of meta-learning have been developed by Schmi-
dhuber (1987); Bengio, Bengio, and Cloutier (1991) among
others. More recently, meta-learning research has been ex-
panding, mostly outside of the TS forecasting domain (Ravi
and Larochelle 2016; Finn, Abbeel, and Levine 2017; Snell,
Swersky, and Zemel 2017; Vinyals et al. 2016; Rusu et al.
2019). In the TS domain, meta-learning has manifested it-
self via neural models trained over a collection of TS (Smyl
2020; Oreshkin et al. 2020) or via a model trained to predict
weights combining outputs of several classical forecasting
algorithms (Montero-Manso et al. 2020). Successful appli-
cation of a neural TS forecasting model trained on a source
dataset and fine-tuned on the target dataset was demonstrated
by Hooshmand and Sharma (2019); Ribeiro et al. (2018) as
well as in the context of TS classification by Fawaz et al.
(2018). Unlike those, we focus on the zero-shot scenario and
address the cold start problem.

1.3 Summary of Contributions
We define a meta-learning framework with associated equa-
tions, and recast within it many existing meta-learning algo-
rithms. We show that N-BEATS follows the same equations.
According to our analysis, its residual connections implement
meta-learning inner loop, thereby performing task adaptation
without gradient steps at inference time.

We define a novel zero-shot univariate TS forecasting
task and make its dataset loaders and evaluation code public,
including a new large-scale dataset (FRED) with 290k TS.

We empirically show, for the first time, that deep-learning
zero-shot time series forecasting is feasible and that the
meta-learning component is important for zero-shot general-
ization in univariate TS forecasting.

2 Meta-Learning Framework
A meta-learning procedure can generally be viewed at two
levels: the inner loop and the outer loop. The inner training
loop operates within an individual “meta-example” or task T
(fast learning loop improving over current T) and the outer
loop operates across tasks (slow learning loop). A task T
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includes task training data Dtr
T and task validation data Dval

T ,
both optionally involving inputs, targets and a task-specific
loss: Dtr

T = {Xtr
T ,Y

tr
T ,LT}, Dval

T = {Xval
T ,Yval

T ,LT}. Accord-
ingly, a meta-learning set-up can be defined by assuming a
distribution p(T) over tasks, a predictor Pθ ,w and a meta-
learner with meta-parameters ϕ . We allow a subset of predic-
tor’s parameters denoted w to belong to meta-parameters ϕ

and hence not to be task adaptive. The objective is to design
a meta-learner that can generalize well on a new task by ap-
propriately choosing the predictor’s task adaptive parameters
θ after observing Dtr

T . The meta-learner is trained to do so
by being exposed to many tasks in a training dataset {Ttrain

i }
sampled from p(T). For each training task Ttrain

i , the meta-
learner is requested to produce the solution to the task in the

form of Pθ ,w : Xval
Ti
7→ Ŷ

val
Ti

conditioned on Dtr
Ti

. The meta-
parameters ϕ are updated in the outer meta-learning loop so
as to obtain good generalization in the inner loop, i.e., by

minimizing the expected validation loss ETi LTi(Ŷ
val
Ti
,Yval

Ti
)

mapping the ground truth and estimated outputs into the value
that quantifies the generalization performance across tasks.
Training on multiple tasks enables the meta-learner to pro-
duce solutions Pθ ,w that generalize well on a set of unseen
tasks {Ttest

i } sampled from p(T).
Consequently, the meta-learning procedure has three

distinct ingredients: (i) meta-parameters ϕ = (t0,w,u),
(ii) initialization function It0 and (iii) update function Uu.
The meta-learner’s meta-parameters ϕ include the meta-
parameters of the meta-initialization function, t0, the meta-
parameters of the predictor shared across tasks, w, and
the meta-parameters of the update function, u. The meta-
initialization function It0(D

tr
Ti
,cTi) defines the initial val-

ues of parameters θ for a given task Ti based on its meta-
initialization parameters t0, task training dataset Dtr

Ti
and

task meta-data cTi . Task meta-data may have, for example,
a form of task ID or a textual task description. The update
function Uu(θ`−1,D

tr
Ti
) is parameterized with update meta-

parameters u. It defines an iterated update to predictor pa-
rameters θ at iteration ` based on their previous value and
the task training set Dtr

Ti
. The initialization and update func-

tions produce a sequence of predictor parameters, which we
compactly write as θ0:` ≡ {θ0, . . . ,θ`−1,θ`}. We let the final
predictor be a function of the whole sequence of parame-
ters, written compactly as Pθ0:`,w. One implementation of
such general function could be a Bayesian ensemble or a
weighted sum, for example: Pθ0:`,w(·) = ∑

`
j=0 ω j Pθ j ,w(·). If

we set ω j = 1 iff j = ` and 0 otherwise, then we get the more
common situation Pθ0:`,w(·)≡ Pθ`,w(·). This meta-learning
framework is succinctly described by the following set of
equations:

Parameters: θ ; Meta-parameters: ϕ = (t0,w,u)
Inner Loop: θ0← It0(D

tr
Ti
,cTi)

θ`← Uu(θ`−1,D
tr
Ti
), ∀` > 0

(4)

Prediction at x : Pθ0:`,w(x)

Outer Loop: ϕ ← ϕ−η∇ϕ LTi [Pθ0:`,w(X
val
Ti
),Yval

Ti
].

(5)

2.1 Meta-Learning and Time-Teries Forecasting
In the previous section we laid out a unifying framework for
meta-learning. How is it connected to the TS forecasting task?
We believe that this question is best answered by answering
questions “why the classical statistical TS forecasting mod-
els such as ARIMA and ETS are not doing meta-learning?”
and “what does the meta-learning component offer when it is
part of a forecasting algorithm?”. The first question can be
answered by considering the fact that the classical statistical
models produce a forecast by estimating their parameters
from the history of the target time series using a predefined
fixed set of rules, for example, given a model selection and the
maximum likelihood parameter estimator for it. Therefore, in
terms of our meta-learning framework, a classical statistical
model executes only the inner loop (model parameter estima-
tion) encapsulated in equation (4). The outer loop in this case
is irrelevant — a human analyst defines what equation (4)
is doing, based on experience (for example, “for most slow
varying time-series with trend, no seasonality and white resid-
uals, ETS with Gaussian maximum likelihood estimator will
probably work well”). The second question can be answered
considering that meta-learning based forecasting algorithm
replaces the predefined fixed set of rules for model parameter
estimation with a learnable parameter estimation strategy.
The learnable parameter estimation strategy is trained using
outer loop equation (5) by adjusting the strategy such that it
is able to produce parameter estimates that generalize well
over multiple TS. It is assumed that there exists a dataset that
is representative of the forecasting tasks that will be handled
at inference time. Thus the main advantage of meta-learning
based forecasting approaches is that they enable learning a
data-driven parameter estimator that can be optimized for
a particular set of forecasting tasks and forecasting models.
On top of that, a meta-learning approach allows for a gen-
eral learnable predictor in equation (4) that can be optimized
for a given forecasting task. So both predictor (model) and
its parameter estimator can be jointly learned for a forecast-
ing task represented by available data. Empirically, we show
that this elegant theoretical concept works effectively across
multiple datasets and across multiple forecasting tasks (e.g.
forecasting yearly, monthly or hourly TS) and even across
very loosely related tasks (for example, forecasting hourly
electricity demand after training on a monthly economic data
after appropriate time scale normalization).

2.2 Expressing Existing Meta-Learning
Algorithms in the Proposed Framework

To further illustrate the generality of the proposed framework,
we next show how to cast existing meta-learning algorithms
within it, before turning to N-BEATS.

MAML and related approaches (Finn, Abbeel, and Levine
2017; Li et al. 2017; Raghu et al. 2020) can be derived
from (4) and (5) by (i) setting I to be the identity map
that copies t0 into θ , (ii) setting U to be the SGD gradient
update: Uu(θ ,D

tr
Ti
) = θ −α∇θ LTi(Pθ ,w(X

tr
Ti
),Ytr

Ti
), where

u = {α} and by (iii) setting the predictor’s meta-parameters
to the empty set w= /0. Equation (5) applies with no modifica-
tions. MT-net (Lee and Choi 2018) is a variant of MAML in
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which the predictor’s meta-parameter set w is not empty. The
part of the predictor parameterized with w is meta-learned
across tasks and is fixed during task adaptation.

Optimization as a model for few-shot learning (Ravi
and Larochelle 2016) can be derived from (4) and (5)
via the following steps (in addition to those of MAML).
First, set the update function Uu to the update equation
of an LSTM-like cell of the form (` is the LSTM update
step index) θ` ← f`θ`−1 +α`∇θ`−1 LTi(Pθ`−1,w(X

tr
Ti
),Ytr

Ti
).

Second, set f` to be the LSTM forget gate value (Ravi
and Larochelle 2016): f` = σ(WF [∇θ LTi ,LTi ,θ`−1, f`−1]+
bF) and α` to be the LSTM input gate value: α` =
σ(Wα [∇θ LTi ,LTi ,θ`−1,α`−1]+bα). Here σ is a sigmoid
non-linearity. Finally, include all the LSTM parameters into
the set of update meta-parameters: u = {WF ,bF ,Wα ,bα}.

Prototypical Networks (PNs) (Snell, Swersky, and Zemel
2017). Most metric-based meta-learning approaches, includ-
ing PNs, rely on comparing embeddings of the task training
set with those of the validation set. Therefore, it is conve-
nient to consider a composite predictor consisting of the
embedding function, Ew, and the comparison function, Cθ ,
Pθ ,w(·) = Cθ ◦Ew(·). PNs can be derived from (4) and (5)
by considering a K-shot image classification task, convolu-
tional network Ew shared across tasks and class prototypes
pk =

1
K ∑ j:Ytr

j =k Ew(X
tr
j ) included in θ = {pk}∀k. Initializa-

tion function It0 with t0 = /0 simply sets θ to the values of
prototypes. Uu is an identity map with u = /0 and Cθ is as a
softmax classifier:

Yval
Ti

= argmax
k

softmax(−d(Ew(X
val
Ti
),pk)). (6)

Here d(·, ·) is a similarity measure and the softmax is nor-
malized w.r.t. all pk. Finally, define the loss LTi in (5) as
the cross-entropy of the softmax classifier described in (6).
Interestingly, θ = {pk}∀k are nothing else than the dynami-
cally generated weights of the final linear layer fed into the
softmax, which is especially apparent when d(a,b) =−a ·b.
The fact that in the prototypical network scenario only the
final linear layer weights are dynamically generated based on
the task training set resonates very well with the most recent
study of MAML (Raghu et al. 2020). It has been shown that
most of the MAML’s gain can be recovered by only adapting
the weights of the final linear layer in the inner loop.

In this section, we illustrated that four distinct meta-
learning algorithms from two broad categories (optimization-
and metric-based) can be derived from our equations (4) and
(5). This confirms that our meta-learning framework is gen-
eral and it can represent existing meta-learning algorithms.
The analysis of three additional existing meta-learning algo-
rithms is presented in Appendix C.

3 N-BEATS as a Meta-learning Algorithm
Let us now focus on the analysis of N-BEATS described by
equations (2), (3). We first introduce the following notation:
f : x` 7→ h`,4; g : h`,4 7→ ŷ`; q : h`,4 7→ x̂`. In the original
equations, g and q are linear and hence can be represented
by equivalent matrices G and Q. In the following, we keep
the notation general as much as possible, transitioning to the
linear case only when needed. Then, given the network input,

x (x1 ≡ x), and noting that x̂`−1 = q◦ f (x`−1) we can write
N-BEATS as follows:

ŷ = g◦ f (x)+ ∑
`>1

g◦ f (x`−1−q◦ f (x`−1)) . (7)

N-BEATS is now derived from the meta-learning framework
of Sec. 2 using two observations: (i) each application of g◦ f
in (7) is a predictor and (ii) each block of N-BEATS is the
iteration of the inner meta-learning loop. More concretely,
we have that Pθ ,w(·) = gwg ◦ fw f ,θ (·). Here wg and w f are
parameters of functions g and f , included in w = (wg,w f )
and learned across tasks in the outer loop. The task-specific
parameters θ consist of the sequence of input shift vec-
tors, θ ≡ {µ`}L

`=0, defined such that the `-th block input
can be written as x` = x−µ`−1. This yields a recursive ex-
pression for the predictor’s task-specific parameters of the
form µ` ← µ`−1 + x̂`, µ0 ≡ 0, obtained by recursively un-
rolling eq. (3). These yield the following initialization and
update functions: It0 with t0 = /0 sets µ0 to zero; Uu, with
u = (wq,w f ) generates a next parameter update based on x̂`:

µ`← Uu(µ`−1,D
tr
Ti
)≡ µ`−1 +qwq ◦ fw f (x−µ`−1).

Interestingly, (i) meta-parameters w f are shared between the
predictor and the update function and (ii) the task training
set is limited to the network input, Dtr

Ti
≡ {x}. Note that

the latter makes sense because the data are complete time
series, with the inputs x having the same form of internal
dependencies as the forecasting targets y. Hence, observing
x is enough to infer how to predict y from x in a way that is
similar to how different parts of x are related to each other.

Finally, according to (7), predictor outputs correspond-
ing to the values of parameters θ learned at every iter-
ation of the inner loop are combined in the final out-
put. This corresponds to choosing a predictor of the form
Pµ0:L,w(·) = ∑

L
j=0 ω j Pµ j ,w(·),ω j = 1,∀ j in (5). The outer

learning loop (5) describes the N-BEATS training procedure
across tasks (TS) with no modification.

It is clear that the final output of the architecture de-
pends on the sequence µ0:L. Even if predictor parameters
wg, w f are shared across blocks and fixed, the behaviour
of Pµ0:L,w(·) = gwg ◦ fw f ,µ0:L(·) is governed by an extended
space of parameters (w,µ1,µ2, . . .). Therefore, the expressive
power of the architecture can be expected to grow with the
growing number of blocks, in proportion to the growth of
the space spanned by µ0:L, even if wg, w f are shared across
blocks. Thus, it is reasonable to expect that the addition of
identical blocks will improve generalization performance
because of the increase in expressive power.

3.1 Linear Approximation Analysis
Next, we go a level deeper in the analysis to uncover more in-
tricate task adaptation processes. Using linear approximation
analysis, we express N-BEATS’ meta-learning operation in
terms of the adaptation of the internal weights of the network
based on the task input data. In particular, assuming small
x̂`, (7) can be approximated using the first order Taylor series
expansion in the vicinity of x`−1:

ŷ = g◦ f (x)+ ∑
`>1

[g−Jg◦ f (x`−1)q]◦ f (x`−1)

+o(‖q◦ f (x`−1)‖).
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Here Jg◦ f (x`−1) = Jg( f (x`−1))J f (x`−1) is the Jacobian of
g◦ f . We now consider linear g and q, as mentioned earlier,
in which case g and q are represented by two matrices of
appropriate dimensionality, G and Q; and Jg( f (x`−1)) = G.
Thus, the above expression can be simplified as:

ŷ = G f (x)+∑
`>1

G[I−J f (x`−1)Q] f (x`−1)+o(‖Q f (x`−1)‖).

Continuously applying the linear approximation f (x`) = [I−
J f (x`−1)Q] f (x`−1)+ o(‖Q f (x`−1)‖) until we reach ` = 1
and recalling that x1 ≡ x we arrive at the following:

ŷ = ∑
`>0

G

[
`−1

∏
k=1

[I−J f (x`−k)Q]

]
f (x)+o(‖Q f (x`)‖). (8)

Note that G
(
∏

`−1
k=1[I−J f (x`−k)Q]

)
can be written in the iter-

ative update form. Consider G′1 =G, then the update equation
for G′ can be written as G′` = G′`−1[I−J f (x`−1)Q], ∀` > 1
and (8) becomes:

ŷ = ∑
`>0

G′` f (x)+o(‖Q f (x`)‖). (9)

Let us now discuss how (9) can be used to re-interpret N-
BEATS as an instance of the meta-learning framework (4)
and (5). The predictor can now be represented in a decoupled
form Pθ ,w(·) = gθ ◦ fw f (·). Thus task adaptation is clearly
confined in the decision function, gθ , whereas the embedding
function fw f only relies on fixed meta-parameters w f . The
adaptive parameters θ include the sequence of projection
matrices {G′`}. The meta-initialization function It0 is param-
eterized with t0 ≡ G and it simply sets G′1← t0. The main
ingredient of the update function Uu is Q fw f (·), parameter-
ized as before with u = (Q,w f ). The update function now
consists of two equations:

G′`←G′`−1[I−J f (x−µ`−1)Q], ∀` > 1,
µ`← µ`−1 +Q fw f (x−µ`−1), µ0 = 0. (10)

The first order analysis results (9) and (10) suggest that
under certain circumstances, the block-by-block manipula-
tion of the input sequence apparent in (7) is equivalent to
producing an iterative update of predictor’s final linear layer
weights apparent in (10), with the block input being set to
the same fixed value. This is very similar to the final linear
layer update behaviour identified in other meta-learning algo-
rithms: in LEO it is present by design (Rusu et al. 2019), in
MAML it was identified by Raghu et al. (2020), and in PNs
it follows from the results of our analysis in Section 2.2.

3.2 The Role of Q
It is hard to study the form of Q learned from the data in
general. However, equipped with the results of the linear
approximation analysis presented in Section 3.1, we can study
the case of a two-block network, assuming that the L2 norm
loss between y and ŷ is used to train the network. If, in
addition, the dataset consists of the set of N pairs {xi,yi}i=1
the dataset-wise loss L has the following expression:

L= ∑
i

∥∥yi−2G f (xi)+Jg◦ f (xi)Q f (xi)+o(‖Q f (xi))‖)
∥∥2
.

Introducing ∆yi = yi−2G f (xi), the error between the default
forecast 2G f (xi) and the ground truth yi, and expanding the
L2 norm we obtain the following:

L=∑
i

∆yiᵀ
∆yi +2∆yiᵀJg◦ f (xi)Q f (xi)

+ f (xi)ᵀQᵀJᵀg◦ f (x
i)Jg◦ f (xi)Q f (xi)+o(‖Q f (xi))‖).

Now, assuming that the rest of the parameters of the network
are fixed, we have the derivative with respect to Q using
matrix calculus (Petersen and Pedersen 2012):

∂L

∂Q
=∑

i
2Jᵀg◦ f (x

i)∆yi f (xi)ᵀ

+2Jᵀg◦ f (x
i)Jg◦ f (xi)Q f (xi) f (xi)ᵀ+o(‖Q f (xi))‖).

Using the above expression we conclude that the first-order
approximation of optimal Q satisfies the following equation:

∑
i

Jᵀg◦ f (x
i)∆yi f (xi)ᵀ =−∑

i
Jᵀg◦ f (x

i)Jg◦ f (xi)Q f (xi) f (xi)ᵀ.

Although this does not help to find a closed form solution
for Q, it does provide a quite obvious intuition: the LHS
and the RHS are equal when the correction term created
by the second block, Jg◦ f (xi)Q f (xi), tends to compensate
the default forecast error, ∆yi. Therefore, Q satisfying the
equation will tend to drive the update to G in (10) in such a
way that on average the projection of f (x) over the update
Jg◦ f (x)Q to matrix G will tend to compensate the error ∆y
made by forecasting y using G based on meta-initialization.

3.3 Factors Enabling Meta-learning
Let us now analyze the factors that enable the meta-learning
inner loop obvious in (10). First, meta-learning regime is
not viable without having multiple blocks connected via the
residual connection (feedback loop): x` = x`−1−q◦ f (x`−1).
Second, the meta-learning inner loop is not viable when f
is linear: the update of G is extracted from the curvature of
f at the point dictated by the input x and the sequence of
shifts µ0:L. Indeed, suppose f is linear, and denote it by linear
operator F. The Jacobian J f (x`−1) becomes a constant, F.
Equation (8) simplifies as (note that for linear f , (8) is exact):

ŷ = ∑
`>0

G[I−FQ]`−1Fx.

Therefore, G∑`>0[I−FQ]`−1 may be replaced with an equiv-
alent G′ that is not data adaptive. Interestingly, ∑`>0[I−
FQ]`−1 happens to be a truncated Neumann series. Denoting
Moore-Penrose pseudo-inverse as [·]+, assuming bounded-
ness of FQ and completing the series, ∑

∞
`=0[I−FQ]`, results

in ŷ = G[FQ]+Fx. Therefore, under certain conditions, the
N-BEATS architecture with linear f and infinite number of
blocks can be interpreted as a linear predictor of a signal in
colored noise. Here the [FQ]+ part cleans the intermediate
space created by projection F from the components that are
undesired for forecasting and G creates the forecast based on
the initial projection Fx after it is “sanitized” by [FQ]+.

In this section we established that N-BEATS is an instance
of a meta-learning algorithm described by equations (4) and
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M4, sMAPE M3, sMAPE‡ TOURISM, MAPE ELECTR / TRAFF, ND FRED, sMAPE

Pure ML 12.89 Comb 13.52 ETS 20.88 MatFact 0.16 / 0.20 ETS 14.16
Best STAT 11.99 ForePro 13.19 Theta 20.88 DeepAR 0.07 / 0.17 Naïve 12.79
ProLogistica 11.85 Theta 13.01 ForePro 19.84 DeepState 0.08 / 0.17 SES 12.70
Best ML/TS 11.72 DOTM 12.90 Strato 19.52 Theta 0.08 / 0.18 Theta 12.20
DL/TS hybrid 11.37 EXP 12.71 LCBaker 19.35 ARIMA 0.07 / 0.15 ARIMA 12.15

N-BEATS 11.14 12.37 18.52 0.07 / 0.11 11.49
DeepAR∗ 12.25 12.67 19.27 0.09 / 0.19 n/a

DeepAR-M4∗ n/a 14.76 24.79 0.15 / 0.36 n/a

N-BEATS-M4 n/a 12.44 18.82 0.09 / 0.15 11.60
N-BEATS-FR 11.70 12.69 19.94 † 0.09 / 0.26 n/a

Table 1: Dataset-specific metrics aggregated over each dataset; lower values are better. The bottom three rows represent the
zero-shot transfer setup, indicating respectively the core algorithm (DeepAR or N-BEATS) and the source dataset (M4 or
FR(ED)). All other model names are explained in Appendix F. †N-BEATS trained on double upsampled monthly data, see
Appendix D. ‡M3/M4 sMAPE definitions differ. ∗DeepAR trained by us using GluonTS.

(5). We showed that each block of N-BEATS is an inner
meta-learning loop that generates additional shift parameters
specific to the input time series. Therefore, the expressive
power of the architecture is expected to grow with each ad-
ditional block, even if all blocks share their parameters. We
used linear approximation analysis to show that the input
shift in a block is equivalent to the update of the block’s final
linear layer weights under certain conditions. The key role in
this process seems to be encapsulated in the non-linearity of
f and in residual connections.

4 Empirical Results
We evaluate performance on a number of datasets repre-
senting a diverse set of univariate time series. For each of
them, we evaluate the base N-BEATS performance compared
against the best-published approaches. We also evaluate zero-
shot transfer from several source datasets, as explained next.

Base datasets. M4 (M4 Team 2018), contains 100k TS
representing demographic, finance, industry, macro and mi-
cro indicators. Sampling frequencies include yearly, quarterly,
monthly, weekly, daily and hourly. M3 (Makridakis and Hi-
bon 2000) contains 3003 TS from domains and sampling
frequencies similar to M4. FRED is a dataset introduced in
this paper containing 290k US and international economic
TS from 89 sources, a subset of the data published by the
Federal Reserve Bank of St. Louis (Federal Reserve 2019).
TOURISM (Athanasopoulos et al. 2011) includes monthly,
quarterly and yearly series of indicators related to tourism
activities. ELECTRICITY (Dua and Graff 2017; Yu, Rao, and
Dhillon 2016) represents the hourly electricity usage of 370
customers. TRAFFIC (Dua and Graff 2017; Yu, Rao, and
Dhillon 2016) tracks hourly occupancy rates of 963 lanes
in the Bay Area freeways. Additional details for all datasets
appear in Appendix E.

Zero-shot TS forecasting task definition. One of the
base datasets, a source dataset, is used to train a machine
learning model. The trained model then forecasts a TS in
a target dataset. The source and the target datasets are dis-

tinct: they do not contain TS whose values are linear trans-
formations of each other. The forecasted TS is split into two
non-overlapping pieces: the history, and the test. The history
is used as model input and the test is used to compute the
forecast error metric. We use the history and the test splits
for the base datasets consistent with their original publica-
tion, unless explicitly stated otherwise. To produce forecasts,
the model is allowed to access the TS in the target dataset
on a one-at-a-time basis. This is to avoid having the model
implicitly learn/adapt based on any information contained in
the target dataset other than the history of the forecasted TS.
If any adjustments of model parameters or hyperparameters
are necessary, they are allowed exclusively using the history
of the forecasted TS.

Training setup. DeepAR (Salinas et al. 2019) is trained
using GluonTS implementation from its authors (Alexan-
drov et al. 2019). N-BEATS is trained following the original
training setup of Oreshkin et al. (2020). Both N-BEATS and
DeepAR are trained with scaling/descaling the architecture
input/output by dividing/multiplying all input/output values
by the max value of the input window computed per target
time-series. This does not affect the accuracy of the models
in the usual train/test scenario. In the zero-shot regime, this
operation is intended to prevent catastrophic failure when the
scale of the target time-series differs significantly from those
of the source dataset. Additional training setup details are
provided in Appendix D.

Key results. For each dataset, we compare our results
to 5 representative entries reported in the literature for that
dataset, based on dataset-specific metrics (M4, FRED, M3:
sMAPE; TOURISM: MAPE; ELECTRICITY, TRAFFIC: ND). We
additionally train the popular machine learning TS model
DeepAR and evaluate it in the zero-shot regime. Our main
results appear in Table 1, with more details provided in Ap-
pendix F. In the zero-shot forecasting regime (bottom three
rows), N-BEATS consistently outperforms most statistical
models tailored to these datasets as well as DeepAR trained
on M4 and evaluated in zero-shot regime on other datasets. N-
BEATS trained on FRED and applied in the zero-shot regime
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Figure 1: Zero-shot forecasting performance of N-BEATS trained on M4 and applied to M3 (left) and TOURISM (right) target
datasets with respect to the number of blocks, L. The mean and one standard deviation interval (based on ensemble bootstrap)
with (blue) and without (red) weight sharing across blocks are shown. The extended set of results for all datasets, using FRED as
a source dataset and a few metrics are provided in Appendix G, further reinforcing our findings.

to M4 outperforms the best statistical model selected for its
performance on M4 and is at par with the competition’s sec-
ond entry (boosted trees). On M3 and TOURISM the zero-shot
forecasting performance of N-BEATS is better than that of
the M3 winner, Theta (Assimakopoulos and Nikolopoulos
2000). On ELECTRICITY and TRAFFIC N-BEATS performs
close to or better than other neural models trained on these
datasets. The results suggest that a neural model is able to
extract general knowledge about TS forecasting and then
successfully adapt it to forecast on unseen TS. Our study
presents the first successful application of a neural model to
solve univariate zero-shot TS point forecasting across a large
variety of datasets, and suggests that a pre-trained N-BEATS
model can constitute a strong baseline for this task.

Meta-learning Effects. Analysis in Section 3 implies that
N-BEATS internally generates a sequence of parameters that
dynamically extend the expressive power of the architecture
with each newly added block, even if the blocks are identi-
cal. To validate this hypothesis, we performed an experiment
studying the zero-shot forecasting performance of N-BEATS
with increasing number of blocks, with and without param-
eter sharing. The architecture was trained on M4 and the
performance was measured on the target datasets M3 and
TOURISM. The results are presented in Fig. 1. On the two
datasets and for the shared-weights configuration, we con-
sistently see performance improvement when the number of
blocks increases up to about 30 blocks. In the same scenario,
increasing the number of blocks beyond 30 leads to small,
but consistent deterioration in performance. One can view
these results as evidence supporting the meta-learning inter-
pretation of N-BEATS, with a possible explanation of this
phenomenon as overfitting in the meta-learning inner loop.
It would not otherwise be obvious how to explain the gener-
alization dynamics in Fig. 1. Additionally, the performance
improvement due to meta-learning alone (shared weights,
multiple blocks vs. a single block) is 12.60 to 12.44 (1.2%)
and 20.40 to 18.82 (7.8%) for M3 and TOURISM, respec-
tively (see Fig. 1). The performance improvement due to
meta-learning and unique weights1 (unique weights, multiple

1Intuitively, the network with unique block weights includes the

blocks vs. a single block) is 12.60 to 12.40 (1.6%) and 20.40
to 18.91 (7.4%). Clearly, the majority of the gain is due to
the meta-learning alone. The introduction of unique block
weights sometimes results in marginal gain, but often leads
to a loss (see more results in Appendix G).

In this section, we presented empirical evidence that neu-
ral networks are able to provide high-quality zero-shot fore-
casts on unseen TS. We further empirically supported the hy-
pothesis that meta-learning adaptation mechanisms identified
within N-BEATS in Section 3 are instrumental in achieving
impressive zero-shot forecasting accuracy results.

5 Discussion and Conclusion

Zero-shot transfer learning. We propose a broad meta-
learning framework and explain mechanisms facilitating zero-
shot forecasting. Our results show that neural networks can
extract generic knowledge about forecasting and apply it
in zero-shot transfer. Residual architectures in general are
covered by the analysis of Sec. 3, which might explain some
of the success of residual architectures, although their deeper
study should be subject to future work. Our theory suggests
that residual connections generate, on-the-fly, compact task-
specific parameter updates by producing a sequence of input
shifts for identical blocks. Sec. 3.1 reinterprets our results
showing that, as a first-order approximation residual con-
nections produce an iterative update to the predictor final
linear layer. Memory efficiency and knowledge compres-
sion. Our empirical results imply that N-BEATS is able to
compress all the relevant knowledge about a given dataset in
a single block, rather than in 10 or 30 blocks with individ-
ual weights. From a practical perspective, this could be used
to obtain 10–30 times neural network weight compression
and is relevant in applications where storing neural networks
efficiently is important.

network with identical weights as a special case. Therefore, it is
free to combine the effect of meta-learning with the effect of unique
block weights based on its training loss.
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