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Abstract

Mode estimation is a classical problem in statistics with a
wide range of applications in machine learning. Despite this,
there is little understanding in its robustness properties un-
der possibly adversarial data contamination. In this paper, we
give precise robustness guarantees as well as privacy guar-
antees under simple randomization. We then introduce a the-
ory for multi-armed bandits where the values are the modes
of the reward distributions instead of the mean. We prove re-
gret guarantees for the problems of top arm identification, top
m-arms identification, contextual modal bandits, and infinite
continuous arms top arm recovery. We show in simulations
that our algorithms are robust to perturbation of the arms by
adversarial noise sequences, thus rendering modal bandits an
attractive choice in situations where the rewards may have
outliers or adversarial corruptions.

Introduction
Work in mode estimation has received much attention
(e.g. (Parzen 1962; Chernoff 1964; Yamato 1971; Sil-
verman 1981; Tsybakov 1990; Vieu 1996; Dasgupta and
Kpotufe 2014)) with practical applications including clus-
tering (Cheng 1995; Sheikh, Khan, and Kanade 2007;
Vedaldi and Soatto 2008; Jiang and Kpotufe 2017), control
(Madani and Benallegue 2007; Hofbaur and Williams 2002),
power systems (Williams, Chung, and Gupta 2001; Sarmadi
and Venkatasubramanian 2013), bioinformatics (Hedges and
Shah 2003), and computer vision (Yin et al. 2003; Tao, Jin,
and Zhang 2007; Collins 2003); however, to the best of our
knowledge, little is known about the statistical robustness of
mode estimation procedures despite the popularity of mode
estimation and the increasing need for robustness in mod-
ern data analysis (Dwork, Roth et al. 2014). Such robust-
ness is important if mode-estimation based learning systems
need results to be less sensitive to possibly adversarial data
corruption. Moreover, data sources may be more likely to
release data to the learner if it can be guaranteed for each
source that their additional data will not change the final out-
come by much– in other words robustness is also intimately
tied to another important theme of privacy (Dwork and Lei
2009).

Copyright © 2021, Association for the Advancement of Artificial
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We then provide a new application of mode estimation
to the problem of the multi-armed bandits (MAB) (Robbins
1985), called modal bandits. MABs have been used exten-
sively in a wide range of practical applications and have
been extensively analyzed theoretically. The vast majority
of works presume that the value of an arm is the expected
value of a reward distribution. In this paper, we present an
alternative: where the reward is a function of the modes of
the distribution of an arm. This leads to a bandit technique
that is more robust and better uses the information from the
shape of the arm’s distribution as well as other nuances that
may be lost with the mean (see Figure 1).

Using the mean of the reward distribution can present seri-
ous limitations when the observations are biased, potentially
due to adversarial interference. We show quantitatively that
whenever this is the case, our mode-based bandit algorithms
present an alternative to mean-based ones.

Another situation where modal bandits are useful is when
the agent already has samples from the arms, but has only
one shot to select an arm to pull. Here, the agent may be
more interested in optimizing what is likely to happen rather
than the choice that is optimal in expectation. For example,
when a risk-averse agent needs to decide between a decision
that is likely to have small gains and a decision that has a
small chance of high gains but large chance of no effect and
prefers the former.

In this paper we assume each arm is a distribution over
vectors in RD with density f and a set of modes M ⊂ RD.
We model the reward of an arm as given by a ’score’ function
that takes M as input and outputs a value in [0, 1]. Although
our results can be extended to other more general definitions
and more complex modal behaviors, such as scoring func-
tions depending on the value of the m-th most likely mode
or the distance between the smallest and the largest mode,
in this paper we focus on the case when scoring functions
depend only on the most likely mode. Details of a more gen-
eral setting involving scoring functions depending on multi-
ple modes is laid out in the Appendix1. We proceed to define
the notion of mode and score function we will use to analyze
the modal bandit problem.

Definition 0.1 (Mode). Suppose that f is a density over RD.

1See https://arxiv.org/abs/2003.02932 for full paper with Ap-
pendix.
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Figure 1: Two distributions with the same mean. Their un-
derlying structure can be quite different.

x is a mode of f if f(x′) ≤ f(x) for all x′ ∈ RD.

We focus on the case when the score function takes as
input the maximum mode. For density f we denote its max-
imum density mode as mode(f). Since the later is simply a
point in RD:

Definition 0.2 (Score Function). A score function on a den-
sity with domain RD is a map r : RD → [0, 1]. The reward
of an arm with associated density f equals r(mode(f))

We assume that the rewards are in [0, 1] but it is clear that
the results can be extended to any compact interval in R.
Definition 0.1 can be relaxed to allow modes be local max-
imas instead of global maximas and our analysis can han-
dle the case where the density has multiple modes and the
reward is a function of these modes. We call this relaxed
notion p-modes and provide analogues of our results for p-
modes in the Appendix.

Contributions and Related Work
Mode Estimation
(Tsybakov 1990) gave one of the first nonparametric analy-
ses of mode estimation using a kernel density estimator for a
unimodal distribution on RD and established a lower bound
estimation rate of Ω̃(n1/(4+D)). (Dasgupta and Kpotufe
2014) gave an analysis of the k-nearest neighbor density es-
timator and provided a procedure based on this density es-
timator and nearest neighbor graphs which can recover the
modes in a multimodal distribution and attained the mini-
max optimal rate.

In Section , we present Algorithm 1 which finds the high-
est density mode. In the Appendix we show this algorithm
can be adapted to the case when we may care about the p-
th highest modes instead. This comes from a simple mod-
ification to the mode-seeking algorithms in (Dasgupta and
Kpotufe 2014; Jiang and Kpotufe 2017). We then treat the
mode estimation procedure as a black box as it works with-
out any a-priori knowledge of the density and only requires
mild regularity assumptions on the density.

We build on mode estimation in the following ways. We
show that our mode estimation algorithm is statistically ro-
bust to certain amounts of adversarial contamination. We
then propose and analyze a differentially private mode es-
timation algorithm. To our knowledge, this is the first time
robustness or privacy guarantees have been provided for a
mode estimation procedure.

In the Appendix, we analyze the contextual modal ban-
dit. In order to do this, we must estimate the modes of the
arm’s conditional density (conditioned on the context) given
samples from the joint density. Thus, we develop a new pro-
cedure to estimate the modes of a conditional density given
samples from the joint density. We show that it recovers the
modes with statistical consistency guarantees and it is prac-
tical since it has similar computational complexity to that of
Algorithm 1 and again treat it as a black box. Estimating the
modes of a conditional density may be of independent inter-
est because a number of nonparametric estimation problems
can be formulated in this way (Chen et al. 2016).

Modal Bandits
We then apply mode estimation results to the stochastic
MAB problem where the player chooses an arm index i ∈
[K] which produces a reward from a density fi : [0, 1] →
RD with set of modes Mi and maximum mode θi. The
player’s objective is to choose the density -henceforth re-
ferred to as arm - with optimal modal score r : RD → R.
We analyze different problems related to this setup. We start
by introducing some results concerning mode estimation in
Section . Our contributions also include analogous results to
familiar ones in the classical MAB setting.
• First we study top arm identification. We present Al-

gorthm 3, an analogue of the Upper Confidence Bound
(UCB) strategy for modal bandits. Theorem 0.7 then
shows that we can recover the top-arm given n pulls
where n is in terms of the optimality-gap of the arms.
We then present an analogue of UCB to recover the top
m arms, along with guarantees on recovery of the top m
arms.

• Second we introduce two new notions of regret for modal
bandits. The first is an analogue of a familiar notion of
pseudo-regret from the classical stochastic MAB. The
second notion of regret is based on the sample mode esti-
mates, which can be compared to familiar notion of regret
computed over sample means. We then attain analogous
bounds which are tight up to logarithmic factors.

• Third we introduce contextual modal bandits where the
environment samples a context from Rd from some sam-
pling distribution and is revealed to the learner. We show
that a simple uniform sampling strategy can directly re-
cover the optimal policy uniformly over the context space.

Other Approaches to Robust Bandits
A recent approach of Szorenyi et al. (2015) uses the quan-
tiles of the reward distributions to value the arm. This ap-
proach indeed combats some of the limitations described
above. Although using the quantiles of the reward distribu-
tion is a simple and reasonable approach in many situations
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where using the mean fails, using the modes of the reward
distribution has properties which are not offered by using the
quantiles.

First, unlike quantiles, our method is robust against con-
stant probability noise so as long as this noise is not too con-
centrated to form a new mode. Second, if the distribution
has rewards concentrated around a few regions, this method
adapts to those regions. In particular, the learner need not
know the locations, shapes, or intensity of these regions– no
a priori information about the density is needed. If one used
the quantiles, then there is still the question of which quan-
tile to choose.

In the situation where the reward depends on a hidden and
non-stationary context, the mean and quantile could possi-
bly not even converge while the modes of the reward distri-
bution can remain stable. It is a reasonable assertion that the
performance of an arm can depend on the state of the envi-
ronment which the learner does not have access to. Suppose
that the hidden context can take on values H1 or H2 sam-
pled by the environment but not revealed to the learner. If
the context is Hi, then let the reward beN (µi, σ

2) whereN
denotes the normal distribution, µ1 6= µ2 and σ > 0. Now
suppose that the sampling distribution from which the envi-
ronment chooses the hidden context is not stationary but can
vary over time. In such a situation, both the mean and quan-
tile could change drastically and the estimates of mean or
quantile can possibly not converge; moreover in this situa-
tion any confidence interval typical in MAB analyses is also
rendered meaningless and thus the learner would fail when
using mean or quantiles. However, the modes of the reward
distribution (µ1 and µ2) will not change.

Mode Estimation
Algorithm and Analysis
In this section, we show how to estimate the mode of a distri-
bution given i.i.d. samples. The results are primarily adapted
from known results about nonparametric mode estimation
(Dasgupta and Kpotufe 2014; Jiang and Kpotufe 2017). The
density and mode assumptions are borrowed from (Dasgupta
and Kpotufe 2014).

Assumption A1 (Modal Structure) A local maxima of f
is a connected region M such that the density is constant
on M and decays around its boundaries. Assume that each
local maxima of f is a point, which we call a mode. LetM
be the modes of f , which we assume is finite. Then further
assume that f is twice differentiable around a neighborhood
of each x ∈M and f has a negative-definite Hessian at each
x ∈M and those neighborhoods are pairwise disjoint.

Theorem 0.1. Suppose Assumption A1 holds and f is a uni-
modal density. There exists Nf depending on f such that for

Algorithm 1 Estimating the mode

Input: k and sample points X = {X1, ..., Xn}.
Define rk(x) := inf{r : |B(x, r) ∩X| ≥ k}.
Return argminx∈X rk(x)

n ≥ Nf , setting k = n4/(4+D), we have

P

(
|x̂− mode(f)| ≥

√
log(1/δ) log n

n1/(4+D)

)
≤ δ,

which matches the optimal rate for mode estimation up to
log factors for fixed δ. Where | · | denotes the l2 norm of RD.

For the rest of the paper, we will assume these choices
and thus Algorithm 1 can be treated as a black-box mode
estimation procedure. Thus, we define the following notion
of sample mode:

Definition 0.3. For any set S of i.i.d. samples let m̂ode(S)
be the estimated mode of S from applying Algorithm 1 under
the settings of Theorem 0.1. In particular, the computation of
m̂ode on a set of points is understood to be w.r.t. a confidence
setting δ.

Let r : RD → R be a score function. If r is 1-Lipschitz,
the following corollary holds:

Corollary 0.2. Assuming the same setup as Theorem 0.1,
then:

P

(
|r(x̂)− r(mode(f))| ≥

√
log(1/δ) log n

n1/(4+D)

)
≤ δ

Although all of our results hold for densities over RD, and
L-Lipschitz score functions r, in the spirit of simplicity, in
the main paper we mostly discuss the case D = 1, score
function r(x) = x and density f having domain [0, 1].

Robustness of Mode Estimator
We show that our mode estimation procedure is robust to ar-
bitrary perturbations of the arm’s samples. It is already clear
that the mode estimates are robust to any perturbation which
is sufficiently far away from the mode estimate x̂ and that
perturbations don’t create high-intensity regions (i.e. there
are no samples whose k-NN radius is smaller than that of
x̂). In such a situation, it is clear that such perturbations will
not change the mode estimator.

The result below provides insight into the situation where
the perturbation can be chosen adversarially and in partic-
ular when such perturbation can be chosen near the origi-
nal mode estimate. Specifically, we assume there are ` addi-
tional points added to the dataset and the result bounds how
much the mode estimate can change. We require ` < k, be-
cause otherwise, an adversary can place the ` points close
together anywhere and create a new mode estimate arbitrar-
ily far away from the original mode estimate when using
Algorithm 1.

Theorem 0.3 (Robustness). Suppose that f is a unimodal
density with compact support X ⊆ RD and f satisfies As-
sumption A1. Then there exists constantsC,C1, C2, depend-
ing on f such that the following holds for n sufficiently large
depending on f . Let 0 < δ < 1 and ` > 0 be the number
of samples inserted by an adversary. Let x̂ be the mode es-
timate of Algorithm 1 on n i.i.d. samples drawn from f and
x̃ be the mode estimate by Algorithm 1 on that sample along
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with the ` inserted adversarial samples. If k satisfies the fol-
lowing,

k ≥ C1 log(1/δ)2 log n+ `

k ≤ C2 log(1/δ)2D/(4+D)(log n)D(4+D) · n4/(4+D).

then with probability at least 1− δ, we have

|x̂− x̃| ≤ C
√

log(1/δ) · (log n)1/4 · (k − `)−1/4.
Proof. Let x0 be the true mode of f . It suffices to show that
for appropriately chosen r̃, we have

sup
x∈B(x0,r0)

rk(x) < inf
x 6∈B(x0,r̃)

rk−`(x),

where rk(x) is the k-NN radius of any point x and r0 is
the distance of x0 to the closest sample drawn from f . This
is because when inserting ` points, the adversary can only
decrease the k-NN distance of any point up to its (k − `)-
NN distance. Thus, if we can show that the above holds, then
it will imply that |x̂− x̃| ≤ r̃.

We have that the above is equivalent to showing the fol-
lowing:

inf
x∈B(x0,r0)

fk(x) > sup
x 6∈B(x0,r̃)

fk−`(x) · k

k − `
,

where fk is the k-NN density estimator. Using k-NN density
estimation bounds, we have the following for some constants
C3, C4:

inf
x∈B(x0,r0)

fk(x) ≥ f(x0)−
C3 · log(1/δ) ·

√
log n√

k
,

sup
x 6∈B(x0,r̃)

fk−`(x) ≤ f(x0)− C4

(
r̃2 − log(1/δ) ·

√
log n√

k − `

)
The result then follows by choosing

r̃2 ≥ C log(1/δ) ·
√

log n√
k − `

,

for appropriate C, as desired.

Differentially-Private Mode Estimation
In some applications such as healthcare, anonymization of
the procedure is necessary and there has been much interest
in ensuring such privacy (Dwork et al. 2006). As it stands,
Algorithm 1 does not satisfy anonymization since the output
is one of the input datapoints. We use the (ε, δ)-differential
privacy notion of (Dwork et al. 2006) (defined below) and
show that a simple modification of our procedure can ensure
this notion of privacy.
Definition 0.4 (Differential Privacy). A randomized mecha-
nismM : D → R satisfies (ε, δ)-differential privacy if any
two adjacent inputs d, d′ ∈ D (i.e. d and d′ are sets which
differ by at most one datapoint) if the following holds for all
S ⊂ R:

P (M(d) ∈ S) ≤ eεP (M(d′) ∈ S) + δ.

To ensure differential privacy, we utilize the Gaussian
noise mechanism (see (Dwork et al. 2006)) to the final mode
estimate. We now show that this method (Algorithm 2) has
differential privacy guarantees.

Algorithm 2 Differentially Private Mode Estimation

Input: k, σ, and sample points X = {X1, ..., Xn}.
x̂ := argminx∈X rk(x)
Return x̂+N (0, σ2I)

Theorem 0.4. Suppose that f is a unimodal density with
compact support X ⊆ RD and f satisfies Assumption A1.
Then there exists constants C,C1, C2, depending on f such
that the following holds for n sufficiently large depending on
f . Let 0 < δ < 1 and ε > 0. Suppose that

σ ≥ C log(2/δ) · (log n)1/4 · k1/4 · ε−1.

. If k satisfies the following,

k ≥ C1 log(1/δ)2 log n+ `

k ≤ C2 log(1/δ)2D/(4+D)(log n)D(4+D) · n4/(4+D).

then with probability at least 1 − δ, Algorithm 2 is (ε, δ)-
differentially private.
Remark 0.5. In particular, we see that taking k =
n4/(4+D), we get that σ ≈ log(1/δ)n−1/(4+D) · ε−ε → 0 as
n→ 0.

Proof. The result follows by Theorem 1 of (Okada, Fukuchi,
and Sakuma 2015) and the global sensitivity of estimating
the mode from Theorem 0.3.

Remark 0.6. For the remainder of the paper, unless noted
otherwise, we assume that we use the mode estimator of Al-
gorithm 1 as a black-box using the settings of Theorem 0.1.
It is straightforward to substitute the mode estimation proce-
dure by modify the hyperparameter settings or use a different
procedure Algorithm 2 appropriately adjusting the guaran-
tees.

Top Arm Identification
As common to works in best-arm identification e.g. (Audib-
ert, Bubeck, and Munos 2010; Jamieson and Nowak 2014),
we characterize the difficulty of the problem based on the
gaps between the value of the arms to that of the optimal
arm and the sample complexity can be written in terms of
these.
Definition 0.5. Let fi denote the density of the i-th arm’s
reward distribution. Let θi be the top mode of fi where θ1 ≥
θ2 ≥ · · · ≥ θK . Then we can define the gap between an
arm’s mode and that of the optimal arm.

∆i := θ1 − θi.

Although we’ve indexed the arms this way, it is clear that
the algorithms in this paper are invariant to permutations of
arms.

We give the Upper Confidence Bound (UCB) strategy
(Algorithm 3). For each arm, we maintain a running esti-
mate of the mode as well as a confidence band. Then at each
round, we pull the arm with the highest upper confidence
bound. When compared to the classical UCB strategy, we
replace the running estimates of the mean and confidence
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Algorithm 3 UCB Strategy

Input: Total time n and confidence parameter δ.
Define Si(t) be the rewards observed from arm i up to and
include time t.
Let Ti(t) be the number of times arm i was pulled up to
and including time t. i.e. |Si(t)| = Ti(t).

For t = 1, ..., n, pull arm It, where It is the following.

argmax
i=1,...,K

{
m̂ode(Si(t− 1)) +

log(1/δ) · log(Ti(t− 1))

(Ti(t− 1))1/(4+D)

}
.

band of the mean with the mode and the confidence band
of the mode. Our sample complexities now depend on the
confidence bands for mode estimation, which converge at a
different rate than that of the mean.

We can then give the following result about Algorithm 3’s
ability to determine the best arm.
Theorem 0.7. [Top arm identification] Suppose θ1 > θ2.
Then there exists universal constants C0, C1 > 0 such that
Algorithm 3 with n timesteps and confidence parameter δ/n
satisfies the following. If

n ≥ PolyLog

(
1

δ
,
K∑
i=2

∆
−(4+D)
i

)
·
K∑
i=2

∆
−(4+D)
i ,

where PolyLog denotes some polynomial of the logarithms
of its arguments,

then

P
(

argmax
i=1,...,K

∣∣{t : It = i, 1 ≤ t ≤ n}
∣∣ = 1

)
≥ 1− δ,

where Nfi ’s are constants depending on fi established in
Theorem 0.1.
Remark 0.8. We can compare this to the analogous re-
sult for classical MAB (Audibert, Bubeck, and Munos 2010)
whose sample complexity (ignoring logarithmic factors) is
of order

∑K
i=2 ∆−2i (where the gaps here are w.r.t. the dis-

tributional means). Our sample complexity is quintic rather
than quadratic in the inverse gaps due to the difficulty of re-
covering modes compared to recovering means. In fact, for
K = 2, there exists two distributions such that we require
sample complexity at least Ω(∆

−(4+D)
2 ) to differentiate be-

tween the two distributions. This follows immediately from
lower bounds in mode estimation as analyzed in (Tsybakov
1990). Thus, our results are tight up to log factors.

We next introduce a simple uniform sampling strategy and
give a PAC bound to obtain an ε-optimal arm (which means
its mode is within ε of mode of the optimal arm) .

This result can be compared to (Even-Dar, Mannor, and
Mansour 2002) for the classical MAB.
Theorem 0.9. [ε-optimal arm identification] Let ε > 0. If
we run Algorithm 4 with n at least

max

{
K(log(K) + log(1/δ))5ε−5 log(ε−5),K max

i∈[K]
Nfi

}
,

Algorithm 4 Uniform Sampling Strategy

Input: Total time n and confidence parameter δ.

for t = 1 to n do
Pull arm (where ties are broken arbitrarily)

It := argmin
i=1,...,K

{Ti(t− 1)} .

end for
θ̂i := p̂-mode(Si(n)) for i = 1, ...,K

Return top k arms according to θ̂i value.

then the arm with the highest sample mode is ε-optimal with
probability at least 1− δ.

Proof. It suffices to choose n large enough such that

|m̂ode(Si(n))− θi| ≤ ε/2.
Indeed, if this were the case, then if arm i 6= 1 was selected
as the top arm but not ε-optimal, then

θi < θ1 − ε⇒ θi + ε/2 < θ1 − ε/2

⇒ m̂ode(Si(n)) < m̂ode(S1(n)),

a contradiction. Now from Theorem 0.1 with confidence pa-
rameter δ/K, it follows that it suffices to take

n ≥ K(log(K) + log(1/δ))5ε−5 log(ε−5),

as desired.

Regret Analysis
We introduce the following notions of regret based on the
modes.

R(n) = n · max
i=1,...,K

θi −
n∑
j=1

θIj ,

R(n) = max
i=1,...,K

n · m̂ode ({Xi,t : 1 ≤ t ≤ n})

−
K∑
i=1

Ti(n) · m̂ode({Xi,t : It = i, 1 ≤ t ≤ n}).

The regret thus rewards the strategy with the mode (Rn) or
the sample mode (R(n)) of all trials for a particular arm
rather than the mean as in classical formulations.

We next give a regret bounds for Algorithm 3. For
R(n), we attain a poly-logarithmic regret in the number
of time steps, while for R(n) we attain a regret of order
Õ(n4/(4+D)). The extra error from the latter is incurred
from the errors in the mode estimates.
Theorem 0.10. Suppose θ1 > θ2. Then with probability at
least 1 − δ, the regret of Algorithm 3 with n time steps and
confidence parameter δ/n satisfies

R(n) ≤ PolyLog
(

1

δ
, n

)
·
K∑
i=2

∆
−(3+D)
i

R(n) ≤ R(n) +O

((
PolyLog

(
1

δ
, n

)
+K

)
· n

3+D
4+D

)
.
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Figure 2: Left, three arms. Center, perturbations. Right, Algorithm 3 cumulative arm pulls.

Figure 3: Left, three arms. Center, zoomed in view. Right, algorithm 3’s cumulative arm pulls.

Figure 4: Upper Left, three arm densities. Upper Right, Arm pulls. Lower left, Regret. Lower right, Normalized regret.
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Dataset Mean Median Mode
Australian 1.22 1.32 0
Banknote 0.04 0.05 0
Blood 10.6 0.37 0
Electricity .0017 .0106 .0011
Steel 14360 10596 6831

Table 1: Robustness results under random removals on
benchmark OpenML datasets. We compare our k-NN based
mode other approaches such as mean and element-wise me-
dian. For each of the datasets, we use k = 100 for the
mode estimation and show the L2 distance between the
mean/median/mode of the features vs if randomly removed
5% of the datapoints. Results are averaged across 20 runs.

Dataset Mean Median Mode
Australian .603 .483 0
Banknote .018 .023 0
Blood 5.82 0.28 0
Electricity .0009 .0085 .0006
Steel 5564 5626 2291

Table 2: Robustness results under random corruption on
benchmark OpenML datasets. We show results if we instead
randomly choose 1% of the datapoints and add Gaussian
noise, where the noise is centered at 0 and the variance for
the coordinate is 10 times the variance for that coordinate in
the training set.

Remark 0.11. We can compare this result for R(n) to that
of the classical notion of pseudo-regret, defined below, which
also achieves logarithmic regret.

n max
i=1,...,K

µi −
n∑
j=1

E[µIj ],

where µi is the mean of the i-th arm’s reward distribution.

Experiments
Robustness. In Figure 2, we test the robustness of Algo-
rithm 3 to perturbations of the arms. We consider the case
when the score function equals the identity. The red (Arm
1) density’s mode has the largest reward value. With prob-
ability 0.2 we receive a sample from a noise sequence de-
noted by the marked points on the x-axis. The colors of these
points correspond to which arm we perturb.

Based on the reward distribution given in Figure 2, Algo-
rithm 3 pulls Arm 1 (the arm with the highest modal score)
more often despite the perturbations experienced by this arm
being negative and the perturbations of the remaining arms
being positive values. We average over 25 random seeds and
mark the standard deviation.

We also include some results regarding the robustness
of our algorithms under random removals on the OpenML
benchmark datasets. The methodology and results are de-
scribed in Tables 1 and 2.

Fine-grained Sensitivity. In Figure 3, we show Algo-
rithm 3 distinguishes between arms with very close modes.

We again consider the identity score function. The red (Arm
1) density’s mode has the largest modal reward. We average
over 25 random seeds and mark the standard deviation.

Finding arms with furthest mode. In Figure 4, we show
Algorithm 3 works with score functions other than the iden-
tity. In this case we show it can find the arm whose highest
density mode is furthest away from the origin– that is the
score function equals the distance of the arm’s most likely
mode to the origin. In this setup Arm 3 is optimal. We also
plot the Regret and Normalized Regret (we divide the regret
by the iteration index) using the distance from the origin to
the arm’s mode as reward.

The plot shows Algorithm 3 learns to choose the arm with
outlier behavior and does so in a way minimizing the regret
captured by differences in outlier score. We average over 25
seeds and mark the standard deviation.

Conclusion
In this paper, we’ve provided two contributions which are of
independent interest: (i) robustness and privacy guarantees
for mode estimation and (ii) a new application of mode es-
timation the bandit problem, which we call modal bandits.
To our knowledge, we give the first robustness and privacy
guarantees for mode estimation, a popular practical method
with a long history of theoretical analysis. We then give an
extensive analysis of the modal bandits problems, includ-
ing best-arm identification and regret bound. Additionally,
results for contextual modal bandits, and infinite armed ban-
dits can be found in the appendix. We include simulations
showing that modal bandits indeed can provide robustness
to adversarial corruption, thus suggesting that modal bandits
can be an attractive choice in settings where robustness is
important.
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