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Abstract

Federated learning (FL) allows a set of agents to collabora-
tively train a model without sharing their potentially sensitive
data. This makes FL suitable for privacy-preserving applica-
tions. At the same time, FL is susceptible to adversarial at-
tacks due to decentralized and unvetted data. One important
line of attacks against FL is the backdoor attacks. In a back-
door attack, an adversary tries to embed a backdoor function-
ality to the model during training that can later be activated
to cause a desired misclassification. To prevent backdoor at-
tacks, we propose a lightweight defense that requires mini-
mal change to the FL protocol. At a high level, our defense
is based on carefully adjusting the aggregation server’s learn-
ing rate, per dimension and per round, based on the sign in-
formation of agents’ updates. We first conjecture the neces-
sary steps to carry a successful backdoor attack in FL setting,
and then, explicitly formulate the defense based on our con-
jecture. Through experiments, we provide empirical evidence
that supports our conjecture, and we test our defense against
backdoor attacks under different settings. We observe that ei-
ther backdoor is completely eliminated, or its accuracy is sig-
nificantly reduced. Overall, our experiments suggest that our
defense significantly outperforms some of the recently pro-
posed defenses in the literature. We achieve this by having
minimal influence over the accuracy of the trained models. In
addition, we also provide convergence rate analysis for our
proposed scheme.

1 Introduction
Federated learning (FL) (McMahan et al. 2016) has been
introduced as a distributed machine learning protocol.
Through FL, a set of agents can collaboratively train a model
without sharing their data with each other, or any other third
party. This makes FL suitable to settings where data privacy
is desired. In this regard, FL differs from the traditional dis-
tributed learning setting in which data is first centralized at
a place, and then distributed to the agents (Dean et al. 2012;
Li et al. 2014).

At the same time, FL has been shown to be susceptible
to backdoor attacks (Bhagoji et al. 2019; Bagdasaryan et al.
2020). In a backdoor attack, an adversary disturbs the train-
ing process to make the model learn a targeted misclassifica-
tion functionality (Chen et al. 2017; Shafahi et al. 2018; Liu
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et al. 2018). In centralized setting, this is typically done by
data poisoning. For example, in a classification task involv-
ing cars and planes, the adversary could label all blue cars
in the training data as plane in an attempt to make the model
to classify blue cars as plane at the inference/test phase. In
FL, since the data is decentralized, it is unlikely that an ad-
versary could access all the training data. Thus, backdoor
attacks are typically carried through model poisoning in the
FL context (Bhagoji et al. 2019; Bagdasaryan et al. 2020;
Sun et al. 2019). That is, the adversary tries to construct a
malicious update that encodes the backdoor in a way such
that, when it is aggregated with other agents’ updates, the
aggregated model exhibits the backdoor.

In this work, we study backdoor attacks against deep neu-
ral networks in FL setting, and formulate a defense. Our so-
lution is based on carefully adjusting the learning rate of
the aggregation server during the training. Through exper-
iments, we illustrate that our defense can deter backdoor at-
tacks significantly. Further, this achieved with only minimal
degradation in the trained model’s accuracy in both i.i.d. and
non-i.i.d. settings. We provide empirical evidence justifying
the effectiveness of our defense, and also theoretically ana-
lyze its convergence properties. In summary, our work sig-
nificantly outperforms some of the existing defenses in the
literature, and succeeds in scenarios where they fail.

The rest of the paper is organized as follows. In Section 2,
we provide the necessary background information. In Sec-
tion 3, we explain our defense, and in Section 4, we illustrate
the performance of our defense under different experimen-
tal settings. In Section 5, we discuss and elaborate upon the
results of our experiments, and finally, in Section 6, we pro-
vide a few concluding remarks.

2 Background
Federated Learning (FL) At a high level, FL is multi-
round protocol between an aggregation server and a set of
agents in which agents jointly train a model. Formally, par-
ticipating agents try to minimize the average of their loss
functions

arg min
w∈Rd

f(w) =
1

K

K∑
k=1

fk(w),

where fk is the loss function of kth agent. For example, for
neural networks, fk is typically empirical risk minimization
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under a loss function L such as cross-entropy, i.e.,

fk(w) =
1

nk

nk∑
j=1

L(xj , yj ;w),

with nk being the total number of samples in agent’s dataset
and (xj , yj) being the jth sample.

Concretely, FL protocol is executed as follows: at round
t, server samples a subset of agents St, and sends them wt,
the model weights for the current round. Upon receiving
wt, kth agent initializes his model with the received weight,
and trains for some number of iterations, e.g., via stochas-
tic gradient descent (SGD), and ends up with weights wkt .
The agent then computes his update as ∆k

t = wkt − wt, and
sends it back to the server. Upon receiving the update of ev-
ery agent in St, server computes the weights for the next
round by aggregating the updates with an aggregation func-
tion g : R|St|×d → Rd and adding the result to wt. That is,
wt+1 = wt + η · g({∆t}) where {∆t} = ∪k∈St

∆k
t , and

η is the server’s learning rate. For example, original FL pa-
per (McMahan et al. 2016) and many subsequent papers on
FL (Bhagoji et al. 2019; Bagdasaryan et al. 2020; Sun et al.
2019; Bonawitz et al. 2017; Geyer, Klein, and Nabi 2017)
consider weighted averaging to aggregate updates. In this
context, this aggregation is referred as Federated Averaging
(FedAvg), and yields the following update rule,

wt+1 = wt + η

∑
k∈St

nk ·∆k
t∑

k∈St
nk

. (1)

In practice, rounds can go on indefinitely, as new agents can
keep joining the protocol, or until the model reaches some
desired performance metric (e.g., accuracy) on a validation
dataset maintained by the server.

Backdoor Attacks and Model Poisoning Training time
attacks against machine learning models can roughly be
classified into two categories: targeted (Bhagoji et al. 2019;
Bagdasaryan et al. 2020; Chen et al. 2017; Liu et al. 2018),
and untargeted attacks (Blanchard et al. 2017; Bernstein
et al. 2018). In untargeted attacks, the adversarial task is
to make the model converge to a sub-optimal minima or to
make the model completely diverge. Such attacks have been
also referred as convergence attacks, and to some extend,
they are easily detectable by observing the model’s accuracy
on a validation data.

On the other hand, in targeted attacks, adversary wants
the model to misclassify only a set of chosen samples with
minimally affecting its performance on the main task. Such
targeted attacks are also known as backdoor attacks. A
prominent way of carrying backdoor attacks is through tro-
jans (Chen et al. 2017; Liu et al. 2018). A trojan is a care-
fully crafted pattern that is leveraged to cause the desired
misclassification. For example, consider a classification task
over cars and planes and let the adversarial task be making
the model classify blue cars as plane. Then, adversary could
craft a brand logo, put it on some of the blue car samples in
the training dataset, and only mislabel those as plane. Then,
potentially, model would learn to classify blue cars with the

brand logo as plane. At the inference time, adversary can
present a blue car sample with the logo to the model to ac-
tivate the backdoor. Ideally, since the model would behave
correctly on blue cars that do not have the trojan, it would
not be possible to detect the backdoor on a clean validation
dataset.

In FL, the training data is decentralized and the aggre-
gation server is only exposed to model updates. Given that,
backdoor attacks are typically carried by constructing ma-
licious updates. That is, adversary tries to create an update
that encodes the backdoor in a way such that, when it is ag-
gregated with other updates, the aggregated model exhibits
the backdoor. This has been referred as model poisoning at-
tack (Bhagoji et al. 2019; Bagdasaryan et al. 2020; Sun et al.
2019). For example, an adversary could control some of the
participating agents in a FL instance and train their local
models on trojaned datasets to construct malicious updates.

Robust Aggregation Methods Several works have ex-
plored using techniques from robust statistics to deter at-
tacks in FL. At a high level, these works tried replacing
averaging with robust estimators1 such as coordinate-wise
median, geometric median, α-trimmed mean, or a vari-
ant/combination of such techniques (Yin et al. 2018; Pil-
lutla, Kakade, and Harchaoui 2019; Blanchard et al. 2017;
Mhamdi, Guerraoui, and Rouault 2018). However, to the
best of our knowledge, the primary aim of these defenses
are to deter convergence attacks.

In contrast, a recent work (Sun et al. 2019) has shown Fe-
dAvg can be made robust against backdoor attacks in some
settings when it is coupled with weight-clipping and noise
addition as introduced in (Geyer, Klein, and Nabi 2017).
Concretely, server inspects updates, and if the L2 norm of
an update exceeds a threshold M , server clips the update by
dividing it with an appropriate scalar. Server then aggregates
clipped updates and adds Gaussian noise to the aggregation.
In this case, the update rule can be written as,

wt+1 = wt + η

(∑
k∈St

nk · ∆k
t

max(1,‖∆k
t ‖2/M)∑

k∈St
nk

+N (0, σ2M2)

)
. (2)

Another recent work (Fung, Yoon, and Beschastnikh
2020) tries to make FL robust by introducing a per-client
learning rate rather than having a single learning rate at the
server side, yielding the following update rule,

wt+1 = wt +

∑
k∈St

αtk · nk ·∆k
t∑

k∈St
nk

. (3)

where αtk ∈ [0, 1] is the kth agent’s learning rate for the tth
round. The exact details of how learning rates are computed
can be found in Algorithm 1 of the respective paper. Though,
at a high level, the algorithm tries to assign lower learning
rates to updates whose directions are similar, as given by co-
sine similarity. The rationale of this defense is that, assuming
adversary’s agents share the common backdoor task, their
updates will be more similar among themselves than honest

1Informally, a statistical estimator is said to be robust if it can-
not be skewed arbitrarily in presence of outliers (Huber et al. 1972).
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updates. Under this assumption, the algorithm will assign
lower learning rates to malicious updates, and reduce their
effects. For example, if there are two identical updates, the
algorithm assigns 0 as learning rate to both updates. How-
ever, as we observe experimentally in Section 4, their as-
sumption does not hold in some realistic settings for FL.
That is, if local data distributions of honest agents exhibit
some similarity, algorithm cannot distinguish the adversar-
ial agents and end up assigning everyone either the same, or
very similar learning rates throughout the training process.

Finally in (Bernstein et al. 2018), authors develop a com-
munication efficient, distributed SGD protocol in which
agents only communicate the signs of their gradients. In this
case, server aggregates the received signs and returns the
sign of aggregation to the agents who locally update their
models using it. We refer their aggregation technique as sign
aggregation, and in FL setting, it yields the following update
rule,

wt+1 = wt + η
(

sgn
∑
k∈St

sgn(∆k
t )
)
, (4)

where sgn is the element-wise sign operation. Although au-
thors show their approach is robust against certain adver-
saries who carry convergence attacks, e.g., by sending ran-
dom signs, or by negating the signs of their gradients, in
Section 4, we show that it is susceptible against backdoors
attacks.

3 Robust Learning Rate
Backdoor Task vs Main Task Let ∆adv,∆hon, be the
aggregated updates of adversarial, and honest agents re-
spectively. Ideally, ∆adv should steer the parameters of the
model to wadv , which ideally minimizes the loss on both the
main, and the backdoor attack task. At the same time, ∆hon

would want to move the model parameters towards whon
that only minimizes the loss on main task. Our main con-
jecture is that, assuming whon and wadv are different points,
∆adv and ∆hon will most likely differ in the directions they
specify at least for some dimensions. As we show next, as-
suming a bound on the number of adversarial agents, we can
ensure the model moves away from wadv , and moves toward
whon, by tuning the server’s learning rate based on sign in-
formation of updates.

Robust learning rate (RLR) Following the above insight,
we construct a defense which we denote as robust learning
rate (RLR) by extending the approach proposed in (Bern-
stein et al. 2018). In order to move the model towards a par-
ticular direction, for each dimension, we require a sufficient
number of votes, in form of signs of the updates. Concretely,
we introduce a hyperparameter called learning threshold θ
at the server-side. For every dimension where the sum of
signs of updates is less than θ, the learning rate is multiplied
by -1. This is to maximize the loss on that dimension rather
than minimizing it. That is, with a learning threshold of θ,
the learning rate for the ith dimension is given by,

ηθ,i =

{
η

∣∣∑
k∈St

sgn(∆k
t,i)
∣∣ ≥ θ,

−η otherwise.
(5)

For example, consider FedAvg and let ηθ denote
the learning rate vector over all dimensions, i.e.,
[ηθ,1, ηθ,2, . . . , ηθ,d]

>. Then, the update rule with a
robust learning rate takes the form,

wt+1 = wt + ηθ �
∑
k∈St

nk ·∆k
t∑

k∈St
nk

, (6)

where � is the element-wise product operation. Note that,
since we only adjust the learning rate, the approach is agnos-
tic to the aggregation function. For example, we can trivially
combine it with update clipping and noise addition as in (2).

To illustrate how this might help to maximize adversary’s
loss, we consider a simple example where the local training
consists of a single epoch of full-batch gradient descent. In
this case, update of kth agent is just the negative of his gra-
dients, i.e., ∆k

t = wkt − wt = (wt − ∇fk(wt)) − wt =
−∇fk(wt). Then, aggregated updates is just the average of
negative of agents’ gradients, i.e., −gavg . Therefore, if sum
of the signs at a dimension i is below θ, that dimension is
updated as wt,i = wt,i + η · gavg,i. Otherwise, it is updated
as wt,i = wt,i − η · gavg,i. So we see that, for dimensions
where the sum of signs is below θ, we are moving towards
the direction of gradient, and hence, attempting to maximize
loss. For other dimensions, we are moving towards the nega-
tive of gradient and attempting to minimize the loss as usual.
Therefore, assuming number of adversarial agents is suffi-
ciently below θ, the model would try to move away from
wadv , and would try to move towards whon.

Convergence Rate We now turn to deriving the conver-
gence rate for full-batch FedAvg with RLR. Let fk(w) =
EDk

[fk(w, ξk)] be the loss function of kth agent, where Dk

is its distribution2 and ξk is randomness caused by the lo-
cal batch variability. We use E to denote expectation in re-
spect to all random variables. Let gk be the gradient of the
kth agent at the tth rounds, i.e. gtk = ∇fk(wkt−1, ξ

t
k), and

EDk
(gtk|zt) = ∇fk(wkt−1) where zt is a filtration gen-

erated by all random variables at step t, i.e. a sequence of
increasing σ-algebras zs ⊆ zt for all s < t. Finally,
following Bernstein et al. (2018), we assume that for all
t, k ∈ Z each component of the stochastic gradient vec-
tor gtk has a unimodal distribution that satisfies population
weighted symmetry (Wolfe 1974). In particular, let W be
a random variable symmetric around zero, i.e., Pr(W ≤
−w) = Pr(W ≥ w) for each w > 0. We now consider a
family of asymmetric distributions which are constructed by
distorting an arbitrary symmetric distribution with a scalar
parameter β > 0 such that Pr(Wβ = 0) = Pr(W = 0)
and for all w > 0 Pr(Wβ ≤ −w) = 2Pr(W ≥ w)/(1+β)
and Pr(Wβ ≥ w) = 2βPr(W ≥ w)/(1 + β), or equiva-
lently for all w > 0

Pr(Wβ ≥ w) = βPr(Wβ ≤ −w). (7)
Condition (7) is referred to as population weighted symme-
try (Wolfe 1974). For a case of β = 1, (7) reduces to a stan-
dard symmetric distribution and corresponds to the assump-
tion 4 of Bernstein et al. (2018). For β 6= 1 (7) describes

2Note that Di and Dj are not necessarily identical for two dif-
ferent agents i and j

9270



a class of asymmetric distributions (Rosenbaum and Silber
2009). As such, (7) allows us to consider a broader class of
distributions than distributions which are symmetric around
the mean as in the case of Bernstein et al. (2018).

Assumption 1 Gradient is Lipschitz continuous for each
agent k = 1, . . .K and L > 0

||∇fk(x)−∇fk(y)|| ≤ L||x− y||, ∀x, y ∈ Rd.
Assumption 2 Variance for each agent k = 1, . . . ,K is

bounded,

EDk
||∇fk(x, ξtk)−∇fk(x)|| ≤ σ2, ∀x ∈ Rd, ∀k ∈ Z+

Assumption 3 Random variables ξtk are independent for
all k, t ∈ Z+.

Theorem 1 (Convergence Rate) Let for all i, k, t ∈ Z+,
0 ≤ Pr(1−I|∑k∈St

sgn(∆k
t,i)|≥θ|zt) ≤ p0 < 0.25, 0 < ν ≤

(1 − p0)/L and E||wkt || < M , where M > 0 is a univer-
sal clipping upper bound. Then under Assumptions 1-3, we
have the following convergence rate for our robust learning
rate scheme

1

T

T−1∑
t=0

E||∇f(ŵt)||2 ≤
2

ηT
(f(ŵ0)− f∗) + L2M2 +

Lησ2

n
,

where ŵt = 1/n
∑n
k=1 w

k
t . See Appendix3 for the proof of

the theorem.

4 Experiments
In this section, we first illustrate the performance of our de-
fense, and then provide some empirical justification for its
effectiveness via experimental evaluation. Our implementa-
tion is done using PyTorch (Paszke et al. 2019), and the code
is available at https://github.com/TinfoilHat0/Defending-
Against-Backdoors-with-Robust-Learning-Rate.

The general setting of our experiments are as follows: we
simulate FL for R rounds among K agents where F frac-
tion of them are corrupt. The backdoor task is to make the
model misclassify instances from a base class as target class
by using trojan patterns. That is, a model having the back-
door classifies instances from base class with trojan pattern
as target class (see Figure 1). To do so, we assume an ad-
versary who corrupts the local datasets of corrupt agents by
adding a trojan pattern to P fraction of base class instances
and re-labeling them as target class. Other than that, adver-
sary cannot view and modify updates of honest agents, or
cannot influence the computation done by honest agents and
the aggregation server. At each round, the server uniformly
samplesC ·K agents for training whereC ≤ 1. These agents
locally train forE epochs with a batch size ofB before send-
ing their updates. Upon receiving and aggregating updates,
we measure three key performance metrics of the model on
validation data: validation accuracy, base class accuracy and
backdoor accuracy. Validation and base class accuracies are
computed on the validation data that comes with the used
datasets, and the backdoor accuracy is computed on a poi-
soned validation data that is constructed by (i) extracting all

3For the Appendix, please refer to the full version of our paper
at https://arxiv.org/abs/2007.03767

base class instances from the original validation data, and
(ii) adding them the trojan pattern and re-labeling them as
the target class. We measure the performance of the fol-
lowing five aggregation methods: (i) FedAvg (equation 1),
(ii) FedAvg with our proposed robust learning rate scheme:
RLR (equation 6), (iii) coordinate-wise median (comed),
(iv) FoolsGold (equation 3), and (v) sign aggregation (equa-
tion 4). We also measure the performance of these aggrega-
tions under the proposed defense in (Sun et al. 2019), i.e.,
combining aggregations with weight-clipping and noise ad-
dition, to see if these techniques provide any robustness for
each aggregation under our attack setting. Furthermore, in
Appendix, we provide results when comed and sign aggre-
gation are combined with RLR.

When there is a L2 clipping threshold M on updates, we
assume M is public and every agent runs projected gradi-
ent descent to minimize their losses under this restriction,
i.e., an agent ensures his update’s L2 norm is bounded by
M by monitoring the L2 norm of his model during training
and clips its weights appropriately. Finally we use the same
model as in (Sun et al. 2019), a 5-layer convolutional neural
network consisting of about 1.2M parameters with the fol-
lowing architecture: two layers of convolution, followed by a
layer of max-pooling, followed by two fully-connected lay-
ers with dropout. Hyperparameters used in all experiments
can be found in Appendix.

IID Setting We start with a setting where data is dis-
tributed in i.i.d. fashion among agents. Concretely, we
use the Fashion MNIST (Xiao, Rasul, and Vollgraf 2017)
dataset, and give each agent an equal number of samples

(a)

(b)
Figure 1: Samples from trojaned base classes and corre-
sponding target classes. Trojan pattern is a 5-by-5 plus sign
that is put to the top-left of objects. For i.i.d. case (a), back-
door task is to make model classify trojaned sandals as
sneakers. For non-i.i.d. case (b), it is to make model classify
trojaned digit 1s as digit 7s. Note that original images are
in grayscale, these figures are normalized as they appear in
training/validation dataset. We also repeat the experiments
we present here under three additional trojan patterns and
report the results in Appendix.
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from the training data via uniform sampling. In Figure 2, we
plot the training curves of FedAvg, and FedAvg with RLR,
and report the final accuracies reached in each setting in Ta-
ble 1. Results reported in Table 1 shows that, compared to
baselines, our proposed RLR scheme provides significant
protection against the backdoor attacks.

Non-IID Setting We now move on to a more realistic set-
ting for FL in which data is distributed in non-i.i.d. fash-
ion among agents. For this setting, we use the Federated
EMNIST dataset from the LEAF benchmark (Caldas et al.
2018). In this dataset, digits 0-9 are distributed across 3383
users and each user has possibly a different distribution over
digits. Similar to the i.i.d. case, we plot training curves for
FedAvg and FedAvg with RLR (Figure 3). Table 1 reports
the final accuracy results for each setting. The results re-
ported indicate that our defense provides the best protection
with minimal degradation on the validation accuracy.

Removing Backdoor During Training During experi-
ments, we observed that, FedAvg with RLR rate performs
substantially better than other methods in terms of prevent-
ing the backdoor task, but it also reduces convergence speed.
Therefore, we wonder if one can start without RLR, and then
switch to RLR at some point during the training, e.g., when
the model is about to converge, to clean any possible back-
doors from the model. Our experiments indicate that this is
the case. In the interest of space, we provide results in Ap-
pendix, however they suggest that one can start without RLR
and later switch to RLR when the model is about to con-
verge, and/or a backdoor attack is suspected, to clean the
model of backdoor during training. Overall, this improves
the time to convergence when compared to using RLR right
from the beginning.

Analyzing Our Defense via Parameter and Feature At-
tributions We now aim to explain why our defense works
and provide some empirical justification for its effective-
ness. First, recall our conjecture from Section 3 where we
basically argue that the adversary has to overcome the influ-
ence of honest agents to embed the backdoor to model. More
concretely, in our scenario, adversary tries to map the base
class instances with trojan pattern to the target class (adver-
sarial mapping) where as honest agents try to map them to
the base class (honest mapping). If we had a way to quantify
the influence of agents on the model, regarding the mapping
of trojaned inputs, we would expect the model to exhibit the
backdoor if the influence of adversary is greater than of the
total influence of honest agents. Given that, we designed a
simple experiment to quantify the influence of agents, and
test this conjecture empirically. In the interest of space, we
defer the details of this experiment to Appendix, but we note
that it is mainly based on doing parameter attribution on
the model to find out which parameters are most important
to adversarial/honest mapping, and then tracking how they
are updated over the rounds. In Figure 4, we can see that
with RLR, honest agents’ influence overcome the adversar-
ial agents’ for the backdoor task.

Second, we do a feature attribution experiment which
is concerned with discovering features of an input that are
important to a model’s prediction. Particularly, we pick an
arbitrary sample from our poisoned validation set that is
correctly classified (as base class) by the model when it is
trained with FedAvg with RLR, but incorrectly classified (as
target class) when it is trained FedAvg. Figure 5 illustrates
that, resulting feature maps on no attack and with our de-
fense scenario are similar. This shows, our defense success-
fully prevents the model from focusing on the trojan pattern.

Distributed Backdoor Attacks Finally, we briefly test
our defense against a recent, novel type of backdoor attack
introduced in (Xie et al. 2019). The main idea of this attack
is to partition the pixels of a trojan between the agents of
the adversary, and through that, ensuring the resulting ma-
licious updates to be less different than honest’ updates to
make attack more stealthy. For example, if adversary has
four agents, the plus pattern can be partitioned accross these
four agents such that, each adversarial agent applies only
a vertical/horizontal part of the plus. In case the backdoor
is successful, the model would still misclassify the sam-
ples with the complete plus pattern. We test this attack only
against FedAvg with RLR, as other defenses already fail on
default backdoor attacks, on CIFAR10 dataset (Krizhevsky,
Nair, and Hinton 2009). Table 2 indicates our defense per-
forms well against distributed backdoor attacks too.

5 Discussion
Our experiments show that our approach significantly re-
duces the effectiveness of trojan pattern backdoor attacks.
One can wonder that, how it performs with respect to the so-
called semantic backdoors (a.k.a label-flipping) attacks. In
these attacks, the adversary simply flips the label of the base
class instances to a desired target label without adding a tro-
jan pattern. In FL setting, it has been shown that successfully
carrying such attacks require boosting (Bhagoji et al. 2019).
That is, after training on a poisoned dataset, adversary has to
multiply the resulting update with a large constant to over-
come the effect of honest agents. Naturally, this results in ad-
versarial updates having a large norm, and as shown in (Sun
et al. 2019), weight-clipping and noise addition significantly
deters these attacks. Since our defense is compatible with
clipping and noise addition, it can also deter such attacks. In
fact, our experiment show that, trojan backdoors are strictly
more powerful than semantic backdoors in FL context as an
adversary does not need to use boosting with them.

Finally, we ask if an adversary can devise a clever attack.
At a high level, as long as the θ parameter is set appropri-
ately, and adversary’s local loss function differs from the
honest against, the scheme will try to move the model from
the directions the adversarial update specifies. Adversary
could try to make his loss function more in-line with hon-
est agents’ via some modification, but then this will likely
result in his attack losing effectiveness. We emphasize that
our approach does not “magically” finds the adversary, and
negates his update by multiplying it with −η, so the adver-
sary cannot by-pass our defense just by negating his loss.
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Figure 2: Training curves for FedAvg and FedAvg with RLR in i.i.d. setting. From left-to-right: (a) FedAvg, (b) FedAvg
with RLR, (c) FedAvg under clipping&noise, (d) FedAvg with RLR under clipping&noise. As can be seen, FedAvg is weak
against the attack even with clipping&noise. On the other hand, FedAvg with RLR prevents the backdoor with or without
clipping&noise. Using clipping and noise addition could be a desirable property in contexts where differential privacy is applied,
or against attackers who try to make the model diverge by sending arbitrarily large values.

Aggregation M σ Backdoor (%) Validation (%) Base (%)
FedAvg-No Attack 0 0 1 93.5 98.5

FedAvg 0 0 100 93.4 98.5
FedAvg 4 1e-3 100 93.2 99.1

FoolsGold 0 0 100 93.1 98.9
FoolsGold 4 1e-3 100 93.3 98.5

Comed 0 0 100 92.8 99.0
Comed 4 1e-3 99.5 92.8 98.4

Sign 0 0 100 92.9 98.7
Sign 4 1e-3 99.7 93.1 98.6

FedAvg with RLR 0 0 0 92.9 98.3
FedAvg with RLR 4 1e-3 0.5 92.2 97.4

Aggregation M σ Backdoor (%) Validation (%) Base (%)
FedAvg*-No Attack 0 0 21.1 98.6 99.1

FedAvg 0 0 99.3 98.5 99.0
FedAvg 0.5 1e-3 99.2 98.0 98.7

FoolsGold 0 0 98.5 98.9 99.5
FoolsGold 0.5 1e-3 99.1 97.9 98.6

Comed 0 0 82.3 96.3 98.4
Comed 0.5 1e-3 95.2 95.5 98.1

Sign 0 0 99.8 97.6 98.7
Sign 0.5 1e-3 99.7 97.8 98.5

FedAvg with RLR 0 0 3.4 94.8 97.6
FedAvg with RLR 0.5 1e-3 0.4 93.2 97.7

Table 1: Final backdoor, validation and base class accuracies for different aggregations in i.i.d. (top) and non-i.i.d. (bottom)
settings. Lowest backdoor, highest validation and base class accuracies are highlighted in bold. FedAvg-No Attack corresponds
to our baseline where we use FedAvg with no attackers. See Appendix for additional experiments under different combinations
of M and σ, and our justification for the chosen values.

Figure 3: Plots for FedAvg and FedAvg with RLR in non-i.i.d. setting. From left-to-right: (a) FedAvg, (b) FedAvg with RLR,
(c) FedAvg under clipping&noise, (d) FedAvg with RLR under clipping&noise.
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Figure 4: Results of parameter attribution experiments. From left-to-right: (a) FedAvg, (b) FedAvg with RLR in i.i.d. setting,
and (c) FedAvg, (d) FedAvg with RLR in non-i.i.d. setting. Net influence is the cumulative sum of differences between the
influences of honest agents and the adversarial agents for the mapping of trojaned samples. As can be seen, net influence is
loosely correlated with the backdoor loss. With RLR, net influence is positive, indicating that honest agents’ influence is greater
than adversarial agents. This causes backdoor loss to increase, and hence, preventing the backdoor. On the other hand, without
RLR, net influence quickly becomes negative and backdoor loss decreases. This results in a successful backdoor attack.

(a) IID setting

(b) Non-IID setting

Figure 5: Feature maps (FM) for i.i.d. and non-i.i.d. settings
on a trojaned sample given by Gradient SHAP (Lundberg
and Lee 2017). Leftmost image is the sample input from poi-
soned validation data, and to its right we present FMs in the
following order: FM of model trained using FedAvg with-
out any attack, FM of model trained using FedAvg under
attack, FM of model trained using FedAvg with RLR under
attack. For no attack case, important pixels are either on or
around the actual objects. For i.i.d. setting, model predicts
the sample correctly as sandals with 100% confidence, and
for non-i.i.d., model predicts the digit 1 with 99.2% con-
fidence. For no defense scenario, we can see that model’s
attention has shifted towards the trojan pattern. This is espe-
cially very visible for i.i.d. setting where the model almost
completely focuses on the trojan. In i.i.d. case, model pre-
dicts the sample as sneakers with 100% confidence, and in
non-i.i.d. case, model predicts the digit as 7 with 91.2% con-
fidence. Finally, we see that with robust learning rate, the
model’s attention has been shifted back to the actual objects
to some extent. Now, model predicts the sample as sandals
with 100% confidence in i.i.d. case, and it predicts the digit
as 1 with 91.2% confidence in non-i.i.d. case.

6 Conclusion
In this work, we studied FL from an adversarial perspective,
and constructed a simple defense mechanism, particularly

Aggregation Backdoor (%) Validation (%) Base (%)
FedAvg-No Attack 6.6 79.0 89.4

FedAvg 88.6 79.4 87.5
FedAvg with RLR 9.0 77.5 87.8

Aggregation Backdoor (%) Validation (%) Base (%)
FedAvg-No Attack 6.3 76.6 87.7

FedAvg 61.7 76.6 78.2
FedAvg with RLR 8.5 71.8 83.3

Table 2: Backdoor attack on i.i.d.-partitioned CIFAR10.
Backdoor task is to classify dogs (base class) with plus pat-
tern as horses (target class). Top table is for regular backdoor
attack, and bottom table is for distributed backdoor attack
where plus pattern is partitioned to 4 adversarial agents out
of 40 agents. See Appendix for details.

against backdoor attacks. The key idea behind our defense
was adjusting the aggregation server’s learning rate, per di-
mension and per round, based on the sign information of
agents’ updates. Through experiments we present above and
in Appendix, we illustrate that our defense reduces back-
door accuracy substantially with a minimal degradation in
the overall validation accuracy. Overall, it outperforms some
of the recently proposed defenses in the literature. As a fi-
nal comment, we believe the insights behind our defense are
also related to training in non-i.i.d. setting, even in the pres-
ence of no adversaries. Because, the differences in local dis-
tributions can cause updates coming from different agents to
steer the model towards different directions over the loss sur-
face. As a future work, we plan to analyze how RLR influ-
ences performance of models trained in different non-i.i.d.
settings.
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Appendices
Please refer to the full version of our paper at
https://arxiv.org/abs/2007.03767
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