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Abstract

This paper studies the robustness of reinforcement learn-
ing algorithms to errors in the learning process. Specifi-
cally, we revisit the benchmark problem of discrete-time lin-
ear quadratic regulation (LQR) and study the long-standing
open question: Under what conditions is the policy itera-
tion method robustly stable from a dynamical systems per-
spective? Using advanced stability results in control the-
ory, it is shown that policy iteration for LQR is inherently
robust to small errors in the learning process and enjoys
small-disturbance input-to-state stability: whenever the er-
ror in each iteration is bounded and small, the solutions of
the policy iteration algorithm are also bounded, and, more-
over, enter and stay in a small neighbourhood of the optimal
LQR solution. As an application, a novel off-policy optimistic
least-squares policy iteration for the LQR problem is pro-
posed, when the system dynamics are subjected to additive
stochastic disturbances. The proposed new results in robust
reinforcement learning are validated by a numerical example.

Introduction
As an important and popular method in reinforcement learn-
ing (RL), policy iteration has been widely studied by re-
searchers and utilized in different kinds of real-life appli-
cations by practitioners (Bertsekas 1995; Sutton and Barto
2018). Policy iteration involves two steps, policy evaluation
and policy improvement. In policy evaluation, a given pol-
icy is evaluated based on a scalar performance index. Then
this performance index is utilized to generate a new con-
trol policy in policy improvement. These two steps are iter-
ated in turn, to find the solution of the RL problem at hand.
When all the information involved in this process is exactly
known, the convergence to the optimal solution can be prov-
ably guaranteed, by exploiting the monotonicity property
of the policy improvement step. That is, the performance
of the newly generated policy is no worse than that of the
given policy in each iteration. Over the past decades, vari-
ous versions of policy iteration have been proposed, for di-
verse optimal control problems, see (Bertsekas 1995; Sutton
and Barto 2018; Lewis, Vrabie, and Syrmos 2012; Jiang and
Jiang 2017; Jiang, Bian, and Gao 2020) and the references
therein.
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Intelligence (www.aaai.org). All rights reserved.

In reality, policy evaluation or policy improvement can
hardly be implemented precisely, because of the existence of
various errors, which may be induced by function approxi-
mation, state estimation, sensor noise, external disturbance
and so on. Therefore, a natural question to ask is: when is
a policy iteration algorithm robust to errors in the learning
process? In other words, under what conditions on the er-
rors, does the policy iteration still converge to (a neighbour-
hood of) the optimal solution? And how to quantify the size
of this neighbourhood? In spite of the popularity and em-
pirical successes of policy iteration, its robustness issue has
not been fully understood yet in theory, due to the inherent
nonlinearity of the process (Bertsekas 2011). The problem
becomes more complex when the state and action spaces are
unbounded and continuous, which are common in RL prob-
lems of physical systems such as robotics and autonomous
cars (Lillicrap et al. 2016). Indeed, in this case the stability
issue needs to be addressed, to avoid the selection of destabi-
lizing policies that drive the states of the closed-loop system
into the infinity or an unsafe region.

In this paper, we investigate the robustness of policy iter-
ation for the discrete-time linear quadratic regulator (LQR)
problem, which was firstly proposed in (Hewer 1971). Even
if the LQR is the most basic and important optimal control
problem with unbounded, continuous state and action spaces
(Bertsekas 1995), the robustness of its associated policy it-
eration to errors in the learning process has not been fully
investigated. The main idea of this paper is to regard the
policy iteration as a dynamical system, and then utilize the
concepts of exponential stability and input-to-state stability
in control theory to analyze its robustness (Sontag 2008). To
be more specific, we firstly prove that the optimal LQR solu-
tion is a locally exponentially stable equilibrium of the exact
policy iteration (see Lemma 1). Then based on this observa-
tion, we show that the policy iteration with errors is locally
input-to-state stable, if the errors are regarded as the distur-
bance input (see Lemma 2). That is, if the policy iteration
starts from an initial solution close to the optimal solution,
and the errors are small and bounded, the discrepancies be-
tween the solutions generated by the policy iteration and the
optimal solution will also be small and bounded. Thirdly,
we demonstrate that for any initial stabilizing control gain,
as long as the errors are small, the approximate solution
given by policy iteration will eventually enter a small neigh-
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bourhood of the optimal solution (see Theorem 2). Finally, a
novel off-policy model-free RL algorithm, named optimistic
least-squares policy iteration (O-LSPI), is proposed for the
LQR problem with dynamics perturbed by additive stochas-
tic disturbances. Our robustness result is applied to show the
convergence of this off-policy O-LSPI (see Theorem 3). Ex-
periments on a numerical example validate our results.

Our main contributions are two-fold. First, we provide
a control-theoretic robustness analysis for the policy itera-
tion of discrete-time LQR. Second, we propose a novel off-
policy RL algorithm O-LSPI with provable convergence.

In the rest of this paper, we first present some preliminar-
ies, followed by the robustness analysis and the off-policy
O-LSPI. Then we present the experimental results, discuss
some related work, and close the paper with some conclud-
ing remarks.

Notations
R (R+) is the set of all real (nonnegative) numbers; Z+ de-
notes the set of nonnegative integers; Sn is the set of all
real symmetric matrices of order n; ⊗ denotes the Kro-
necker product; In denotes the identity matrix with dimen-
sion n; ‖ · ‖F is the Frobenius norm; ‖ · ‖2 is the 2-norm
for vectors and the induced 2-norm for matrices; for signal
Z : F→ Rn×m, ‖Z‖∞ denotes its l∞-norm when F = Z+,
and L∞-norm when F = R+. For matrices X ∈ Rm×n,
Y ∈ Sm, and vector v ∈ Rn, define

vec(X) = [ XT
1 XT

2 · · · XT
n ]T , ṽ = svec(vvT ),

svec(Y ) = [y11,
√

2y12, · · · ,
√

2y1m, y22,
√

2y23,

· · · ,
√

2ym−1,m, ym,m]T ∈ R
1
2m(m+1),

where Xi is the ith column of X . For Z ∈ Rm×n, define
Br(Z) = {X ∈ Rm×n|‖X − Z‖F < r} and B̄r(Z) as the
closure of Br(Z).Z† is the Moore-Penrose inverse of matrix
Z. blkdiag(Z1, Z2, · · · , ZN ) refers to the block-diagonal
matrix that consists of a set of matrices Z1, Z2, · · · , ZN .

Preliminaries
Consider linear time-invariant systems of the form

xk+1 = Axk +Buk, x0 = xini (1)

where xk ∈ Rn is the system state, uk ∈ Rm is the
control input, xini ∈ Rn is the initial condition, A ∈
Rn×n and B ∈ Rn×m. (A,B) is controllable, that is,
[B,AB,A2B, · · · , An−1B] has full row rank. The classic
LQR problem is to find a controller u in order to minimize
the following cost functional

J(x0, u) =
∞∑
k=0

c(xk, uk), (2)

where c(xk, uk) = xTk Sxk + uTkRuk, S ∈ Sn is positive
semidefinite andR ∈ Sn is positive definite. (A,S1/2) is ob-
servable, that is, (AT , S1/2) is controllable. It is well-known
that in such a setting, the LQR problem admits a unique op-
timal controller u∗ = −K∗x, where

K∗ = (R+BTP ∗B)−1BTP ∗A (3)

with P ∗ ∈ Sn the unique positive definite solution of the
algebraic Riccati equation (ARE)

ATPA−P−ATPB(R+BTPB)−1BTPA+S = 0. (4)

In addition,A−BK∗ is stable, i.e., the spectral radius ρ(A−
BK∗) < 1. See (Lewis, Vrabie, and Syrmos 2012, Section
2.4) for details. For convenience, a control gain K ∈ Rm×n
is said to be stabilizing if A−BK is stable.

Policy Iteration for LQR
For any stabilizing control gain K ∈ Rm×n, the cost (2)
with uk = −Kxk is a quadratic function of the initial state
(Lewis, Vrabie, and Syrmos 2012, Section 2.4). Specifically,
J(x0,−Kx) = xT0 PKx0, where PK ∈ Sn is the unique
positive definite solution of the Lyapunov equation

(A−BK)TPK(A−BK)−PK + S +KTRK = 0. (5)

Define function

G(PK) =

[
[G(PK)]xx [G(PK)]Tux
[G(PK)]ux [G(PK)]uu

]
,

[
S +ATPKA− PK ATPKB

BTPKA R+BTPKB

]
.

Then (5) can be rewritten as

H(G(PK),K) = 0,

where

H(G(PK),K) ,
[
In −KT

]
G(PK)

[
In
−K

]
.

The policy iteration for LQR is presented below, which is
an equivalent reformulation of the original results in (Hewer
1971).

Procedure 1 (Exact Policy Iteration).

1) Choose a stabilizing control gain K1, and let i = 1.
2) (Policy evaluation) Evaluate the performance of control

gain Ki, by solving

H(Gi,Ki) = 0 (6)

for Pi ∈ Sn, where Gi , G(Pi).
3) (Policy improvement) Obtain an improved policy

Ki+1 = [Gi]
−1
uu [Gi]ux. (7)

4) Set i← i+ 1 and go back to Step 2).

The following convergence results of Procedure 1 were
also provided in (Hewer 1971).

Theorem 1. In Procedure 1 we have:

i) A−BKi is stable for all i = 1, 2, · · · .
ii) P1 ≥ P2 ≥ P3 ≥ · · · ≥ P ∗.

iii) limi→∞ Pi = P ∗, limi→∞Ki = K∗.
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Problem Formulation
In Procedure 1, the exact knowledge of A and B is required,
as the solution to (6) relies upon A and B. So, the exact pol-
icy iteration is model-based. However, in practice, very of-
ten we only have access to incomplete information required
to solve the problem. In other words, each policy evaluation
step will result in inaccurate estimation. Thus we are inter-
ested in studying the following problem.

Problem 1. IfGi is replaced by an approximated matrix Ĝi,
will the conclusions in Theorem 1 still hold?

The difference between Ĝi and Gi can be attributed to
errors from various sources. One example comes from the
problem of using reinforcement learning method to find the
optimal solutions for LQR when (1) is subjected to additive
external disturbances. Concretely, consider system (1) per-
turbed by external noise

xk+1 = Axk +Buk + Cwk, x0 = xini (8)

where C ∈ Rn×q , wk ∈ Rq is drawn i.i.d. from the stan-
dard Gaussian distribution N (0, Iq), and matrices A, B and
C are unknown. Since the information about system matri-
ces is unavailable, we need to implement the policy evalu-
ation using input/state data. Due to the existence of unmea-
surable stochastic noise wk, generally we could only obtain
an estimation Ĝi of the true Gi from the noise-corrupted
input/state data. Other sources that cause the difference be-
tween Ĝi and Gi include but are not limited to: the esti-
mation errors of A and B in indirect adaptive control, sys-
tem identification and model-based reinforcement learning
(Åström and Wittenmark 1995; Ljung 1999; Tu and Recht
2019); the residual caused by an early termination of the iter-
ation to numerically solve ARE (4), in order to save compu-
tational efforts (Hylla 2011); approximate values of S andR
in inverse optimal control/imitation learning, due to the ab-
sence of exact knowledge of the cost function (Levine and
Koltun 2012; Monfort, Liu, and Ziebart 2015).

In this work, using the concept of exponential stability
and input-to-state stability in control theory, we provide an
answer to Problem 1. Moreover, we provide the convergence
analysis of the novel O-LSPI when it is applied to solve the
LQR problem for uncertain systems (8).

Notions of Exponential and Input-to-State Stability
Consider a dynamical system of the general form

xk+1 = f(xk, uk), x0 = xini, (9)

where xk ∈ Rn, uk ∈ Rm, f : Rn × Rm → Rn is con-
tinuous, and x∗ is an equilibrium of xk+1 = f(xk, 0) when
uk = 0 for all k ∈ Z+. The concepts of exponential and
input-to-state stability for (9) are recalled in this subsection.
See (Jiang, Lin, and Wang 2004) for more details.
Definition 1. For (9) with uk = 0 for all k ∈ Z+, x∗ is
a locally exponentially stable equilibrium if there exists a
δ > 0, such that for some a > 0 and 0 < b < 1,

‖xk − x∗‖2 ≤ abk‖xini − x∗‖2
for all xini ∈ Bδ(x∗). If δ = +∞, then x∗ is a globally
exponentially stable equilibrium.

The exponential stability implies not only the conver-
gence, but also the convergence rate of (9). When the input
signal is not zero, the input-to-state stability characterizes
how the solution of (9) is affected by the input signal.

Definition 2. A function γ : R+ → R+ is said to be of class
K if it is continuous, strictly increasing and vanishes at the
origin. A function β : R+ ×R+ → R+ is said to be of class
KL if β(·, t) is of class K for every fixed t ∈ R+ and, for
every fixed r ≥ 0, β(r, t) decreases to 0 as t→∞.

Definition 3. System (9) is locally input-to-state stable if
there exist some α1 > 0, some α2 > 0, some β ∈ KL and
some γ ∈ K, such that for each u and each xini satisfying
xini ∈ Bα1

(x∗), ‖u‖∞ < α2, the corresponding solution
xk satisfies

‖xk − x∗‖2 ≤ β(‖xini − x∗‖2, k) + γ(‖u‖∞).

Literally speaking, the local input-to-state stability im-
plies that the distance from the state to the equilibrium is
bounded if the input signal is small and the initial state is
close to the equilibrium. In addition, the effect of the initial
condition vanishes as time goes to infinity.

Robustness Analysis of Policy Iteration
Consider the policy iteration in the presence of errors.

Procedure 2 (Inexact Policy Iteration).

1) Choose a stabilizing control gain K̂1, and let i = 1.

2) (Inexact policy evaluation) Obtain Ĝi = G̃i + ∆Gi,
where ∆Gi ∈ Sm+n is a disturbance, G̃i , G(P̃i) and
P̃i ∈ Sn satisfy

H(G̃i, K̂i) = 0, (10)

and J(x0,−K̂ix) = xT0 P̃ix0 is the true cost induced by
control gain K̂i, if K̂i is stabilizing.

3) (Policy update) Construct a new control gain

K̂i+1 = [Ĝi]
−1
uu [Ĝi]ux. (11)

4) Set i← i+ 1 and go back to Step 2).

We firstly show that the exact policy iteration Procedure
1, viewed as a dynamical system, is locally exponentially
stable at P ∗. Then based on this result, we show that the
inexact policy iteration, viewed as a dynamical system with
∆Gi as the input, is locally input-to-state stable.

For X ∈ Rn×n, Y ∈ Rn×n, define

A (X) = XT ⊗XT − In ⊗ In, LX(Y ) = XTY X − Y,
K (Y ) = R−1(Y )BTY A,

R(Y ) = R+BTY B, A(K (Y )) = A−BK (Y ).

Then obviously

vec(LX(Y )) = A (X) vec(Y ). (12)

If X is stable, then A (X) is invertible, by (12) the inverse
operator L−1

X (·) exists on Rn×n.

9305



In Procedure 1, suppose K1 = K (P0), where P0 ∈ Sn
is chosen such that K1 is stabilizing. Such a P0 always ex-
ists. For example, since K∗ is stabilizing, one can choose
P0 close to P ∗ by continuity. Then from (6) and (7), the se-
quence {Pi}∞i=0 generated by Procedure 1 satisfies

Pi+1 = L−1
A(K (Pi))

(
−S −K (Pi)

TRK (Pi)
)
. (13)

If Pi is regarded as the state, and the iteration index i is
regarded as time, then (13) is a discrete-time dynamical sys-
tem and P ∗ is an equilibrium by Theorem 1. The next lemma
shows that P ∗ is actually a locally exponentially stable equi-
librium, whose proof is given in Appendix B.
Lemma 1. For any σ < 1, there exists a δ0(σ) > 0, such
that for any Pi ∈ Bδ0(P ∗), R(Pi) is invertible, A(K (Pi))
is stable and ‖Pi+1 − P ∗‖F ≤ σ‖Pi − P ∗‖F .

Lemma 1 is inspired by (Hewer 1971, Theorem 2), which
states that Procedure 1 has the rate of convergence

‖Pi+1 − P ∗‖F ≤ c0‖Pi − P ∗‖2F . (14)

for any Pi ≥ P ∗, and some c0 > 0. Notice that Lemma 1
does not have the requirement Pi ≥ P ∗.

In Procedure 2, suppose K̂1 = K (P̃0) and ∆G0 = 0,
where P̃0 ∈ Sn is chosen such that K̂1 is stabilizing. If K̂i

is stabilizing and [Ĝi]uu is invertible for all i ∈ Z+, i > 0
(this is possible under certain conditions, see Appendix C),
the sequence {P̃i}∞i=0 generated by Procedure 2 satisfies

P̃i+1 = L−1

A(K (P̃i))

(
−S −K (P̃i)

TRK (P̃i)
)

+ E(G̃i,∆Gi),
(15)

where

E(G̃i,∆Gi) = L−1

A(K̂i+1)

(
−S − K̂T

i+1RK̂i+1

)
− L−1

A(K (P̃i))

(
−S −K (P̃i)

TRK (P̃i)
)
.

Here, the dependence of E on G̃i and ∆Gi comes from
(11). Regarding {∆Gi}∞i=0 as the disturbance input, the next
lemma shows that dynamical system (15) is locally input-to-
state stable, whose proof can be found in Appendix C.
Lemma 2. For σ and its associated δ0 in Lemma 1, there
exists δ1(δ0) > 0, such that if ‖∆G‖∞ < δ1, P̃0 ∈ Bδ0(P ∗),

(i) [Ĝi]uu is invertible, K̂i is stabilizing, ∀i ∈ Z+, i > 0;
(ii) (15) is locally input-to-state stable (see Definition 3):

‖P̃i − P ∗‖F ≤ β(‖P̃0 − P ∗‖F , i) + γ(‖∆G‖∞),

for all i ∈ Z+, where β(y, i) = σiy, γ(y) = c3y/(1−
σ), y ∈ R and c3(δ0) > 0.

(iii) ‖K̂i‖F < κ1 for some κ1 ∈ R+, ∀i ∈ Z+, i > 0;
(iv) limi→∞ ‖∆Gi‖F = 0 implies limi→∞ ‖P̃i−P ∗‖F =

0.
To prove Lemma 2, we firstly prove that with the given

conditions, by continuity [Ĝi]uu is invertible, K̂i is stabiliz-
ing and ‖E(G̃i,∆Gi)‖F ≤ c3‖∆Gi‖F . Then by Lemma 1

and (15), if P̃i ∈ Bδ0(P ∗), δ1 can be chosen small enough
so that
‖P̃i+1 − P ∗‖F ≤ σ‖P̃i − P ∗‖F + c3‖∆G‖∞ (16)

< σδ0 + c3δ1 < δ0.

By mathematical induction, unrolling (16) completes the
proof. In the unrolling process, the coefficient 0 < σ < 1 in
the exponential stability of Lemma 1 prevents the accumu-
lated effects of disturbance ∆Gi from driving ‖P̃i+1−P ∗‖F
to the infinity.

Intuitively, Lemma 2 implies that in Procedure 2, if P̃0

is near P ∗ (thus K̂1 is near K∗), and the disturbance input
∆G is bounded and not too large, then the cost of the gener-
ated control policy K̂i is also bounded, and will ultimately
be no larger than a constant proportional to the l∞-norm of
the disturbance. The smaller the disturbance is, the better
the ultimately generated policy is. In other words, the algo-
rithm described in Procedure 2 is not sensitive to small dis-
turbances when the initial condition is in a neighbourhood
of the optimal solution.

The requirement that the initial condition P̃0 needs to be
in a neighbourhood of P ∗ in Lemma 2 can be removed, as
stated in the following theorem whose proof is given in the
Appendix D.

Theorem 2. For any given stabilizing control gain K̂1

and any ε > 0, if S > 0, there exist δ2(ε, K̂1) > 0,
Π(δ2) > 0, and κ(δ2) > 0, such that for all ∆G satisfy-
ing ‖∆G‖∞ < δ2, [Ĝi]uu is invertible, K̂i is stabilizing,
‖P̃i‖F < Π, ‖K̂i‖F < κ, ∀i ∈ Z+, i > 0 and

lim sup
i→∞

‖P̃i − P ∗‖F < ε.

If in addition limi→∞ ‖∆Gi‖F = 0, then limi→∞ ‖P̃i −
P ∗‖F = 0.

Here are the essential elements of the proof for Theo-
rem 2: It is firstly proved that given any stabilizing control
gain K̂1, there exist ī ∈ Z+, ī < +∞, and bī > 0, such
that if ‖∆Gi‖F < bī for i = 1, 2, · · · , ī, then (1) [Ĝi]uu
is invertible, K̂i is stabilizing and bounded, P̃i is bounded,
i = 1, 2, · · · , ī, (2) P̃ī enters the neighbourhood of P ∗, i.e.,
Bδ0(P ∗) defined in Lemma 2. Secondly, an application of
Lemma 2 completes the proof.

In Theorem 2, K̂1 can be any stabilizing control gain,
which is different from that of Lemma 2. When there is no
disturbance, Theorem 2 implies the convergence result of
Procedure 1 in (Hewer 1971, Theorem 1) (i.e. Theorem 1 in
this paper).

Optimistic Least-Squares Policy Iteration
For system (8), due to the presence of stochastic noise wk,
the cost function (2) will not be finite. Thus alternatively
the objective is to find a control law in the form of u =
−Kx directly from the input/state data, minimizing the cost
function

JAvg(u) = lim
N→∞

1

N
E
wk

k=0,1,···

{
N−1∑
k=0

c(xk, uk)

}
, (17)
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where S and R in c(xk, uk) are positive definite. It is
well-known (Bertsekas 1995, Section 4.4) that this problem
shares the same optimal solutions with the standard LQR
for system (1) and cost function (2). Specifically, the op-
timal control gain is given by (3), and the optimal cost is
J∗Avg = tr(CTP ∗C), with P ∗ the unique positive definite
solution of (4). For any stabilizing gain K, the cost it in-
duces is JAvg(−Kx) = tr(CTPKC), with K and PK sat-
isfying (5) (or equivalently (6)). Note that the assumption
that wk ∼ N (0, Iq) in (8) is not a restriction, since any ran-
dom variable X1 ∼ N (0,Σ) with Σ ∈ Sq positive semidef-
inite, can be represented by X1 = DX2, where Σ = DTD,
D ∈ Rq×q , and X2 ∼ N (0, Iq). Then D is absorbed into C
in (8).

The optimistic least-squares policy iteration (O-LSPI) is
based on the following observation: for a stabilizing gainK,
its associated PK is the stable equilibrium of linear dynam-
ical system

PK,j+1 = H(Q(PK,j),K), PK,0 ∈ Sn, (18)

where

Q(PK,j) =

[
[Q(PK,j)]xx [Q(PK,j)]

T
ux

[Q(PK,j)]ux [Q(PK,j)]uu

]
,

[
S +ATPK,jA ATPK,jB
BTPK,jA R+BTPK,jB

]
.

(19)

This fact can be easily verified by rewriting and vectorizing
(18) into its equivalent form

pK,j+1 =
(
(A−BK)T ⊗ (A−BK)T

)
pK,j

+ vec(S +KTRK), pK,0 ∈ Rn
2

,
(20)

where pK,j = vec(PK,j). Since (A − BK) is stable,
(A−BK)T ⊗ (A−BK)T is also stable. Thus (20) admits
a unique stable equilibrium. So does (18) and the unique so-
lution must be PK because

Q(PK,j) = G(PK,j) + blkdiag(PK,j , 0),

H(G(PK,j),K) = H(Q(PK,j),K)− PK,j .
(21)

This implies that instead of solving (6), we may utilize it-
eration (18) to achieve policy evaluation. It is not hard to
recognize that (18) is actually the LQR version of the opti-
mistic policy iteration in (Tsitsiklis 2002; Bertsekas 2011)
for problems with discrete state and action spaces (thus
the name “optimistic” in O-LSPI). Suppose a behavior pol-
icy (the policy used to generate data is called the behav-
ior policy, see (Sutton and Barto 2018)) uk = −K̂1xk +

vk is applied to the system to collect data, where K̂1 is
stabilizing and vk is drawn i.i.d. from Gaussian distribu-
tion N (0, σ2

uIm), σu ∈ R+. Then the state-control pair
[xT , uT ]T admits a unique invariant distribution π. We make
the following assumption.
Assumption 1. Eπ

[
z̃z̃T

]
is invertible, where z =

[xT , uT , 1]T .
For any P ∈ Sn, we have

E
[
zTk F (P )zk − xTk+1Pxk+1|xk, uk

]
= c(xk, uk)

where F (P ) = blkdiag(Q(P ), tr(CTPC)). Vectorizing
and multiplying the above equation by z̃k yields

E
[
z̃kx̃

T
k+1|xk, uk

]
svec(P )

= E
[
z̃kz̃

T
k |xk, uk

]
svec(F (P ))− z̃kc(xk, uk).

Taking expectation with respect to the invariant distribution
π, by Assumption 1 we obtain

svec(F (P )) = ϕ−1
1 (ϕ2 svec(P ) + ϕ3) , (22)

where ϕ1 = Eπ
[
z̃kz̃

T
k

]
, ϕ2 = Eπ

[
z̃kx̃

T
k+1

]
, and ϕ3 =

Eπ [z̃kc(xk, uk)]. For known P , F (P ) can be estimated us-
ing least squares from the collected data

svec(F̂ (P )) = Φ†MΨM svec(P ) + Φ†MΞM ,

where M ∈ Z+, M > 0 and

ΦM =
1

M

M−1∑
k=0

z̃kz̃
T
k , ΨM =

1

M

M−1∑
k=0

z̃kx̃
T
k+1,

ΞM =
1

M

M−1∑
k=0

z̃kc(xk, uk).

In this way, (18) can be solved approximately and directly
from the data by noticing that Q(P ) = H(F (P ), 0). The
O-LSPI is presented in Algorithm 1. Note that the same data
matrices ΦM , ΨM and ΞM are reused for all iterations, thus
O-LSPI is off-policy. The convergence of O-LSPI is proved
in the following theorem.
Theorem 3. In Algorithm 1, under Assumption 1, for any
initial stabilizing control gain K̂1 and any ε > 0, there exist
T0 ∈ Z+ and M0 ∈ Z+, such that for any T ≥ T0 and
M ≥M0, almost surely,

lim sup
N→∞

‖P̃N − P ∗‖F < ε

and K̂i is stabilizing for all i = 1, · · · , N , where P̃N is the
unique solution of (5) for K̂N .

The proof of Theorem 3 can be found in Appendix E. Let
JAvg(−K̂ix) = tr(CT P̃iC) denote the true cost induced
by K̂i. By Theorem 2, the task is to prove that there exist
T0 ∈ Z+ and M0 ∈ Z+, such that for any T ≥ T0 and
M ≥M0, almost surely, ‖∆G‖∞ < δ2. For Algorithm 1,

Ĝi = Q̂i,T − blkdiag(P̂i,T , 0).

Using (21), we have

‖∆Gi‖F ≤ ‖Q̂i,T −Q(P̂i,T )‖F + ‖Q(P̂i,T )−Q(P̃i)‖F
+ ‖P̂i,T − P̃i‖F . (23)

Since K̂1 is stabilizing, by the Birkhoff ergodic theorem
(Koralov and Sinai 2007, Theorem 16.14), almost surely

lim
M→∞

ΦM = ϕ1, lim
M→∞

ΨM = ϕ2,

lim
M→∞

ΞM = ϕ3.
(24)

Using (24), Assumption 1, (18) and (22), we are able to show
that there exist T0 and M0, independent of iteration index i,
such that for any T ≥ T0 and M ≥M0, almost surely every
term in (23) is less than δ2/3. Then Theorem 2 completes
the proof.
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Algorithm 1: O-LSPI

Input: Initial stabilizing control gain K̂1, Number of
policy iterations N , Number of iterations for
policy evaluation T , Number of rollout M ,
Exploration variance σ2

u.
1 Collect data with input uk = −K̂1xk + vk,

vk ∼ N (0, σ2
uIm), to construct ΦM , ΨM and ΞM ;

2 for i = 1, · · · , N − 1 do
3 P̂i,0 ← 0;
4 for j = 0, · · · , T − 1 do
5 svec(F̂i,j)← Φ†MΨM svec(P̂i,j) + Φ†MΞM ;
6 Q̂i,j ← H(F̂i,j , 0);
7 P̂i,j+1 ← H(Q̂i,j , K̂i);
8 end
9 svec(F̂i,T )← Φ†MΨM svec(P̂i,T ) + Φ†MΞM ;

10 Q̂i,T ← H(F̂i,T , 0);
11 K̂i+1 ← [Q̂i,T ]−1

uu [Q̂i,T ]ux;
12 end
13 return K̂N .

Experiments
We apply O-LSPI to the LQR problem studied in (Krauth,
Tu, and Recht 2019) with

A =

[
0.95 0.01 0
0.01 0.95 0.01

0 0.01 0.95

]
, B =

[
1 0.1
0 0.1
0 0.1

]
,

C = S = I3, R = I2.

HereA is stable, so we just choose the initial stabilizing con-
trol gain to be K̂1 = 02×3. The exploration variance is set to
σ2
u = 1. All the experiments are conducted using MATLAB1

2017b, on the New York University High Performance Com-
puting Cluster Prince with 4 CPUs and 16GB Memory. Al-
gorithm 1 is implemented with increasing values of param-
eters N , T and M , until the performance of the resulting
control gain (almost) does not improve. This yields N = 5,
T = 45 andM = 106. To investigate the performance of the
algorithm with different values of M and T , we conducted
two sets of experiments: (a) Fix N = 5 and T = 45, and
implement Algorithm 1 with increasing values of M from
200 to 106; (b) Fix N = 5 and M = 106, and implement
Algorithm 1 with increasing values of T from 2 to 45. To
evaluate the stability, we run Algorithm 1 for 100 times per
set of parameters, and compute the fraction of times it pro-
duces stable policies in all phases (left column in Figure 1).
To evaluate the optimality, the relative error of the cost func-
tion tr(CT (P̃N − P ∗)C)/ tr(CTP ∗C) is calculated. The
relative errors of 100 stable implementations of Algorithm
1 are collected (i.e., implementation that yields stabilizing
control gains in all phases), based on which the sample aver-
age (middle column in Figure 1) and sample variance (right
column in Figure 1) of the relative error are plotted.

1https://www.mathworks.com/

In Figure 1, as the number of rollout M increases, the
fraction of stability becomes one, and both the sample aver-
age and sample variance of relative error converge to zero.
The fraction of stability is not sensitive to the number of iter-
ation for policy evaluation T . But as T increases, the sample
average and sample variance of relative error improve and
converge to zeros. These observations are consistent with
our Theorem 3, thus are also consistent with our robustness
analysis for policy iteration, since Theorem 3 is based on
Theorem 2.

For comparison, the off-policy least-squares policy itera-
tion algorithm LSPIv1 in (Krauth, Tu, and Recht 2019) is
also implemented, using the same setting with the first set of
experiments of various M (upper row in Figure 1). The O-
LSPI and LSPIv1 have similar performance for M ≥ 104,
while the performance of LSPIv1 is slightly better than that
of O-LSPI for M < 104. This may be explained by the
fact that the LSPIv1 in (Krauth, Tu, and Recht 2019) assume
knowledge of the matrix C in (8), which is not required in
O-LSPI.

Finally, the performance of O-LSPI and LSPIv1 with vari-
ous choices of exploration variance σ2

u has been investigated
on the same example (see Appendix F). The performance of
both O-LSPI and LSPIv1 is best when the exploration vari-
ances are large (σ2

u ≥ 10). The performance of both O-LSPI
and LSPIv1 deteriorates when the exploration noise vari-
ances are medium and small (σ2

u < 10). And O-LSPI per-
forms better than LSPIv1 when the exploration noise vari-
ances are small (σ2

u ≤ 10−5).

Related Work
The investigation of the robustness of policy iteration for
problems with continuous state/control spaces is available in
previous literature. In (Bertsekas 1995, Proposition 3.6), for
discounted optimal control problems of discrete-time sys-
tems, it is reported that

lim sup
i→∞

max
x∈X⊂Rn

(
Jµi(x)− J∗(x)

)
≤ ε+ 2αδ

(1− α)2
, (25)

where µi is the policy generated in ith iteration, δ and ε are
the upper bounds of the errors in policy evaluation and pol-
icy improvement respectively, 0 < α < 1 is the discount
factor. Bound (25) and our bound in Theorem 2 have the
similar styles. However, in our setting the discount factor is
α = 1 so our bound cannot be implied by (25). Utilizing
the fact that Riccati operator is contractive in Thompson’s
part metric (Thompson 1963), it is shown in (Krauth, Tu,
and Recht 2019, Appendix B) that the convergence to the
optimal solutions is still achieved in Thompson’s part met-
ric, if the errors converge to zero. But it is unclear if this
result could imply Theorem 2 in this paper. Sufficient con-
ditions on the errors are given in (Hylla 2011, Chapter 2)
and (Boussios 1998, Chapter 2) for continuous-time linear
and nonlinear system dynamics respectively, to guarantee
that the newly generated control policy is stabilizing and
improved. The robustness analysis in this paper is parallel
to that in (Pang, Bian, and Jiang 2020). However, since we
are dealing with discrete-time systems here, the derivations
and proofs are inevitably distinct.
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Figure 1: Experimental evaluation on the dynamics of (Krauth, Tu, and Recht 2019).

In recent years, there have been resurgent research in-
terests in LQR problems, about learning the optimal solu-
tions from the input/state/output data. The model-based cer-
tainty equivalence methods explicitly estimate the values of
A, B and C in (8) from data, and obtain near-optimal so-
lutions based on the estimations, see (Abbasi-Yadkori and
Szepesvári 2011; Ouyang, Gagrani, and Jain 2017; Abeille
and Lazaric 2018; Dean et al. 2018; Shirani Faradonbeh,
Tewari, and Michailidis 2020; Umenberger and Schön 2020;
Cassel, Cohen, and Koren 2020; Basei, Guo, and Hu 2020),
to name a few. The model-free methods aim at finding the
near-optimal solutions directly from the data, without the
estimations of system dynamics. Action-value model-free
methods learn the value functions of policies, and then gen-
erate new (improved) policies based on the estimated value
functions, see (Bradtke, Ydstie, and Barto 1994; Tu and
Recht 2018; Krauth, Tu, and Recht 2019; Abbasi-Yadkori,
Lazic, and Szepesvári 2019; Tu and Recht 2019; Bian and
Jiang 2019). Policy-gradient model-free methods directly
learn the policies based on the gradient of some scalar per-
formance measure with respect to the policy parameter, see
(Fazel et al. 2018; Bu et al. 2019; Preiss et al. 2019; Mo-
hammadi et al. 2019; Yang et al. 2019; Qu et al. 2020;
Jansch-Porto, Hu, and Dullerud 2020a,b; Furieri, Zheng,
and Kamgarpour 2020). Derivative-free model-free methods
randomly search in the parameter space of policies for the
near-optimal solutions, without explicitly estimate the gra-
dient, see (Mania, Guy, and Recht 2018; Malik et al. 2019;
Li et al. 2020).

Most of the model-free methods for LQR mentioned
above are on-policy, fewer theoretical results exist for off-
policy methods. Among the off-policy action-value model-
free methods for LQR, the most related to our proposed
O-LSPI are the LSPIv1 in (Krauth, Tu, and Recht 2019)
and the MFLQv1 in (Abbasi-Yadkori, Lazic, and Szepesvári
2019). However, (a) no convergence result is reported for
LSPIv1 in (Krauth, Tu, and Recht 2019), and (b) MFLQv1 in
(Abbasi-Yadkori, Lazic, and Szepesvári 2019) needs to learn

the PK in (5) first in on-policy fashion, before it can learn
the Q(PK) in (19) in off-policy fashion in each iteration,
and (c) both the LSPIv1 and MFLQv1 need the knowledge
of matrix C in (8), and (d) both the LSPIv1 and MFLQv1
need to solve a pseudo-inverse problem in each iteration. In
contrast, in our O-LSPI, (a) a convergence result is given
(Theorem 3), and (b) both the PK and Q(PK) are learned
in off-policy fashion (Lines 5 to 7 in Algorithm 1), and (c)
no knowledge of C is required, and (d) the pseudo-inverse
problem only needs to be solved once.

Finally, it is worth mentioning again that the robustness
of RL to errors in the learning processes is analyzed in this
paper. This is different from the the robustness of the con-
trollers learned by RL to disturbances in the system dynam-
ics, studied in (Gravell, Mohajerin Esfahani, and Summers
2020; Zhang, Hu, and Basar 2020a,b; Turchetta, Krause, and
Trimpe 2020; Jiang and Jiang 2017). We also notice that us-
ing control theory to study RL algorithms, as we did in this
paper, has become popular recently. By regarding the learn-
ing processes as dynamical systems, abundant results and
techniques in control theory can be applied to obtain bet-
ter understanding of RL algorithms, see (Srikant and Ying
2019; Gupta, Srikant, and Ying 2019; Hu and Syed 2019;
Lee and He 2019; Bian and Jiang 2019).

Concluding Remarks
This paper analyzes the robustness of policy iteration for
discrete-time LQR. It is proved that starting from any sta-
bilizing initial policy, the solutions generated by policy iter-
ation with errors are bounded and ultimately enter and stay
in a neighbourhood of the optimal solution, as long as the er-
rors are small and bounded. This result in the spirit of small-
disturbance input-to-state stability is employed to prove the
convergence of the optimistic least-squares policy iteration
(O-LSPI), a novel off-policy model-free RL algorithm for
discrete-time LQR with additive stochastic noises in the dy-
namics. The theoretical results are verified by the experi-
ments on a numerical example.
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