
Second Order Techniques for Learning Time-series With Structural Breaks

Takayuki Osogami
IBM Research - Tokyo
osogami@jp.ibm.com

Abstract

We study fundamental problems in learning nonstationary
time-series: how to effectively regularize time-series models
and how to adaptively tune forgetting rates. The effective-
ness of L2 regularization depends on the choice of coordi-
nates, and the variables need to be appropriately normalized.
In nonstationary environment, however, what is appropriate
can vary over time. Proposed regularization is invariant to
the invertible linear transformation of coordinates, eliminat-
ing the necessity of normalization. We also propose an en-
semble learning approach to adaptively tuning the forgetting
rate and regularization-coefficient. We train multiple models
with varying hyperparameters and evaluate their performance
by the use of multiple hyper forgetting rates. At each step, we
choose the best performing model on the basis of the best per-
forming hyper forgetting rate. The effectiveness of the pro-
posed approaches is demonstrated with real time-series.

Introduction
Time-series data is ubiquitous in industries, where the qual-
ity and efficiency of services rely on learning from such data
for forecasting, anomaly detection, and decision making.
For example, financial institutions are eager to make better
forecast in stock markets. Early detection of anomaly from
sensor data is critical in complex industrial products.

Learning time-series in industries is often hard due to non-
stationarity, or structural breaks in particular. For example,
financial markets change drastically with economic bubbles
and major exogenous events. Sensor data from industrial
products is often susceptible to changes in their environ-
ment and deterioration of their components. Thus, there has
been a significant amount of research to deal with structural
breaks in time-series in the field of artificial intelligence,
statistics, signal processing (Farhang-Boroujeny 2013), and
economics (Granger and Newbold 1986).

A common idea in the literature is not only to incorporate
latest data but also to gradually forget past data. The most
celebrated is the method of recursive least squares, which re-
cursively updates the weights (coefficients) of a linear model
in a way that the weighted squared error of prediction is min-
imized, where the weight on the past data gets smaller ex-
ponentially with time (Farhang-Boroujeny 2013). Stochastic

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gradient methods also follow this idea when they are applied
to online learning for time-series.

Although forgetting the past is essential in dealing with
structural breaks, it involves two difficulties in practice.
First, one needs to set (and adaptively tune) the forgetting
rate appropriately. If we do not forget sufficiently, we cannot
adapt to changes. If we forget too much, we might overre-
act to noise and trivial changes. Second, the size of effective
data is small when we forget the past. Without appropriate
regularization, our models can overfit to the small data.

We propose a technique for adaptively changing the for-
getting rate and the strength of regularization to deal with
structural breaks. We simultaneously train a small number
of models with varying forgetting rates and regularization-
coefficients. We then track the predictive errors of those
models with multiple values of the hyper forgetting rate,
placing higher weight on more recent predictive errors. Our
key idea is to first choose the best performing hyper forget-
ting rate and then choose the best performing model based
on the best hyper forgetting rate at each (time) step. The best
model is then used to make a prediction.

Notice that, in the standard literature, the forgetting rate
is a hyperparameter of an objective function and cannot be
tuned in a way similar to the hyperparameters of machine
learning models and algorithms. We need a criteria to deter-
mine what forgetting rates are good, but the forgetting rate is
a part of the objective function. We introduce hyper forget-
ting rate as a means to determine what forgetting rates are
good. With a hyper forgetting rate, the forgetting rate can
now be considered as a hyperparameter of a model.

Our approach is primarily targeted at industrial time-
series that can exhibit structural breaks but have small to
medium dimensions (after feature engineering and variable
selection). For such time-series, a compact linear model hav-
ing at most n = 1, 000 weights often suffices or even works
best, as complex models either overfit to latest data or fail to
adapt to changes. We thus design our approach by allowing
O(n2) computational time (and space) in updating our mod-
els and making a prediction at each (time) step. However,
we keep the computational time per step independent of the
length of time-series, which may be indefinitely long.

The O(n2) time per step is sufficient to optimize the
weights for a linear model with a given forgetting rate and
no regularization (by recursive least squares). However, this

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9259

optimization becomes difficult with regularization, as dis-
cussed in Tsakiris (2010); Tsakiris, Lopes, and Nascimento
(2010). In addition, the effectiveness of standard regulariza-
tion such as L2 is sensitive to transformation of coordinates.
Namely, how much L2 regularization reduces the absolute
value of each parameter depends on how the data is nor-
malized. If the magnitude of a variable varies over time, L2
regularization would not have the expected effect. While we
might be able to preprocess the data with variable selection
and normalization (e.g., letting mean be 0 and variance be
1), the scale of the data might change over time. One could
renormalize the data if the past data is stored, but then lean-
ing cannot be performed in O(n2) time per step.

We thus also propose a variant of L2 regularization where
the L2 norm is defined with the Hessian of the weighted
squared error, which is the loss function without regulariza-
tion. The proposed regularization keeps the learning prob-
lem invariant to invertible linear transformations (namely,
the optimal weights are contra-variate to invertible linear
transformations). Also, the optimal weights with the pro-
posed regularization can be updated in O(n2) time per step.

Our primary contributions are two techniques: (i) the en-
semble learning method with following the best hyper for-
getting rate for adaptively tuning hyperparameters of a non-
stationary time-series model and (ii) the regularization that
is invariant to invertible linear transformations. We empir-
ically demonstrate the effectiveness of the proposed tech-
niques with real time-series datasets. In addition, we pro-
pose a technique of rank-one update for the pseudo-inverse
(Moore-Penrose generalized matrix inverse) of a symmet-
ric matrix, which we need to use recursively. The proposed
approach accumulates numerical error slower than existing
methods by orders of magnitude.

Related Work
Online learning for nonstationary time-series is oftern per-
formed by tuning the learning rate in stochastic gradient de-
scent (SGD). The variance-based SGD (vSGD) is particu-
larly designed for nonstationary data, enabling the learning
rates to increase and decrease according to the data (Schaul,
Zhang, and LeCun 2013). Cogra is a recent extension of
vSGD (Miyaguchi and Kajino 2019). There also exist tech-
niques, including Almeida (Almeida et al. 1999) and Hy-
pergradient descent (Baydin et al. 2017), that seek to learn
appropriate values of the learning rates in an online manner.
In our experiments, we study how our proposed approach
compares against those existing methods as well as against
standard SGD methods such as AdaGrad (Duchi, Hazan, and
Singer 2011), Adam (Kingma and Ba 2014), and RMSProp
(Tieleman and Hinton 2012)

Online learning for nonstationary time-series is also re-
lated to regret minimization in online (convex) optimization.
Some of the SGD methods such as AdaGrad are known to
give optimal regret bounds for some cases (Duchi, Hazan,
and Singer 2011; Hazan 2016). While minimizing regret
is different from minimizing weighted squared error, they
can lead to similar algorithms. Online Newton Step (ONS)
(Hazan, Agarwal, and Kale 2007; Agarwal et al. 2006) is re-
lated to ours from an algorithmic point of view. A key differ-

ence is that ONS uses fixed parameters (specifically, D,G,
and α in Hazan, Agarwal, and Kale (2007)) that need to be
set on the basis of the properties of the objective functions
under consideration, while we adaptively change our forget-
ting rates and regularization-coefficients. MetaGrad trains
multiple models with different learning rates and combine
their output in a way that regret is minimized (van Erven
and Koolen 2016).

Our method of following the best hyper forgetting rate is
a Follow The Leader (FTL) method, which has been stud-
ied in the context of online learning (Littlestone and War-
muth 1994; Freund and Schapire 1997). While the prior
work uses FTL to choose a model from candidates, we use
FTL to choose a hyper forgetting rate, which is then used to
choose a model, to specifically deal with nonstationarity. By
choosing the hyper forgetting rate, we determine the best
loss function, which in turn uniquely determines the best
model in our approach. At a high level, our approach can
thus be seen as the standard setting of online learning, and
the theoretical guarantee established for FTL carries over to
our approach. One may also replace FTL in our method with
more sophisticated techniques such as Follow the Regular-
ized Leader (De Rooij et al. 2014) and Follow the Leading
History (Hazan and Seshadhri 2009).

Note that approaches similar to following the best hyper
forgetting rate have been studied in the context of choosing
the values of hyperparameters (Minku 2019). The novelty in
our approach is in tuning hyperparameters by choosing the
hyper forgetting rate in a way similar to Minku (2019).

Recursive least squares (RLS) dates back to Gauss (19th
century), but the forgetting rate has been set a priori based on
domain knowledge, separate data (Van Vaerenbergh, Santa-
marı́a, and Lázaro-Gredilla 2012), or theoretical analysis un-
der the assumption of stationarity (Guo, Ljung, and Priouret
1993). With no forgetting, L2 regularization is straightfor-
ward with RLS, as it only needs to initialize the Hessian
as a diagonal matrix. With forgetting, the effect of initial
regularization diminishes over time, and the inverse Hes-
sian can no longer be updated via the Sherman-Morrison
lemma (Tsakiris 2010; Tsakiris, Lopes, and Nascimento
2010). Horita et al. (2004) use a rank-one update technique
of eigendecomposition, and Gay (1996) regularizes random
one dimension at each step. Elisei-Iliescu et al. (2017) uses
a dichotomous coordinate descent method. These techniques
can be performed in O(n2) time per step, but their effective-
ness is sensitive to the selection of coordinates.

Garrigues and Ghaoui (2009) study an online algorithm
for Lasso, where a homotopy algorithm is used to update
the optimal solution to Lasso when new data is given. Al-
though their algorithm runs efficiently once a relevant sub-
set of data is extracted, it stores the entire data that has
been observed. The computational complexity thus grows
linearly with the length of data, and it is not suitable for
industrial time-series that continue indefinitely. They also
study a way to adaptively tune the regularization-coefficient,
which however cannot be directly applied to our case in
O(n2) time, as it would require recomputing relevant ma-
trices when the forgetting rate is changed. Lafond, Wai, and
Moulines (2016) study another online algorithm for Lasso

9260

but consider a stationary setting where an independent and
identically distributed (i.i.d.) pair of a response and corre-
sponding explanatory variables is observed one at a time in
a sequential manner. In particular, they use a monotonically
decreasing learning rate, which is unsuitable for nonstation-
ary time-series.

Regularized Recursive Least Squares
We study the problem of learning a nonstationary time-series
model in an online manner. Let fθt

(·) be the model, which is
nonstationary in the sense that it has time-varying weights,
θt at step t. Given an input xt at t, the model makes a pre-
diction ŷt ≡ fθt(xt) about the target yt. The input xt should
be considered as a feature vector of the observations before
t− 1, and the prediction fθt

(xt) at t is about a target yt that
will be observed at step t. In online learning, we update θt to
θt+1 after observing yt and use θt+1 to make the prediction,
ŷt+1 ≡ fθt+1

(xt+1), about the next target yt+1. As we will
see, it is straightforward to extend our results to the case of
a vector target yt. We thus assume a scalar target yt unless
otherwise stated.

A standard approach finds the weights θ? that minimize
the weighted mean squared error (WMSE)

Lt(θ) ≡ 1

2

t−1∑
d=0

γd (fθ(xt−d)− yt−d)
2 (1)

at step t, where the forgetting rate γ is a hyperparameter.
The optimal weights θt+1 = θ? are then used to make a
prediction about yt+1. This loss function (1) is motivated by
the expectation that a model recently giving low predictive
error gives good prediction for the next pattern. Although
minimizing WMSE does not guarantee predictive accuracy
in adversarial settings, this objective has been extensively
studied in the literature and successfully applied in practice.

For a linear model fθ(x) ≡ θ>x, the minimizer of (1)
is given by θt+1 = θ? = H−1t gt, where gt is the negative
gradient at the origin (i.e., gradient evaluated at x = 0) and
Ht is the Hessian of (1), which can be written recursively:

gt ≡
t−1∑
d=0

γd xt−d yt−d = γ gt−1 + xt yt (2)

Ht ≡
t−1∑
d=0

γd xt−d x>t−d = γHt−1 + xt x>t . (3)

Notice that an alternative to the use of the forgetting rate γ
is to reset the value of Ht periodically (Goodwin, Teoh, and
Elliott 1983; Moroshko, Vaits, and Crammer 2015), but here
we focus on the approaches of using forgetting rates to deal
with structural breaks.

By the Sherman-Morrison lemma, one can compute H−1t
recursively in O(n2) time1, where n is the dimension of xt:

H−1t = γ−1 H−1t−1 −
γ−2 H−1t−1 xt x>t H−1t−1

1 + γ−1 x>t H−1t−1 xt

. (4)

1Alternatively, one may recursively update the Cholesky factor
of Ht (Gill et al. 1974), and solve Ht θt+1 = gt for θt+1.

When Ht is not invertible, the pseudo-inverse H+
t should

be used instead of H−1t . Also, when Ht−1 is not invertible
in (4), we should use the rank-one update for the pseudo-
inverse, which can be performed in O(n2) time, as follows:
Lemma 1. For a symmetric H ∈ Rn×n and c ∈ Rn, let
u ≡ (I − H+H) c, u+ ≡ u/(u>c), and k ≡ H+c.
Then the pseudo-inverse (H + c c>)+ can be computed
from H+ as follows: if u>c > 0, then (H + c c>)+ =
H+−k (u+)>−u+k>+(1+c>k) u+(u+)>; if u>c = 0,
then (H + c c>)+ = H+ − k k>/(1 + c>H+c).

Although this lemma directly follows from the rank-one
update of the general pseudo-inverse (Theorem 3.1.3 of
Campbell and Meyer (2009)), we have made two specific
choices for numerical accuracy. First, we define u+ differ-
ently from u+ ≡ u/||u||2 in Campbell and Meyer (2009),
although the two definitions are mathematically equivalent.
Second, we define u as in the lemma, while a mathemati-
cally equivalent form of u ≡ (I − H H+) c is more com-
putationally efficient, as it can use already computed k. Fig-
ure 6 in Osogami (2020) shows that these two choices can
result in up to 1020 times higher accuracy.

Because Ht is independent of the target values, only a sin-
gle H−1t needs to be recursively computed even when there
are multiple target values (e.g., vector autoregressive models
(Lütkepohl 2005)). The optimal weights are given by Θ?

t =
H−1t Gt for a recursively computed Gt = γGt−1 + xt y>t
from G0 ≡ O.

Our approach may be extended to nonlinear models fθ(·)
by approximation with linearization, analogously to Ex-
tended Kalman Filter and the Levenberg-Marquardt method
(Anderson and Moore 1979; Nocedal and Wright 2006),
which have been successfully applied in practice. However,
we continue to study our approach with linear models.

Consider the standard L2 regularized loss function:

L̇t(θ) = Lt(θ) + (λ/2) ||θ||22. (5)

The minimizer of (5) is given by θ̇t+1 = Ḣ−1t+1 gt+1, where
Ḣt ≡ Ht + λ I, whose inverse however cannot be updated
recursively (Tsakiris 2010; Tsakiris, Lopes, and Nascimento
2010) unless λ = 0 or γ ∈ {0, 1}.

We propose the following regularized loss function:

L̃t(θ) = Lt(θ) + (λ/2) ||θ||2Ht
, (6)

where ||θ||2Ht
≡ θ>Ht θ. The minimizer of L̃t(·) is θ̃? =

θ?/(1 + λ), where θ? is the minimizer of Lt(·). The mag-
nitude of the weights is thus reduced by a common factor
1 + λ.

It is however a common practice not to regularize the in-
tercept. Let the first element of xt be a constant. Then we
can write x>t = (1, x̌>t) and θ> = (θ(0), θ̌>), where θ(0) is
the intercept. Letting θ̂> = (0, θ̌>), we can write our regu-
larized loss function as follows:

L̃t(θ) = Lt(θ) + (λ/2) ||θ̂||2Ht
. (7)

The optimal regularized weights can be computed in O(n2)
time, as in the following lemma:

9261

Lemma 2. For linear models, the minimizer of the regu-
larized loss function (7) is given by θ̃? = H̃−1t gt, where
H̃t = γ H̃t−1 + xt x>t + λ x̂t x̂>t and H̃0 = O. Then H̃−1t

can be computed from H−1t−1 in O(n2) time by applying the
Sherman-Morrison lemma2 twice.

Proof. We sketch a proof here and provide details in (Os-
ogami 2020). We can rewrite our regularized loss function
L̃t(θ) using a matrix, Ĥt, which is given by replacing the
values of the first row and the first column of Ht with zeros.
Then the minimizer of L̃t(θ) can be shown to be given by
the θ̃? in the lemma. The recurrence relation of H̃t follows
from the equivalence H̃t ≡ Ht + λ Ĥt.

In addition, our regularized loss function is invariant to
invertible linear transformations in the following sense:

Lemma 3. Consider an invertible linear transformation M
of order n−1, and let x̌′t = M x̌t for each t. Let the weights
except the intercept be contravariate to M in that M trans-
forms θ̌> into θ̌′> = θ̌>M−1. Then the loss function (7) is
invariant to M.

Proof. We sketch a proof here and provide details in (Os-
ogami 2020). It is known and straightforward to show that
Lt(·) is invariant to M. It thus remains to prove that the reg-
ularization term is invariant to M. It can be shown that M
transforms ||θ̂||2Ht

into ||θ̂′||2H′t = θ̌′>Ȟ′tθ̌
′, where Ȟ′t =

M Ȟt M>. Thus, ||θ̂′||2H′t = θ̌> Ȟt θ̌ = ||θ̂||2Ht
.

This invariance is in contrast to L2 regularization, which
is sensitive to the transformation of the coordinates of ex-
planatory variables. See Figure 4 in Osogami (2020).

Note that, although it is new to use ||θ||2Ht
as a regular-

izer of recursive least squares, the norm ||·||2Ht
has been used

in various contexts in the literature. For example, a similar
norm has been used in the analysis of linear stochastic ban-
dits by Abbasi-yadkori, Pál, and Szepesvári (2011).

Following Best Hyper Forgetting Rate
We have seen that the optimal parameters can be updated in
O(n2) time at each step for given values of hyperparameters,
γ and λ. We now study what the good values of γ and λ are
and how to adaptively choose those values in O(n2) time at
each step.

Our hyperparameters determine the loss function, which
is designed with the expectation that its minimizer gives
minimal predictive error at each step. The good values of
γ and λ are the ones that lead to good prediction, but they
can change over time due to structural breaks. We thus need
to tune those values adaptively. A difficulty is that gt and
H̃t depend on γ or λ. When the values of γ or λ change, we
need to recompute gt and H̃t, which requires Ω(n2) time.

We propose to train a small numberNmod of the models in
a way that they minimize the loss functions with varying val-
ues of the forgetting rate γi and regularization-coefficient λi

2We use Lemma 1 instead of the Sherman-Morrison lemma,
when the inverse under consideration does not exist.

Algorithm 1 Online learning by following the best hyper
forgetting rate (single target)

1: Input: Nmod = 30, Nhyp = 11; γ1 = λ1 = 0,
γi ∼ Unif[0.51/D, 1], λi ∼ Unif[0, 1], ∀i ∈ [2, Nmod];
ηj = 0.89 + 0.01 j, ∀j ∈ [1, Nhyp]

2: CSE(ηj),CSE(i)(ηj)← 0, 0, ∀i, j
3: g(i), (H(i))−1 ← 0,O, ∀i
4: for t = 1, 2, . . . do
5: Prepare a feature vector xt

6: j? = argminjCSE(ηj)

7: i? ← argminiCSE(i)(ηj?)

8: Output prediction: ŷ(i
?)

t ← x>t (H(i?))−1g(i?)

9: Observe the target yt
10: for j = 1, . . . , Nhyp do
11: i? ← argminiCSE(i)(ηj)

12: CSE(ηj)← CSE(ηj) + (ŷ(i
?) − yt)2

13: end for
14: for i = 1, . . . , Nmod do
15: ŷ

(i)
t ← x>t (H(i))−1g(i)

16: CSE(i)(ηj)← ηjCSE(i)(ηj) + (ŷ
(i)
t − yt)2, ∀j

17: g(i) ← g(i)/γ(i) + xt yt
18: (H(i))−1 ← (H(i))−1/γ(i) + xt x>t
19: (H(i))−1 ← Update((H(i))−1,xt)

20: (H(i))−1 ← Update((H(i))−1,
√
λ(i) x̂t)

21: end for
22: end for

(see Figure 1), which are randomly selected for each model
i (see Algorithm 1 for the specific distributions that we rec-
ommend). We then track the cumulative squared error of the
prediction, ŷ(i)t , given by each model i, where the error is
discounted by a hyper forgetting rate η ∈ (0, 1):

CSE
(i)
t (η) ≡

t−1∑
d=0

ηd (ŷ
(i)
t−d − yt−d)2 (8)

= ηCSE
(i)
t−1 + (ŷ

(i)
t − yt)2. (9)

The model i having the smallest CSE has been giving small
error, and such a model i is expected to give good prediction
in the next step. Although we can now adaptively choose the
values of γ and λ to be the ones that minimize (9), we now
need to tune η, whose suitable value can change over time.

We use multiple values of the hyper forgetting rate
η1, η2, . . . (see Figure 1; also see Algorithm 1 for the spe-
cific values we recommend). We track CSE

(i)
t (ηj) for each

ηj . If we evaluated the models with ηj , we would choose the
model i?t+1 = argminiCSE

(i)
t (ηj) as the best performing

model at t+ 1. We thus evaluate the performance of a hyper
forgetting rate ηj via

CSEt(ηj) ≡
t−1∑
d=0

(ŷ
(i?t−d)

t−d − yt−d)2 (10)

= CSEt−1(ηj) + (ŷ
(i?t)
t − yt)2, (11)

9262

Hyper forgetting rates𝜂1 𝜂2

Loss functions
(forgetting rate,

regularization-coefficient)

Models with specific weights

Least-squares solution with
respect to the loss function

𝛾1, 𝜆1 𝛾2, 𝜆2 𝛾3, 𝜆3

Follow the (Regularized) Leader

Best loss function with respect
to the hyper forgetting rate

𝑁mod

Figure 1: Following the best hyper forgetting rate. FTL
chooses the best hyper forgetting rate, which in turn chooses
the best loss function, which then uniquely determines the
model with specific weights as the least-squares solution.

where recall that ŷ(i
?
t)

t is the prediction by the best perform-
ing model with respect to the CSE

(·)
t−1(ηj). Namely, the best

performing hyper forgetting rate at step t is selected by j?t =
argminjCSEt(ηj), which is then used to select the best per-

forming model at step t by i?t+1 = argminiCSE
(i)
t (ηj?t).

with j ≡ j?t . More specifically, at step t + 1, the mini-
mizer i?t+1 defines our loss function (7) with γ = γ(i

?
t+1) and

λ = λ(i
?
t+1). Then the minimizer θ? ≡ (H̃

(i?t+1)
t)−1 g

(i?t+1)
t

of this loss function is used to give the prediction x>t θ
?

about step t+ 1. We recursively compute (H̃
(i)
t)−1 and g

(i)
t

for every i at every step even if they may not be needed.
Notice that the hyper forgetting rate gives a criteria to de-

termine what forgetting rates are good. One might want to
introduce a “hyper-hyper forgetting rate” in (10) to deter-
mine what hyper forgetting rates are good, and this can be
continued indefinitely. Our method can be considered as a
first order approximation to such sequential argument.

At each step t, Algorithm 1 first chooses the best hyper
forgetting rate η?j in Step 6 and then uniquely maps an input
(past values of time-series) to an output (prediction) in Step
7-8 based on the η?j . Hence, the hyper forgetting rate may be
considered as a model in the context of Follow The Leader
(FTL) or more generally in the context of online learning.

One may thus use other online learning algorithms (Hazan
2016) instead of FTL. For example, it is straightforward to
replace FTL with Follow the Regularized Leader (FoReL).
Specifically, at each step t, we find the probability vector p?,
which we sample a hyper forgetting rate from:

p? = argmin
p

∑
j

pj CSEt(ηj) + α
∑
j

pj ln pj . (12)

The following regret bound is then a straightforward conse-
quence of Corollary 2.14 from Shalev-Shwartz (2011):

Corollary 1. Let fs(p) be the expected squared error in
prediction at step s when the hyper forgetting rate is cho-
sen with probability p in Step 6 of Algorithm 1. Let Ls and
L be such that fs is Ls-Lipschitz with respect to L1 norm
and 1

t

∑t
s=1 L

2
s ≤ L2. By setting α = L

√
2 t/ lnNhyp

in (12), the expected regret (against the best static proba-
bility) for the cumulative squared error can be bounded by
Regret(t) ≤ L

√
2 ln(Nhyp) t.

An alternative to our approach is to consider a convex
combination of the outputs from the Nmod models (An-
dersson 1985; Arenas-Garcia, Figueiras-Vidal, and Sayed
2006) rather than choosing a single model. For example,
Arenas-Garcia, Figueiras-Vidal, and Sayed (2006) updates
the weight of the convex combination with a gradient based
approach. The effectiveness of such approaches relies on op-
timizing the learning rate in the gradient based approach, but
it is not well understood how best to choose the learning rate.
Our approach of hyper forgetting rates may also be applied
to optimizing the learning rate in this context.

Algorithm 1 summarizes our algorithm. Here, the sub-
script t is dropped from g

(i)
t , H

(i)
t , CSEt, and CSE

(i)
t ;

(H(i))−1 denotes the pseudo-inverse when H(i) is not in-
vertible. Input specifies the values of the hyperparameters
for each model i, where “∼ Unif[a, b]” means that a sample
is independently drawn from the uniform distribution with
support [a, b]. Here,D determines this support. Intuitively, if
a model takes into account long history, one should not for-
get the past by a large amount. For an autoregressive model,
D may be its order. Step 5 depends on the time-series model
under consideration. For example, xt is the concatenation of
d previous observations and a constant 1 for an autoregres-
sive model with order d. The for-loop from Step 10 updates
the CSE for each hyper forgetting rate. In the for-loop from
Step 14, the weights are updated for each i, following the
approach given in the previous section (Regularized recur-
sive least squares). Update in Step 19-20 applies (4) when
H(i) is invertible and Lemma 1 otherwise.

Steps 6-7, 10-13, and 16 as well as the for-loop from
Step 14 are the additional steps for adaptively choosing the
values of γ and λ. The computational complexity of these
additional steps depends on Nmod and Nhyp but is inde-
pendent of n and t. Algorithm 1 thus runs in O(n2) time
per step. When there are multiple target values, we track the
CSE for each target and choose the optimal model for each
target. The computational complexity of the associated steps
thus grows linearly with respect to the dimension of the tar-
get, which we assume O(n). Because these steps have O(n)
complexity per step for the case of a single target, the overall
complexity per step remains O(n2).

Experiments
We conduct numerical experiments to answer the following
questions. (i) How does our regularization compare against
the standard L2 regularization? (ii) Can Algorithm 1 adap-
tively tune hyperparameters? (iii) How does our approach
compare against existing methods in predicting nonstation-
ary time-series in (financial) industries? We have designed
three sets of experiments, corresponding to these questions.

9263

0.00 0.02 0.04 0.06 0.08 0.10
regularization coefficient

0.99

1.00

1.01

1.02

1.03

1.04

1.05
Re

la
tiv

e
RM

SE Proposed
1
0.99
0.9

(a)

0.00 0.02 0.04 0.06 0.08 0.10
regularization coefficient

0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

Re
la

tiv
e

RM
SE Proposed

1
0.99
0.9

(b)

0 500 1000 1500 2000
Step

0.0

0.2

0.4

0.6

0.8

1.0

Fo
rg

et
tin

g
ra

te

(c)

Figure 2: The results of the experiments with the synthetic time-series with a change point at t = 1, 000 (averaged over 30 runs):
RMSE during the 100 steps immediately (a) before and (b) after the change point; (c) the forgetting rate used by Algorithm 1
at each step. The regularization-coefficient used by Algorithm 1 at each step is shown in Figure 7 of Osogami (2020).

All of our experiments are in a setting of online learning:
for a time-series of lengthN , we make a prediction about the
next value at every step n for 0 < n < N . When we make
a prediction at step n, the time-series up to step n is used
to train the models. The RMSE will refer to the root mean
squared error of the predictions over the period under con-
sideration. We run our experiments on a workstation having
eight Intel Core i7-6700K CPUs running at 4.00 GHz and
64 GB random access memory.

In Figure 5 of Osogami (2020), we compare the effective-
ness of our regularization against L2 regularization. Overall,
our regularization compares favorably against L2 regulariza-
tion. Although the effectiveness of regularization depends
on particular data, the results of this experiment suggest that
our regularization not only can be performed in O(n2) time
but also has the expected effect of regularization, sometimes
outperforming L2 regularization (e.g. when a time-series in-
volves large fluctuations).

In Figure 2, we study the next question of whether Al-
gorithm 1 can adaptively tune the forgetting rate γ and
regularization-coefficient λ. Here, we use synthetic time-
series with a change point, similar to Miyaguchi and Kajino
(2019), and study how our algorithm behaves at this change
point. Specifically, we generate a time-series of 2,000 steps
according to an auto-regressive (AR) model, which is a par-
ticular linear model: xt = µt + at xt−1 + εt, where εt is
i.i.d. with the standard normal distribution. We set (µt, at) =
(−10, 0.3) for t < 1, 000, and (µt, at) = (10,−0.3) for
t ≥ 1, 000. The change point is t = 1, 000. We learn the AR
model with the first order with Algorithm 1, and compares
its predictive error against the baseline where the values of
γ and λ are fixed.

Figure 2 (a)-(b) show the RMSE of the prediction dur-
ing the 100 steps immediately (a) before and (b) after the
change point. The straight lines indicate the RMSE with Al-
gorithm 1, where γ and λ are adaptively tuned. The three
curves in each panel show the RMSE of the prediction for
each value of γ (as indicated in the legend) and for each
value of λ (as indicated along the horizontal axis). Before
the change (i.e., in a stationary period), setting γ = 1 and
λ = 0 works best and outperforms Algorithm 1. After the
change (i.e., in a nonstationary period), the optimal setting

for the stationary period has quite poor performance, and
the setting with low γ and high λ works best. Overall, Algo-
rithm 1 performs as good as the best performing static choice
of γ and λ for each period.

Figure 2 (c) and Figure 7 of Osogami (2020) show the
values of the γ and λ used by Algorithm 1 at each step. In the
beginning of the time-series, our algorithm uses a relatively
small γ, and a relatively large λ. We can see that these values
converge to γ = 1 and λ = 0 if the time-series is stationary
for a sufficiently long period. Immediately after the change
point at t = 1, 000, Algorithm 1 drops the forgetting rate
at γ ≈ 0.6 and increases the regularization-coefficient at
λ ≈ 0.4.

Finally, we apply Algorithm 1 to financial time-series and
compares its predictive error against existing machine learn-
ing methods for nonstationary time-series. We use the 10-
year (from September 1, 2008 to August 31, 2018) historical
data of the daily close price of Standard & Poor’s 500 Stock
Index (US index; SPX), Nikkei 225 (Japanese index; Nikkei
225), Deutscher Aktienindex (German index; DAX), Finan-
cial Times Stock Exchange 100 Index (UK index; FTSE
100), and Shanghai Stock Exchange Composite Index (Chi-
nese index; SSEC). We choose these indices, because they
are representative stock indices around the world.

Each time-series xt is converted into the absolute value of
the daily return rt ≡ |xt − xt−1|/xt−1, and we predict the
difference from the previous day (i.e., predict rt+1 − rt at
day t). The absolute return is related to the volatility, and its
prediction is useful particularly for risk-sensitive trading. In
addition, the absolute return rt is more predictable than the
raw price xt and hence is more suitable for studying relative
accuracy of various predictors.

Figure 3 shows the mean squared error (MSE) of the pre-
diction by Algorithm 1 and baselines: vSGD, Almeida, Hy-
pergradient descent (HGD), Cogra, Adam, RMSProp, and
AdaGrad. The MSE is normalized relative to that of the
naı̈ve prediction that the absolute daily return stays un-
changed from the previous day. The solid curves show the
relative MSE of Algorithm 1. The horizontal axis repre-
sents the order of the AR model that we train 3. Because

3Algorithm 1 uses AR models with smaller order during the

9264

Proposed vSGD Best Almeida Best HGD Cogra Best Adam Best RMSProp Best AdaGrad

2 4 6 8 10 12
Order

0.5

0.6

0.7

0.8

0.9

1.0
Re

la
tiv

e
M

SE

(a) SPX

2 4 6 8 10 12
Order

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

M
SE

(b) Nikkei 225

2 4 6 8 10 12
Order

0.5

0.6

0.7

0.8

0.9

1.0

Re
la

tiv
e

M
SE

(c) DAX

Figure 3: MSE of the predicted absolute daily return of various financial indices (as indicated in each column), relative to
the naı̈ve prediction of no change. Algorithm 1 (solid curve) is compared against seven baselines with the optimal choice of
hyperparameters (dashed curves). Results with FTSE 100 and SSEC are shown in Figure 12 of Osogami (2020). Error bars are
shown in Figure 8-12 of Osogami (2020).

the baselines except vSGD and Cogra have hyperparameters
that cannot be automatically tuned, the best performing one
(on the test data) is shown4.

Overall, Algorithm 1 gives significantly smaller predic-
tive error (see Figures 8-12 in Osogami (2020) for error
bars) than any of the baselines for all financial indices un-
der consideration, even when the hyperparameters of the
baselines are set optimally with the knowledge of the entire
time-series in advance. In SPX, the relative MSE of 0.608
is achieved (at order 8) by Algorithm 1, while the best per-
forming baseline (Adam) achieves MSE of 0.741 (at order
2), which is 22% higher than our MSE.

Algorithm 1 outperforms baselines primarily because it
minimizes (1) with the hyperparameters that minimize (9)
for the hyper forgetting rate that minimizes (11) at every
point in time. Baselines do not minimize these quantities.
Our experiments suggest that minimizing (1), (9), and (11)
leads to good predictive performance for the tasks under
consideration, although it does not imply that the proposed
method outperforms baselines for all forecasting tasks.

Because Algorithm 1 trains Nmod = 30 models in par-
allel, it requires more computational cost than baselines.
For SPX, Algorithm 1 with order 12 requires 7.1 seconds,
which is approximately Nmod times slower than the base-
lines (vSGD: 0.77, Cogra: 0.87, AdaGrad: 0.26, HGD: 0.40,
Almeida: 0.33, RMSProp: 0.27, and Adam: 0.31, where the
units are all in seconds)5. The computational cost associated

initial period. Specifically, order d is used during the period [2(d+
1)2/(d+ 1), 2(d+ 2)2/(d+ 2)).

4We vary the initial learning rate (and the hyper learning rate of
Almeida and HGD) in {1, 0.1, 0.01, 0.001, 0.0001} and the hyper-
parameters related to “forgetting” (two parameters in Adam; one
in RMSProp) in {0.9, 0.99, 0.99, 0.9999}. For each data point, the
best test performance among all of the possible combinations of
those hyperparameters is shown, so that the error reported for the
baselines is generally smaller than what can be achieved without
the knowledge of the test data.

5The ground total running time (seconds) with all configura-
tions of hyperparameters under consideration: 1.3 for AdaGrad; 2.0
for HGD; 1.6 for Almeida; 5.4 for RMSProp; 24.8 for Adam.

with inverse Hessian in Algorithm 1 is negligible for this
size of time-series.

Algorithm 1 is relatively robust against the small changes
in the values of these hyperparameters. For example, we
have run experiments after adding an ηj = 0 in Algorithm 1.
However, the added ηj = 0 is hardly ever selected as the
best, and the overall behavior of Algorithm 1 stays essen-
tially unchanged.

Conclusion

Our experiments confirm that (i) our regularization can out-
perform L2 regularization for some time-series with large
fluctuations, (ii) Algorithm 1 can quickly tune hyperparame-
ters after a change point, and (iii) our approach outperforms
baselines in predicting financial time-series. These answer
favorably to our questions posed in the beginning of the pre-
vious section (Experiments).

Our approach involves two key techniques:
transformation-invariant regularization and “follow the best
hyper forgetting rate.” In this paper, we have demonstrated
two advantages of transformation-invariant regularization
over L2 regularization: it (i) allows us to update the inverse
Hessian in O(n2) time and (ii) has the expected effect of
regularization for the time-series with large fluctuation.
Our “follow the best hyper forgetting rate” method uses
the Follow The Leader method (or other online learning
algorithms such as Follow the Regularized Leader, as
discussed) to select a hyper forgetting rate, which in turn
uniquely (after tie-break) determines a model to make a
prediction. The hyper forgetting rate is used to discount the
predictive error made by the model (with specific values
of the forgetting rate and regularization-coefficient) in
the past. By selecting the hyper forgetting rate, instead of
directly selecting a model without hyper forgetting or with
an arbitrarily set hyper forgetting rate, our approach can
better evaluate the model under nonstationarity, which in
turn allows us to select a better model at each step.

9265

Acknowledgments
Earlier versions of this work were supported by JST CREST
Grant Number JPMJCR1304, Japan.

References
Abbasi-yadkori, Y.; Pál, D.; and Szepesvári, C. 2011. Im-
proved Algorithms for Linear Stochastic Bandits. In
Shawe-Taylor, J.; Zemel, R. S.; Bartlett, P. L.; Pereira,
F.; and Weinberger, K. Q., eds., Advances in Neural
Information Processing Systems 24, 2312–2320. Curran
Associates, Inc. URL http://papers.nips.cc/paper/4417-
improved-algorithms-for-linear-stochastic-bandits.pdf.

Agarwal, A.; Hazan, E.; Kale, S.; and Schapire, R. E. 2006.
Algorithms for portfolio management based on the Newton
method. In Proceedings of the 23rd International Confer-
ence on Machine Learning, 9–16.

Almeida, L. B.; Langlois, T.; Amaral, J. D.; and Plakhov, A.
1999. Parameter adaptation in stochastic optimization. In
On-Line Learning in Neural Networks, chapter 6, 111–134.
Cambridge University Press.

Anderson, B. D. O.; and Moore, J. B. 1979. Optimal Filter-
ing. Prentice-Hall.

Andersson, P. 1985. Adaptive forgetting in recursive iden-
tification through multiple models. International Journal of
Control 42(5): 1175–1193.

Arenas-Garcia, J.; Figueiras-Vidal, A. R.; and Sayed, A. H.
2006. Mean-square performance of a convex combination
of two adaptive filters. IEEE Transactions on Signal Pro-
cessing 54(3): 1078–1090.

Baydin, A. G.; Cornish, R.; Rubio, D. M.; Schmidt, M.; and
Wood, F. 2017. Online learning rate adaptation with hyper-
gradient descent. CoRR abs/1703.0478.

Campbell, S. L.; and Meyer, C. D. 2009. Generalized In-
verses of Linear Transformations. Classics in Applied Math-
ematics. Society for Industrial and Applied Mathematics.

De Rooij, S.; Van Erven, T.; Grünwald, P. D.; and Koolen,
W. M. 2014. Follow the leader if you can, hedge if you
must. The Journal of Machine Learning Research 15(1):
1281–1316.

Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. Journal of Machine Learning Research 12: 2121–2159.

Elisei-Iliescu, C.; Stanciu, C.; Paleologu, C.; Benesty, J.;
Anghel, C.; and Ciochinǎ, S. 2017. Robust variable-
regularized RLS algorithms. In Proceedings of the 2017
Hands-free Speech Communications and Microphone Ar-
rays, 171–175.

Farhang-Boroujeny, B. 2013. Adaptive Filters: Theory and
Applications. Wiley, 2nd edition.

Freund, Y.; and Schapire, R. E. 1997. A decision-theoretic
generalization of on-line learning and an application to
boosting. Journal of Computer and System Sciences 55:
119–139.

Garrigues, P.; and Ghaoui, L. E. 2009. An Homotopy Al-
gorithm for the Lasso with Online Observations. In Ad-
vances in Neural Information Processing Systems 21, 489–
496. Curran Associates, Inc.
Gay, S. L. 1996. Dynamically regularized fast RLS with ap-
plication to echo cancellation. In 1996 IEEE International
Conference on Acoustics, Speech, and Signal Processing,
957–960.
Gill, P.; Golub, G.; Murray, W.; and Saunders, M. 1974.
Methods for modifying matrix factor-izations. Mathemat-
ics of Computation 126(28): 505–535.
Goodwin, G. C.; Teoh, E. K.; and Elliott, H. 1983. Deter-
ministic convergence of a self-tuning regulator with covari-
ance resetting. Control Theory and Applications 130(1): 6–
8.
Granger, C. W. J.; and Newbold, P. 1986. Forecasting Eco-
nomic Time Series. Economic Theory, Econometrics, and
Mathematical Economics. Academic Press, Inc., 2nd edi-
tion.
Guo, L.; Ljung, L.; and Priouret, P. 1993. Performance anal-
ysis of the forgetting factor RLS algorithm. International
Journal of Adaptive Control and Signal Processeing 7: 525–
537.
Hazan, E. 2016. Introduction to Online Convex Optimiza-
tion. Now Pub.
Hazan, E.; Agarwal, A.; and Kale, S. 2007. Logarithmic
regret algorithms for online convex optimization. Machine
Learning 69(2-3): 169–192.
Hazan, E.; and Seshadhri, C. 2009. Efficient learning al-
gorithms for changing environments. In Proceedings of the
26th International Conference on Machine Learning, 393–
400.
Horita, E.; Sumiya, K.; Urakami, H.; and Mitsuishi, S. 2004.
A Leaky RLS Algorithm: Its Optimality and Implementa-
tion. IEEE Transactions on Signal Processing 52(10): 2924–
2936.
Kingma, D. P.; and Ba, J. 2014. Adam: A Method for
Stochastic Optimization. CoRR abs/1412.6980.
Lafond, J.; Wai, H.-T.; and Moulines, E. 2016. On the On-
line Frank-Wolfe Algorithms for Convex and Non-convex
Optimizations. CoRR abs/1510.01171.
Littlestone, N.; and Warmuth, M. 1994. The Weighted Ma-
jority Algorithm. Information and Computation 108: 212–
261.
Lütkepohl, H. 2005. New Introduction to Multiple Time Se-
ries Analysis. Springer-Verlag Berlin Heidelberg.
Minku, L. L. 2019. A novel online supervised hyperparam-
eter tuning procedure applied to cross-company software ef-
fort estimation. Empirical Software Engineering 24: 3153–
3204.
Miyaguchi, K.; and Kajino, H. 2019. Cogra: Concept-drift-
aware Stochastic Gradient Descent for Time-series Forecast-
ing. In Proceedings of the 33rd AAAI Conference on Artifi-
cial Intelligence (AAAI-19).

9266

Moroshko, E.; Vaits, N.; and Crammer, K. 2015. Second-
order non-stationary online learning for regression. The
Journal of Machine Learning Research 16: 1481–1517.
Nocedal, J.; and Wright, S. 2006. Numerical Optimization.
Springer Series in Operations Research and Financial Engi-
neering. Springer, 2nd edition.
Osogami, T. 2020. Proofs and additional experiments on
Second order techniques for learning time-series with struc-
tural breaks. CoRR abs/2012.08037.
Schaul, T.; Zhang, S.; and LeCun, Y. 2013. No more pesky
learning rates. In Proceedings of the 30th International Con-
ference on Machine Learning (ICML 2013), PMLR 28(3),
343–351.
Shalev-Shwartz, S. 2011. Online learning and online convex
optimization. Foundations and Trends in Machine Learning
4(2): 107–194.
Tieleman, T.; and Hinton, G. E. 2012. Lecture 6.5—
RmsProp: Divide the gradient by a running average of its
recent magnitude. COURSERA: Neural Networks for Ma-
chine Learning.
Tsakiris, M. 2010. On the regularization of the recursive
least-squares algorithm. Master’s thesis, Escola Politécnica.
Tsakiris, M. C.; Lopes, C. G.; and Nascimento, V. H. 2010.
An array recursive least-squares algorithm with generic non-
fading regularization matrix. IEEE Signal Processing Let-
ters .
van Erven, T.; and Koolen, W. M. 2016. MetaGrad: Mul-
tiple Learning Rates in Online Learning. In Lee, D. D.;
Sugiyama, M.; Luxburg, U. V.; Guyon, I.; and Garnett, R.,
eds., Advances in Neural Information Processing Systems
29, 3666–3674. Curran Associates, Inc.
Van Vaerenbergh, S.; Santamarı́a, I.; and Lázaro-Gredilla,
M. 2012. Estimation of the forgetting factor in kernel recur-
sive least squares. In 2012 IEEE International Workshop on
Machine Learning for Signal Processing.

9267

