
NASTransfer: Analyzing Architecture Transferability in Large Scale Neural
Architecture Search

Rameswar Panda1,2, Michele Merler1, Mayoore S Jaiswal1, Hui Wu1,2,
Kandan Ramakrishnan4, Ulrich Finkler1, Chun-Fu Richard Chen1,2, Minsik Cho1,

Rogerio Feris1,2, David Kung1, Bishwaranjan Bhattacharjee1
1IBM Research

2MIT-IBM Watson AI Lab

Abstract

Neural Architecture Search (NAS) is an open and challeng-
ing problem in machine learning. While NAS offers great
promise, the prohibitive computational demand of most of
the existing NAS methods makes it difficult to directly search
the architectures on large-scale tasks. The typical way of con-
ducting large scale NAS is to search for an architectural build-
ing block on a small dataset (either using a proxy set from the
large dataset or a completely different small scale dataset) and
then transfer the block to a larger dataset. Despite a number
of recent results that show the promise of transfer from proxy
datasets, a comprehensive evaluation of different NAS meth-
ods studying the impact of different source datasets has not
yet been addressed. In this work, we propose to analyze the
architecture transferability of different NAS methods by per-
forming a series of experiments on large scale benchmarks
such as ImageNet1K and ImageNet22K. We find that: (i) The
size and domain of the proxy set does not seem to influ-
ence architecture performance on the target dataset. On av-
erage, transfer performance of architectures searched using
completely different small datasets (e.g., CIFAR10) perform
similarly to the architectures searched directly on proxy tar-
get datasets. However, design of proxy sets has considerable
impact on rankings of different NAS methods. (ii) While dif-
ferent NAS methods show similar performance on a source
dataset (e.g., CIFAR10), they significantly differ on the trans-
fer performance to a large dataset (e.g., ImageNet1K). (iii)
Even on large datasets, random sampling baseline is very
competitive, but the choice of the appropriate combination of
proxy set and search strategy can provide significant improve-
ment over it. We believe that our extensive empirical analysis
will prove useful for future design of NAS algorithms.

Introduction
Neural Architecture Search (NAS) is a very active area of
research (Elsken, Metzen, and Hutter 2019), aiming at auto-
matic design of deep learning networks for various applica-
tions spanning from image classification (Liu et al. 2018a;
Tan et al. 2019; Wu et al. 2019; Xie et al. 2019) to NLP
(Liu, Simonyan, and Yang 2018; Pham et al. 2018; Zoph and
Le 2017), from object detection (Chen et al. 2019; Ghiasi,
Lin, and Le 2019; Wang et al. 2019) to semantic segmen-
tation (Liu et al. 2019). A number of NAS strategies have

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

been proposed, including evolutionary methods (Baker et al.
2018; Liu et al. 2018b; Real et al. 2019; Zhou et al. 2020),
reinforcement learning (Liu et al. 2018a; Pham et al. 2018;
Zhong et al. 2018; Zoph and Le 2017), and gradient-based
methods (Chang et al. 2019; Liu, Simonyan, and Yang 2018;
Nayman et al. 2019; Xie et al. 2019; Zela et al. 2020). De-
spite impressive results on common benchmark datasets, the
prohibitive computational demand of existing NAS meth-
ods makes it difficult to directly search the architectures
on large-scale datasets (e.g., ImageNet). Motivated by this,
many methods have been proposed to improve the efficiency
of NAS by shifting the training and evaluation of candi-
date architectures from the entire target set to proxy tasks,
which could mean learning with only a few blocks, training
for a few epochs (Kyriakides and Margaritis 2020) or us-
ing proxy sets (Liu, Simonyan, and Yang 2018; Pham et al.
2018; Zhou et al. 2020). Proxy sets could either be smaller
versions of the target dataset obtained through sampling, or
datasets with similar distribution to the target, but with re-
duced number of classes or number of examples per class.

Despite a number of recent work showing promising
transfer results, comparison between different NAS methods
in terms of architecture transfer remains a novel and rarely
addressed problem. Specifically, it is not clear to what ex-
tent the architectures depend on the proxy dataset on which
the search is conducted and how does the performance on
the target dataset depend on the NAS method that is used
to search the architectures. Moreover, a thorough study on
applicability of proxy datasets to large scale contexts such
as ImageNet22K is still missing. In fact, even direct train-
ing and evaluation of standard human-designed architectures
has been relatively limited for ImageNet22K, given not only
its sheer scale (∼14M images) but also its large imbalance
across classes (Cho et al. 2017; Chilimbi et al. 2014; Co-
dreanu, Podareanu, and Saletore 2017; Zhang et al. 2015).

Motivated by this, in this paper, instead of focusing
on beating the latest benchmark numbers on small scale
datasets like CIFAR10 (Krizhevsky 2009), we take a step
back and aim at filling the above gap with an extensive
empirical study on architecture transferability of differ-
ent NAS methods that explains and suggests best prac-
tices for proxy sets design and successful transfer at large
scale. We compare four representative NAS methods such
as ENAS (Pham et al. 2018), NSGANet (Lu et al. 2019),

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9294



NAO (Luo et al. 2018) and DARTS (Liu, Simonyan, and
Yang 2018) using the commonly used DARTS search space
on six diverse datasets, MIT67 (Quattoni and Torralba
2009), FLOWERS102 (Nilsback and Zisserman 2008), CI-
FAR10 (Krizhevsky 2009), CIFAR100 (Krizhevsky 2009),
ImageNet1K (Deng et al. 2009) and ImageNet22K (Rus-
sakovsky et al. 2015), to analyze their transfer performance
under different settings. Our findings suggest that transfer
performance of architectures searched using completely dif-
ferent small datasets perform similarly to the architectures
searched directly on proxy target datasets (e.g., CIFAR10
proves to be a valuable dataset for transferring architec-
tures to ImageNet22K). Reliably good search for large scale
datasets can be performed on proxy sets even smaller than
two orders of magnitude with respect to the target ones.

Furthermore, we show that (a) While different NAS meth-
ods show similar performance on a source dataset, they
significantly differ on the transfer performance to a large
dataset. (b) Even on large datasets, random sampling re-
mains a strong baseline to surpass, but the choice of the ap-
propriate combination of proxy set and search strategy can
provide significant improvement over it.

Related Work
Neural Architecture Search. Neural Architecture Search
has attracted intense attention in recent years. Typically, a
NAS algorithm first defines a search space and then employs
a search strategy within that space. During the search phase,
some evaluation criteria are chosen to rank the relative per-
formance of possible architecture candidates (Elsken, Met-
zen, and Hutter 2019; Yu et al. 2020). Recent studies (Dong
and Yang 2020; Li and Talwalkar 2019; Yang, Esperança,
and Carlucci 2020; Ying et al. 2019) have shown that per-
formance is highly dependent on the elaborately designed
search space, within which the difference between differ-
ent search strategies results less significant than initially
thought, especially when compared to random search (Li
and Talwalkar 2019; Yang, Esperança, and Carlucci 2020).
On the other hand, the search phase for candidate architec-
tures within the search space highly influences the efficiency
of a NAS algorithm. The original reinforcement learning
based method (Zoph and Le 2017), for example, required
hundreds of GPUs in order to evaluate and rank each pro-
posed architecture. Different methods have been proposed
to reduce the search and evaluation costs, including micro-
search of primary building cells (Zhong et al. 2018; Zoph
et al. 2018), prediction of candidate architectures perfor-
mance based on learning curves (Baker et al. 2018; Finkler
et al. 2020) or surrogate models (Liu, Simonyan, and Yang
2018), and parameter sharing between child models (Ben-
der et al. 2018; Brock et al. 2018; Liu, Simonyan, and Yang
2018; Pham et al. 2018; Zela, Siems, and Hutter 2020).
Architecture Transferability. Most NAS approaches usu-
ally perform well when searching an architecture for a spe-
cific dataset and/or task, but have a hard time generalizing.
In order to overcome the computational burden of running
NAS searches for every new target domain, methods have
been developed for joint training and efficient transfer of
prior knowledge between multiple search spaces and tasks

(Borsos, Khorlin, and Gesmundo 2019; Wistuba 2019; Lu
et al. 2020). Some methods obtain transferability based on
meta-learning (Lian et al. 2020) or learning general super-
nets from which specialized subnets can be sampled without
any additional training (Lu et al. 2020). Other approaches
search for the best cell on a small proxy dataset and then
trasnfer to the large target dataset by stacking together more
copies of this cell, each with their own parameters to design
a convolutional architecture (Zoph et al. 2018). In this work,
we focus on the latter type of approaches and investigate
their applicability at large scale.
NAS Proxies. Although recent NAS methods (Liu et al.
2018a; Liu, Simonyan, and Yang 2018; Pham et al. 2018)
improve the search efficiency to some extent, the search
process is still time-consuming and requires vast computa-
tion overhead when searching in a large search space since
all network candidates need to be trained and evaluated.
Differentiable approaches such as DARTS (Liu, Simonyan,
and Yang 2018) require high GPU memory consumption,
which still makes direct search on large dataset prohibitive.
A widely used approach to address efficiency in NAS meth-
ods is to search for an architectural building block on a small
dataset (either using a proxy set from the large dataset or a
completely different small scale dataset) and then transfer
the block to the larger dataset by replicating and stacking
it multiple times in order to increase network capacity ac-
cording to the scale of the dataset. While proxy sets have
been largely used to expand search results from small (CI-
FAR10, CIFAR100) to mid-size (ImageNet1K) datasets, and
some works have been able to perform search on mid size
datasets (Cai, Zhu, and Han 2019), a study of their applica-
bility to large scale datasets is still missing. In this work,
we offer a detailed and extensive study of the effects of
proxy sets on network transferability to large scale targets.
We hope this will contribute to an established protocol of
reproducibility when studying NAS algorithms going from
small-to-medium proxies to large scale target datasets.

NASTransfer Benchmark
In this section, we discuss the details about our proposed
NASTransfer benchmark, in terms of datasets, methods and
evaluation metric used to compare different methods.
Objective. Our goal is to provide diagnostic information on
the architecture transfer performance of different NAS meth-
ods and proxy sets for large scale NAS, which can be poten-
tially used for better designs of future NAS algorithms. We
adopt a common search space and training protocol to avoid
the effect of the manually engineered tricks and search space
widely used in different NAS methods.
Datasets and Proxy Sets. We select six diverse and
challenging computer vision datasets in image classifica-
tion, namely MIT67 (Quattoni and Torralba 2009), FLOW-
ERS102 (Nilsback and Zisserman 2008), CIFAR10 and CI-
FAR100 (Krizhevsky 2009), ImageNet1K (Deng et al. 2009)
and ImageNet22K (Russakovsky et al. 2015) to evaluate the
performance of different methods1. While most of the exist-
ing analysis on NAS (Yang, Esperança, and Carlucci 2020;

1ImageNet is used only for research purposes to allow bench-

9295



Zela, Siems, and Hutter 2020; Ying et al. 2019; Dong and
Yang 2020) focus on small scale datasets such as CIFAR10,
we show large-scale experiments on the ImageNet22K (Rus-
sakovsky et al. 2015) dataset that contains over 14 million
labeled high-resolution images belonging to around 22K dif-
ferent categories. The ImageNet22K dataset skew is reflec-
tive of real world tasks and provides a natural testbed for our
method when comparing training sets of different sizes.

As proxy sets for the larger datasets, we employed not
only small-scale datasets such as CIFAR10, but also sam-
pled subsets of ImageNet1K and ImageNet22K directly.
Namely, we investigated the proxies listed in Table 1, which
are of two types: randomly selected and uniformly selected.
For random selection, we picked a list of N classes and
used all of their images. In uniform selection we were in-
terested in maintaining the overall distribution of examples
for all classes in the dataset, therefore we sorted classes by
their number of images and then uniformly sampled in or-
der to obtain the desired number of classes N in the sub-
set. In order to maintain the order of magnitude consistent
across multiple proxies, we then took the same fraction of
images from every class, ensuring that the total would meet
the requirement and at the same time maintain the overall
distribution intact. This is particularly important when de-
signing a proxy set for a non-uniform, imbalanced distri-
bution such as the one of ImageNet22K. For example Im-
ageNet22K Proxy 2 was designed to have the same overall
distribution of the full dataset, but the same number of im-
ages of ImageNet22K Proxy 1. In order to do so, we sam-
pled 0.97% of images from each class in the dataset, and
eliminated classes for which only one image remained for
training or validation, thus keeping only approximately 13k
classes out the the 22k total. For ImageNet22K Proxy 3 in-
stead we uniformly picked 100 classes whose total number
of images would be the same as ImageNet22K Proxy 1. We
split each of those datasets into a training, validation and
testing subsets with proportions 40/40/20 and use standard
data pre-processing and augmentation techniques.
Methods and Search Space. We compare four represen-
tative NAS methods: DARTS (Liu, Simonyan, and Yang
2018), ENAS (Pham et al. 2018), NSGANet (Lu et al. 2019)
and NAO (Luo et al. 2018), including the random sam-
pling (Yang, Esperança, and Carlucci 2020) baseline. We
choose these methods as they have a reasonable search time,
specifically under 4 GPU-days on CIFAR10 dataset. We per-
form micro-search at cell level within the DARTS search
(Liu, Simonyan, and Yang 2018): 3×3 and 5×5 separable
convolutions, 3×3 and 5×5 dilated separable convolutions,
3×3 max pooling, 3×3 average pooling, identity, and zero.
All operations are of stride one (if applicable) and the con-
volved feature maps are padded to preserve their spatial res-
olution. ReLU-Conv-BN order are used for convolutional
operations, and each separable convolution is always applied
twice. Note that our NASTransfer benchmark has a fixed
search space and hence provides a unified benchmark for
analyzing transferability of different NAS algorithms.

marking against prior results. The trained models in this work are
not used for commercial purposes.

Set Selection # of # Train # Val
Name Method Classes Images Images

MIT67 All 67 5K 1.4K
FLOWERS102 All 102 6.5K 1.7K

CIFAR10 All 10 50K 10K
CIFAR100 All 100 50K 10K

ImNet1K P1 Random 100 128K 5K
ImNet1K P2 Random 200 258K 10K
ImNet1K P3 Random 300 384K 15K
ImNet1K P4 Random 200 128K 5K
ImNet1K P5 Uniform 1,000 128K 5K

ImNet22K P1 Random 100 35K 35K
ImNet22K P2 Uniform 13,377 35K 35K
ImNet22K P3 Uniform 100 35K 35K

ImNet1K All 1,000 1.2M 50K
ImNet22K All 21,841 7.5M 7M

Table 1: Proxy sets used in our experiments. ImNet1K P1
refers to the Proxy 1 selected from ImageNet1K. In Uni-
form selection the distribution of examples is reflective, al-
though in smaller scale, of the overall distribution of the en-
tire dataset. This is of particular relevance for ImageNet22K,
where images are not uniformly distributed over classes.

Training and Evaluation Protocol. NAS algorithms tra-
ditionally work in two phases: first search, in which the
best architecture is determined based on the search algo-
rithm employed, and second augmentation, which consists
in training from scratch the model selected during the search
phase. We choose the search hyperparameters as close as
possible to the ones reported in the original papers. Experi-
ments on all datasets use the same hyperparameters except
the number of training epochs. For augmentations, we use
cross entropy loss, SGD optimizer with learning rate 0.025,
momentum 0.9, seed 2, initial number of channels 36, and
gradient clipping set at 5. The impact of the seed was in-
vestigated in one ablation study for all methods in Table 3.
While different augmentation strategies haven shown to be
effective in improving the results, we did not use any such
data augmentation strategy or other learning tricks to make
a fair comparison among different NAS methods. We pro-
vide the effect of different augmentation strategies such as
Drop path (Larsson, Maire, and Shakhnarovich 2017), Aux-
iliary towers (Xie et al. 2019) and Cutout (DeVries and Tay-
lor 2017) in the supplementary material which shows that
these widely used augmentation strategies have a larger im-
pact on small datasets, but fails to provide consistent im-
provements on large datasets. The number of cells was fixed
to 20 for all experiments and the number of training epochs
per dataset was set to 600, 600, 600, 600, 120 and 60 for
augment runs on MIT67, FLOWERS102, CIFAR10, CI-
FAR100, ImageNet1K and ImageNet22K, respectively. All
searches were performed on a single GPU, while augment
runs were done on single GPU for CIFAR10 and CIFAR100.
We use a minimum of 8 to a maximum of 96 GPUs for Im-
ageNet1K and ImageNet22K augmentation experiments.
Metrics. Following (Yang, Esperança, and Carlucci 2020),
we compute both Top-1 classification accuracy of augmen-
tation runs on target datasets as a metric of performance

9296



FLOWERS102 MIT67 CIFAR10 CIFAR100

Search dataset

50

60

70

80

90

100

T
o
p
-1

 t
e
s
t 

a
c
c
u
ra

c
y
 o

n
 t

a
rg

e
t 

d
a
ta

s
e
t 

(%
)

Transferred to ImageNet1K

DARTS
NAO
ENAS

CIFAR10 IM1K_PROXY1

Search dataset

0

10

20

30

40

50

T
o
p
-1

 t
e
s
t 

a
c
c
u
ra

c
y
 o

n
 t

a
rg

e
t 

d
a
ta

s
e
t 

(%
)

Transferred to ImageNet22K

Figure 1: Architecture transfer performance on large datasets. The the overall size of the proxy set is not an important factor for
trasferability. CIFAR10 proves to be a valuable proxy set for both ImageNet1K and ImageNet22K. Best viewed in color.

for each method, and relative improvement (RI) over a ran-
dom sampling baseline, which is computed as RI = 100 ×
Accm−Accr

Accr
, where Accm and Accr represent Top-1 accu-

racy of the search method and random sampling, respec-
tively. RI provides a measure of the quality of each search
strategy alone, since both searched and randomly sampled
architectures share the same search space and training pro-
tocol. A good general-purpose NAS method is expected to
yield RI > 0 consistently over different searches and across
different sub tasks. Note that this comparison is not against
random search, but rather against random sampling, i.e., the
average architecture of the search space. In our experiments,
we compute Accr as the average of augmentation runs over
N randomly sampled architectures.

Results & Analysis
In this section, we provide detailed analysis on the archi-
tecture transfer performance of various NAS methods under
different proxy sets, comparison with the random sampling
baseline and effect of hyperparameters on the performance
of different NAS methods.
Transferring Architectures. Despite recent efforts to sig-
nificantly improve the speed of search algorithms, perform-
ing direct search on large scale target datasets remains pro-
hibitive, unless extremely powerful resources are utilized.
For example for NSGANet, the search times on CIFAR10
and CIFAR100 with single-GPU is 96 GPU-hours on aver-
age, while single-GPU direct search on ImageNet1K Proxy
1 would take almost two months (which we estimated based
on the progress of a four days long run on CIFAR), over one
year and half on the full ImageNet1K and approximately 19
years on ImageNet22K. Even the fastest search method we
analyzed, ENAS (0.375 days for CIFAR10), would require
over one year on ImageNet22K. Therefore the need for ef-
fective, small-scale proxy sets that could provide a rank-
ing of searched architectures which remains consistent when
transferring to the target large scale datasets becomes cru-
cial. But, how to properly select a proxy-set? From Figure

1, we observe that the size of the proxy set does not in-
fluence the effectiveness of an architecture searched on it
and then transferred to a vastly larger set. In fact, even ar-
chitectures searched on the very small FLOWERS102 and
MIT67 sets, with less than 10K images, yield actually bet-
ter results than searches on CIFAR100 for all search strate-
gies. Only DARTS performs better with search on CIFAR10
than the smaller datasets. It is interesting to see that for
most search methods transferring to ImageNet1K from CI-
FAR10 is more effective than transferring from CIFAR100.
The overall number of images in CIFAR10 and CIFAR100
is the same, but the number of examples per class is 5, 000
for the former and only 500 for the latter (half of the Im-
ageNet1K distribution). When comparing the two CIFAR
datasets, ENAS seems to privilege a smaller number of ex-
amples per class, while DARTS shows an opposite trend.

We also notice how the domain of the proxy set does
not seem to influence architecture performance on the tar-
get dataset. Intuitively, one would think that a proxy set built
from a subset of the target dataset (ImageNet1K Proxy 1 in
the Figure, on the right) will yield better results than a proxy
set coming from a different dataset (CIFAR10). That appears
not to be the case for the target dataset ImageNet22K, as
shown in Figure 1 on the right. While both CIFAR10 and
ImageNet contain images of natural scenes, there is still a
significant difference in terms of image subjects and even
resolution. Nonetheless, CIFAR10 proves to be a valuable
proxy set for large-scale datasets like ImageNet22K.
Direct Search using Proxy Sets. In order to determine
the benefit of employing proxy sets directly sampled from
the target datasets for architecture search, we compared
the performance of the searched architectures versus ran-
domly sampled ones for each of the target datasets. For each
method, including random sampling, search was conducted
five times, and the resulting mean and standard deviations of
the five runs are reported in Figure 2. We observe that for
medium scale, uniformly distributed datasets such as Im-
ageNet1K, the rankings of search strategies remains unaf-
fected by proxy set design as DARTS is the best perform-

9297



64 66 68 70
Random sampling top-1 accuracy (%)

62

64

66

68

70

72
S
e
a
rc

h
 o

n
 P

R
O

X
Y
1
 t

o
p
-1

 a
c
c
. 
(%

)
Target: IMAGENET1K

DARTS
ENAS
NAO

64 66 68 70
Random sampling top-1 accuracy (%)

57.5

60.0

62.5

65.0

67.5

70.0

S
e
a
rc

h
 o

n
 P

R
O

X
Y
2
 t

o
p
-1

 a
c
c
. 
(%

)

Target: IMAGENET1K

64 66 68 70
Random sampling top-1 accuracy (%)

60

62

64

66

68

70

72

S
e
a
rc

h
 o

n
 P

R
O

X
Y
3
 t

o
p
-1

 a
c
c
. 
(%

)

Target: IMAGENET1K

64 66 68 70
Random sampling top-1 accuracy (%)

60

62

64

66

68

70

S
e
a
rc

h
 o

n
 P

R
O

X
Y
4
 t

o
p
-1

 a
c
c
. 
(%

)

Target: IMAGENET1K

64 66 68 70
Random sampling top-1 accuracy (%)

55.0

57.5

60.0

62.5

65.0

67.5

70.0

S
e
a
rc

h
 o

n
 P

R
O

X
Y
5
 t

o
p
-1

 a
c
c
. 
(%

)

Target: IMAGENET1K

26 27 28 29
Random sampling top-1 accuracy (%)

27

28

29

30

S
e
a
rc

h
 o

n
 P

R
O

X
Y
1
 t

o
p
-1

 a
c
c
. 
(%

)
Target: IMAGENET22K

25.5 26.0 26.5 27.0 27.5
Random sampling top-1 accuracy (%)

23

24

25

26

27

S
e
a
rc

h
 o

n
 P

R
O

X
Y
2

 t
o
p
-1

 a
c
c
. 

(%
)

Target: IMAGENET22K

25.5 26.0 26.5 27.0 27.5
Random sampling top-1 accuracy (%)

18

20

22

24

26

S
e
a
rc

h
 o

n
 P

R
O

X
Y
3

 t
o
p
-1

 a
c
c
. 

(%
)

Target: IMAGENET22K

Figure 2: Direct search using proxy sets. Comparison of different NAS methods using sampled proxy sets from same target
dataset. Methods lying in diagonal perform the same as randomly sampled architecture, while methods above the diagonal
outperform it. We use total five proxy sets for ImageNet1K and three proxy sets for ImageNet22K. Best viewed in color.

ing method, followed by ENAS and NAO. The number of
classes and examples in the proxy set does not bring no-
ticeable improvements, as long as a minimum is guaranteed,
as shown by the comparable results using Proxy 1, 2 and 3.
Overall, random sampling of a reduced number classes when
building the proxy set seems to provide better performance
than keeping all the classes in the target dataset and reducing
the number of examples per class (Proxy 5).

While analyzing the search for very large scale datasets
with a skewed distribution (ImageNet22K), the design of
proxy set has a large impact not only on the overall improve-
ment, but also on the rankings of different NAS methods.
ImageNet22K Proxy 1 results are significantly superior to
all other proxies sampled from ImageNet22K for DARTS,
ENAS and NAO, and better than random sampling. When
searching on ImageNet22K proxies 2 and 3, the random
sampling baseline becomes difficult to beat for all methods,
and DARTS goes from being the top ranked to the bottom
one. This underlines the importance of carefully selecting
and designing the proxy set for reliable architecture search.
Random sampling of a subset of classes while maintaining
the number of images per class proves to be more beneficial,
than trying to keep all classes represented in the dataset and
eliminating a large portion of examples per class to maintain
the search time practically feasible.

Architecture Transfer vs Proxy-based Direct Search.
From the results reported in Figure 3, we can see that on
average, transfer performance of architectures searched us-
ing completely different small datasets (e.g., MIT67, CI-
FAR10) can perform similarly or even better than architec-
tures searched directly on proxy target datasets. However,

design of proxy sets has considerable impact on rankings of
different NAS methods. From the Figure, we can see that for
NAO, using a small, unrelated small dataset as proxy pro-
vides consistently better results than the best possible proxy
sampled from the target dataset, both for ImageNet1K and
ImageNet22K. It is surprising to observe how well CIFAR10
works as proxy for ImageNet22k across all methods. Using
CIFAR10 produces better results not only than proxy sets
from ImageNet1K, but also better than proxy sets directly
sampled from ImageNet22K. One would assume that using
a subset of the target dataset for search would be benefi-
cial, especially when the distribution across classes is signif-
icantly skewed as it is for ImageNet22K. The results of our
experiments suggest that a small proxy set, different from
the target dataset, albeit in the same general field (natural
images classification) can lead the search process to find
valuable architectures for datasets even at the scale of Im-
ageNet22K: 14 million images. For reference, the state-of-
the-art published result on ImageNet22K is 36.9 Top-1 ac-
curacy using a Wide Residual Network WRN-50-4-2 (Co-
dreanu, Podareanu, and Saletore 2017), project Adam’s net-
work (Chilimbi et al. 2014) achieved 29.8%, whereas the
architecture searched with NAO using CIFAR10 as a proxy
yields 30.91 Top-1 accuracy.

Comparison with Random Sampling. We compare with
randomly sampled architectures within the same search
space to verify the effectiveness of each method for every
augment runs. We want to emphasize that this comparison is
not against random search, but rather against random sam-
pling, i.e., the average architecture of the search space. We
sample 5 architectures randomly from the search space and

9298



62.5 65.0 67.5 70.0
Proxy set top-1 accuracy (%)

66

68

70

72
T
ra

n
s
fe

r 
fr

o
m

 M
IT

6
7
 t

o
p
-1

 a
c
c
. 
(%

) Target : IMAGENET1K

DARTS
ENAS
NAO

62.5 65.0 67.5 70.0
Proxy set top-1 accuracy (%)

69.5

70.0

70.5

71.0

71.5

72.0

T
ra

n
s
fe

r 
fr

o
m

 F
L
O

W
E
R

S
1

0
2

 t
o
p
-1

 a
c
c
. 

(%
)

Target : IMAGENET1K

62.5 65.0 67.5 70.0
Proxy set top-1 accuracy (%)

58

60

62

64

66

68

70

72

T
ra

n
s
fe

r 
fr

o
m

 C
IF

A
R

1
0

 t
o
p
-1

 a
c
c
. 

(%
)

Target : IMAGENET1K

62.5 65.0 67.5 70.0
Proxy set top-1 accuracy (%)

60

62

64

66

T
ra

n
s
fe

r 
fr

o
m

 C
IF

A
R

1
0

0
 t

o
p
-1

 a
c
c
. 

(%
)

Target : IMAGENET1K

27 28 29 30
Proxy set top-1 accuracy (%)

29.8

30.0

30.2

30.4

30.6

30.8

31.0

T
ra

n
s
fe

r 
fr

o
m

 C
IF

A
R

1
0

 t
o
p
-1

 a
c
c
. 

(%
)

Target : IMAGENET22K

27 28 29 30
Proxy set top-1 accuracy (%)

29.4

29.6

29.8

30.0

30.2

30.4

30.6

30.8

T
ra

n
s
fe

r 
fr

o
m

 I
M

A
G

E
N

E
T
1

K
 t

o
p
-1

 a
c
c
. 

(%
)

Target : IMAGENET22K

Figure 3: Architecture transfer vs Proxy-based direct search. Comparison of transfer performance with the best proxy-based
direct search on ImageNet1K and ImageNet22K datasets. Methods lying in the diagonal indicate that transfer performance is
similar to the direct proxy-based search, while methods above the diagonal outperform it. Best viewed in color.

To
p-

1 
Ac

cu
ra

cy
 (%

)

CIFAR10 
(50K) 

CIFAR100 
(50K)

ImageNet1K 
(1.2M)

Target Dataset Scale

MIT67 
(5K) 

FLOWERS102 
(6K) 

45

50

55

60

65

70

75

80

85

90

95

100

Figure 4: Random Sampling. Standard deviation of top-1
accuracy over 30 runs increases with scale and diversity of
datasets. Best viewed in color.

compare with the same number of architectures searched by
each method. From the results in Figure 2 and Table 2 the
random sampling strategy proves to be a very strong base-
line, confirming that the effect of a search strategy is less in-
fluential for final performance of a given architecture com-
pared to accurately designing the search space. This effect
becomes particularly evident when trying to transfer from a
small proxy set to a larger one, especially when the num-
ber of examples per class varies significantly between proxy
and target sets. This is the case for the transfer experiment
between CIFAR100 and ImageNet1K, where the architec-
tures learned by all search methods on CIFAR100, with the
exception of NSGANet, perform significantly worse than
the direct application of randomly sampled ones. Interest-
ingly, CIFAR10 seems instead like a good proxy for trans-
fer to all other target datasets, including ImageNet22K. To
further analyze the effect of number of random sampled ar-
chitectures, we sample 25 more randomly sampled architec-
tures (total 30) on FLOWERS102, MIT67, CIFAR10, CI-
FAR100 and ImageNet1K. The influence of search space
design and the strength of the random sampling baseline
becomes less important as the scale and complexity of the
target dataset increases. The standard deviation around the
average performance of 30 randomly sampled architectures
expands as the scale of the target dataset increases and as

9299



S: CIFAR10
T: CIFAR100

S: FLOWERS102
T: ImageNet1K

S: MIT67
T: ImageNet1K

S: CIFAR10
T: ImageNet1K

S: CIFAR100
T: ImageNet1K

S: CIFAR10
T: ImageNet22K

S: ImageNet1K
T: ImageNet22K

NSGANet 1.38 -9.16 -7.02 3.39 0.92 -0.72 -
ENAS 1.42 6.12 4.84 -16.26 -11.75 6.16 1.62

DARTS 1.01 6.57 0.89 5.93 -18.71 3.06 2.03
NAO -0.89 2.56 1.90 0.99 -2.68 6.44 5.44

Table 2: Relative improvement metric RI for various transfer experiments. S and T indicate the source set and target set respec-
tively. Given its much longer search time, we did not perform NSGANet search on ImageNet1K proxies.

Method
CIFAR10 – ImageNet1K ImageNet1K Proxy 1

Transfer Direct

AS = 2 AS = 3 AS = 2 AS = 3
NSGANet 69.86 69.27 - -

ENAS 56.58 72.69 69.40 64.70
DARTS 71.58 72.01 71.89 71.68

NAO 68.24 64.52 64.98 61.85
Random
Sampling - - 70.45 71.35

Table 3: Ablation studies on augmentation seed. Results
show performance on two different augmentation seeds. The
default value of augmentation seed (AS) is set to 2.

the average accuracy decreases (see Figure 4). This trend
signifies a larger opportunity for impact of the search strat-
egy within the space for datasets that present a hard clas-
sification task, like MIT67, and/or large-scale datasets like
ImageNet1K. As direct search on large scale datasets is ba-
sically intractable in practice, it also shows the importance
of finding good proxy sets where search is feasible and per-
formance gains transfer to the target dataset.
Effect of Hyperparameters. We conduct extensive ablation
studies over the augmentation training hyperparameters in
order to precisely determine the merits of search methods
and choice of proxy set versus training protocols. Namely,
we investigated augment results by varying seed (Table 3)
and number of cells (Table 4). In general we observe that
that the parameters of the training protocol have a larger
impact on small datasets, but it fails to provide consistent
improvements on large datasets, whereas the choice of an
appropriate proxy set and search strategy are more relevant.
From Table 3, it appears that ENAS is particularly sensitive
to choice of augmentation seed, especially when transferring
from CIFAR10 to ImageNet1K datset.

Conclusions and Best Practices
We have presented the first extensive study on the design
and transfer value of proxy sets for NAS at large scale across
different search methods. We compared four standard search
strategies on proxy datasets ranging from small (5K images)
to large (384K images) and their transferability to very large
scale target sets including for the first time ImageNet22K
(14M images). The results of our experiments and abla-
tion studies suggest the following set of best practices when
choosing proxy sets. (i) The the overall size of the proxy set
is not an important factor for trasferability. Reliably good
search for large scale datasets can be performed on proxy
sets even smaller than two order of magnitude with respect

Experiment NAS Method Number of Cells
20 40 60

CIFAR10 – Imagenet1K
Transfer

NSGANet 68.38 71.62 62.16
ENAS 56.58 72.50 72.55

DARTS 71.58 63.75 53.98
NAO 68.24 63.87 58.54

ImageNet1K Proxy 1
ENAS 69.40 69.61 60.31

DARTS 71.89 70.04 60.60
NAO 64.98 67.32 52.45

ImageNet1K Random
Sampling 70.45 65.52 52.82

Table 4: Effect of number of cells on ImageNet1K. Results
show performance with three different number of cells on
ImageNet1K dataset. Increase in number of cells does lead
to increase in performance.

to the target ones. (ii) The domain of the proxy set does
not seem to influence architecture performance on the tar-
get dataset. Transfer performance of architectures searched
using different small datasets (e.g., MIT67, CIFAR10) can
perform similarly or even better than architectures searched
directly on proxies of target datasets (ImageNet1K and Im-
ageNet22K). (iii) For proxy sets directly sampled from the
target set, the random sampling of a subset of classes main-
taining the same number of images per class is more benefi-
cial than trying to keep all the classes from the target dataset
and the reducing the number of examples per class. (iv) As
the scale of target dataset increases, the choice of proxy set
and search strategy matters more on the final augmentation
performance on the target dataset than the training proto-
col and hyper-parameters setting. NAS methods showing
similar performance on a source dataset (e.g., CIFAR10),
produce largely different transfer performances to a large
dataset (e.g. ImagenNet22K). (v) Random sampling remains
a strong baseline to surpass, but the choice of the appropri-
ate combination of proxy set and search strategy can provide
significant improvement over it. In future, we plan to further
study the transferablity from proxy sets of significantly dif-
ferent domains. We also believe that including the appropri-
ate selection of proxy set in combination with a search strat-
egy within a unified NAS framework can lead to not only
efficient but also more effective NAS at large scale.

Acknowledgments
This research used resources of the Oak Ridge Leadership
Computing Facility (ORNL), which is a DOE Office of
Science User Facility supported under Contract DE-AC05-
00OR22725. It also used resources of the IBM T.J. Watson
Research Center Scaling Cluster (WSC).

9300



References
Baker, B.; Gupta, O.; Raskar, R.; and Naik, N. 2018. Accel-
erating Neural Architecture Search using Performance Pre-
diction. In ICLR Workshops.
Bender, G.; Kindermans, P.-J.; Zoph, B.; Vasudevan, V.; and
Le, Q. 2018. Understanding and Simplifying One-Shot Ar-
chitecture Search. In ICML.
Borsos, Z.; Khorlin, A.; and Gesmundo, A. 2019. Trans-
fer NAS: Knowledge Transfer between Search Spaces with
Transformer Agents. arXiv preprint 1906.08102 .
Brock, A.; Lim, T.; Ritchie, J.; and Weston, N. 2018.
SMASH: One-Shot Model Architecture Search through Hy-
perNetworks. In ICLR.
Cai, H.; Zhu, L.; and Han, S. 2019. ProxylessNAS: Direct
Neural Architecture Search on Target Task and Hardware.
In ICLR.
Chang, J.; zhang, x.; Guo, Y.; MENG, G.; XIANG, S.; and
Pan, C. 2019. DATA: Differentiable ArchiTecture Approxi-
mation. In Advances in Neural Information Processing Sys-
tems.
Chen, Y.; Yang, T.; Zhang, X.; MENG, G.; Xiao, X.; and
Sun, J. 2019. DetNAS: Backbone Search for Object Detec-
tion. In Advances in Neural Information Processing Sys-
tems.
Chilimbi, T.; Suzue, Y.; Apacible, J.; and Kalyanaraman, K.
2014. Project Adam: Building an Efficient and Scalable
Deep Learning Training System. In 11th USENIX Sym-
posium on Operating Systems Design and Implementation
(OSDI), 571–582.
Cho, M.; Finkler, U.; Kumar, S.; Kung, D.; Saxena, V.;
and Sreedhar, D. 2017. PowerAI DDL. In arXiv preprint
1708.02188.
Codreanu, V.; Podareanu, D.; and Saletore, V. 2017.
https://communities.surf.nl/artikel/achieving-deep-
learning-training-in-less-than-40-minutes-on-imagenet-
1k-best-accuracy-and (Last accessed: March 01, 2021).
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. ImageNet: A Large-Scale Hierarchical Image
Database. In CVPR.
DeVries, T.; and Taylor, G. W. 2017. Improved Regulariza-
tion of Convolutional Neural Networks with Cutout. arXiv
preprint 1708.04552 .
Dong, X.; and Yang, Y. 2020. NAS-Bench-201: Extending
the Scope of Reproducible Neural Architecture Search. In
ICLR.
Elsken, T.; Metzen, J. H.; and Hutter, F. 2019. Neural Ar-
chitecture Search: A Survey. JMLR 20(55): 1–21.
Finkler, U.; Merler, M.; Panda, R.; Jaiswal, M. S.; Wu, H.;
Ramakrishnan, K.; Chen, C.-F.; Cho, M.; Kung, D.; Feris,
R.; et al. 2020. Large Scale Neural Architecture Search with
Polyharmonic Splines. arXiv preprint arXiv:2011.10608 .
Ghiasi, G.; Lin, T.; and Le, Q. V. 2019. NAS-FPN: Learning
Scalable Feature Pyramid Architecture for Object Detection.
In CVPR.

Krizhevsky, A. 2009. Learning multiple layers of features
from tiny images. Technical Report, University of Toronto .

Kyriakides, G.; and Margaritis, K. 2020. The effect of re-
duced training in neural architecture search. Neural Com-
puting and Applications .

Larsson, G.; Maire, M.; and Shakhnarovich, G. 2017. Frac-
talNet: Ultra-Deep Neural Networks without Residuals. In
ICLR.

Li, L.; and Talwalkar, A. 2019. Random Search and Repro-
ducibility for Neural Architecture Search. In Conference on
Uncertainty in Artificial Intelligence UAI.

Lian, D.; Zheng, Y.; Xu, Y.; Lu, Y.; Lin, L.; Zhao, P.; Huang,
J.; and Gao, S. 2020. Towards Fast Adaptation of Neural
Architectures with Meta Learning. In ICLR.

Liu, C.; Chen, L.-C.; Schroff, F.; Adam, H.; Hua, W.; Yuille,
A.; and Fei-Fei, L. 2019. Auto-DeepLab: Hierarchical Neu-
ral Architecture Search for Semantic Image Segmentation.
In CVPR.

Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li, L.-
J.; Fei-Fei, L.; Yuille, A.; Huang, J.; and Murphy, K. 2018a.
Progressive Neural Architecture Search. In ECCV.

Liu, H.; Simonyan, K.; Vinyals, O.; Fernando, C.; and
Kavukcuoglu, K. 2018b. Hierarchical Representations for
Efficient Architecture Search. In ICLR.

Liu, H.; Simonyan, K.; and Yang, Y. 2018. DARTS: Differ-
entiable Architecture Search. In ICLR.

Lu, Z.; Sreekumar, G.; Goodman, E.; Banzhaf, W.; Deb,
K.; and Boddeti, V. N. 2020. Neural Architecture Transfer.
arXiv preprint 2005.05859 .

Lu, Z.; Whalen, I.; Boddeti, V.; Dhebar, Y.; Deb, K.; Good-
man, E.; and Banzhaf, W. 2019. NSGA-Net: Neural Archi-
tecture Search Using Multi-Objective Genetic Algorithm. In
Proceedings of the Genetic and Evolutionary Computation
Conference.

Luo, R.; Tian, F.; Qin, T.; Chen, E.-H.; and Liu, T.-Y. 2018.
Neural Architecture Optimization. In Advances in neural
information processing systems.

Nayman, N.; Noy, A.; Ridnik, T.; Friedman, I.; Jin, R.; and
Zelnik-Manor, L. 2019. XNAS: Neural Architecture Search
with Expert Advice. In Advances in Neural Information Pro-
cessing Systems.

Nilsback, M.-E.; and Zisserman, A. 2008. Automated flower
classification over a large number of classes. In 2008 Sixth
Indian Conference on Computer Vision, Graphics & Image
Processing.

Pham, H.; Guan, M.; Zoph, B.; Le, Q.; and Dean, J. 2018.
Efficient Neural Architecture Search via Parameters Shar-
ing. In ICML.

Quattoni, A.; and Torralba, A. 2009. Recognizing indoor
scenes. In CVPR.

Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized Evolution for Image Classifier Architecture Search.
In AAAI.

9301



Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
Berg, A. C.; and Fei-Fei, L. 2015. ImageNet Large Scale
Visual Recognition Challenge. IJCV 115(3): 211–252.
Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; Sandler, M.;
Howard, A.; and Le, Q. V. 2019. MnasNet: Platform-Aware
Neural Architecture Search for Mobile. In CVPR.
Wang, N.; Gao, Y.; Chen, H.; Wang, P.; Tian, Z.; and Shen,
C. 2019. NAS-FCOS: Fast Neural Architecture Search for
Object Detection. arXiv preprint 1906.04423 .
Wistuba, M. 2019. XferNAS: Transfer Neural Architecture
Search. arXiv preprint 1907.08307 .
Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu, Y.;
Tian, Y.; Vajda, P.; Jia, Y.; and Keutzer, K. 2019. FB-
Net: Hardware-Aware Efficient ConvNet Design via Differ-
entiable Neural Architecture Search. In CVPR.
Xie, S.; Kirillov, A.; Girshick, R.; and He, K. 2019. Explor-
ing Randomly Wired Neural Networks for Image Recogni-
tion. In ICCV.
Xie, S.; Zheng, H.; Liu, C.; and Lin, L. 2019. SNAS:
stochastic neural architecture search. In ICLR.
Yang, A.; Esperança, P. M.; and Carlucci, F. M. 2020. NAS
evaluation is frustratingly hard. In ICLR.
Ying, C.; Klein, A.; Christiansen, E.; Real, E.; Murphy,
K.; and Hutter, F. 2019. NAS-Bench-101: Towards Repro-
ducible Neural Architecture Search. In ICML.
Yu, K.; Sciuto, C.; Jaggi, M.; Musat, C.; and Salzmann, M.
2020. Evaluating The Search Phase of Neural Architecture
Search. In ICLR.
Zela, A.; Elsken, T.; Saikia, T.; Marrakchi, Y.; Brox, T.; and
Hutter, F. 2020. Understanding and Robustifying Differen-
tiable Architecture Search. In ICLR.
Zela, A.; Siems, J.; and Hutter, F. 2020. NAS-Bench-1Shot1:
Benchmarking and Dissecting One-shot Neural Architecture
Search. In ICLR.
Zhang, H.; Hu, Z.; Wei, J.; Xie, P.; Kim, G.; Ho, Q.; and
Xing, E. 2015. Poseidon: A System Architecture for Effi-
cient GPU-based Deep Learning on Multiple Machines. In
arXiv preprint 1512.06216.
Zhong, Z.; Yan, J.; Wu, W.; Shao, J.; and Liu, C.-L. 2018.
Practical Block-Wise Neural Network Architecture Genera-
tion. In CVPR.
Zhou, D.; Zhou, X.; Zhang, W.; Loy, C. C.; Yi, S.; Zhang,
X.; and Ouyang, W. 2020. EcoNAS: Finding Proxies for
Economical Neural Architecture Search. In CVPR.
Zoph, B.; and Le, Q. V. 2017. Neural Architecture Search
with Reinforcement Learning. In ICLR.
Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V. 2018.
Learning Transferable Architectures for Scalable Image
Recognition. In CVPR.

9302


