
Tempered Sigmoid Activations for
Deep Learning with Differential Privacy

Nicolas Papernot1, Abhradeep Thakurta1, Shuang Song1, Steve Chien1, Úlfar Erlingsson2∗

1Google Brain, 2Apple
{papernot, athakurta, shuangsong, schien}@google.com, ulfar@apple.com

Abstract

Because learning sometimes involves sensitive data, machine
learning algorithms have been extended to offer differential
privacy for training data. In practice, this has been mostly
an afterthought, with privacy-preserving models obtained by
re-running training with a different optimizer, but using the
model architectures that already performed well in a non-
privacy-preserving setting. This approach leads to less than
ideal privacy/utility tradeoffs, as we show here. To improve
these tradeoffs, prior work introduces variants of differential
privacy that weaken the privacy guarantee proved to increase
model utility. We show this is not necessary and instead pro-
pose that utility be improved by choosing activation functions
designed explicitly for privacy-preserving training.
A crucial operation in differentially private SGD is gradient
clipping, which along with modifying the optimization path (at
times resulting in not-optimizing a single objective function),
may also introduce both significant bias and variance to the
learning process. We empirically identify exploding gradients
arising from ReLU may be one of the main sources of this. We
demonstrate analytically and experimentally how a general
family of bounded activation functions, the tempered sigmoids,
consistently outperform the currently established choice: un-
bounded activation functions like ReLU. Using this paradigm,
we achieve new state-of-the-art accuracy on MNIST, Fash-
ionMNIST, and CIFAR10 without any modification of the
learning procedure fundamentals or differential privacy analy-
sis. While the changes we make are simple in retrospect, the
simplicity of our approach facilitates its implementation and
adoption to meaningfully improve state-of-the-art machine
learning while still providing strong guarantees in the original
framework of differential privacy.

Introduction
Machine learning (ML) can be usefully applied to the
analysis of sensitive data, e.g., in the domain of health-
care (Kononenko 2001). However, ML models may uninten-
tionally reveal sensitive aspects of their training data, e.g., due
to overfitting (Shokri et al. 2017; Song and Shmatikov 2019).
To counter this, ML techniques that offer strong guarantees
expressed in the framework of differential privacy (Dwork
and Roth 2014) have been developed. A seminal example
∗Work done while at Google. The author is now at Apple.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is the differentially private stochastic gradient descent, or
DP-SGD, of Abadi et al. (Abadi et al. 2016). The technique
is a generally-applicable modification of stochastic gradient
descent. In addition to its rigorous privacy guarantees, it has
been empirically shown to stop known attacks against the
privacy of training data; a representative example being the
leaking of secrets (Carlini et al. 2019).

Beyond privacy, training using DP-SGD offers advantages
such as strong generalization and the promise of reusable
holdouts (Dwork et al. 2015). Yet, its advantages have not
been without cost: empirically, the test accuracy of differ-
entially private ML is consistently lower than that of non-
private learning unless the dataset is very large (McMahan
et al. 2017). Such accuracy loss may sometimes be inevitable:
for example, the task may involve heavy-tailed distributions
and noise added by DP-SGD hinders visibility of examples in
the tails (Feldman 2019; Bagdasaryan and Shmatikov 2019).
However, this does not explain the accuracy loss of differen-
tially private ML on benchmarks that are known to be rela-
tively simple when learning without privacy: e.g., MNIST,
FashionMNIST, and CIFAR10.

An important step in providing differential privacy guar-
antees for an algorithm is to assess its sensitivity. A learning
algorithm’s sensitivity characterizes how much an individual
training point can, in the worst case, affect the learning algo-
rithm’s outputs (i.e., values of the model parameters). The
ability to more strictly bound sensitivity leads to stronger
privacy guarantees. To strictly bound the impact of any train-
ing example, DP-SGD makes two changes to every step of
gradient-descent optimization: first, each example’s gradient
contribution is limited to a fixed bound – usually referred to
as the clipping norm (in practice, by clipping all per-example
gradients to a maximum `2 norm); second, random (Gaus-
sian) noise of the scale of the clipping norm is added to each
batch’s combined gradient, before it is backpropagated to up-
date model parameters. Together, these changes create a new,
artificial noise floor at each step of gradient descent, such that
the unique signal of any individual example is below this new
noise floor; this allows differential privacy to be guaranteed
for all training examples (Dwork and Roth 2014). However,
the combined effect of clipping and noising also degrades the
model’s performance. Attempts to mitigate this have included
new definitions of differential privacy (Dong, Roth, and Su
2019) or new learning algorithms (McMahan et al. 2018).

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9312

Both require that the privacy analysis be conducted again.
Instead, this paper is the first to show that modifying the

activation function can significantly improve the tradeoffs
between privacy and utility. This does not involve any modi-
fication of the learning procedure or its analysis. We observe
that DP-SGD leads to exploding model activations as a deep
neural network’s training progresses. This makes it difficult
to control the training algorithm’s sensitivity at a minimal
impact to its correctness. Exploding activations cause un-
clipped gradient magnitudes to also increase, which in turn
induces an information loss once the clipping operation is
applied to bound gradient magnitudes. This exacerbates the
negative impact of noise calibrated to the clipping bound,
thus degrading the utility of each gradient step when learning
with privacy. Indeed, the gradient clipping of DP-SGD does
not bring the nice properties of gradient clipping commonly
used to regularize deep learning (Zhang et al. 2019) because
DP-SGD clips gradients at the granularity of individual train-
ing examples rather than at the level of a batch. According
to (Song, Thakkar, and Thakurta 2020; Chen, Wu, and Hong
2020), gradient clipping can introduce bias that significantly
affect model utility. Specifically, the sum of a batch of clipped
per-example gradients does not necessarily point to the same
direction as that of the original gradients, and thus DP-SGD
no longer receives unbiased gradient estimators.

One way to address this limitation of differentially private
learning is to modify the activation functions to prevent acti-
vations from exploding. Rather than using DP-SGD to train
architectures that performed well without privacy, we propose
to tailor the activation functions to the specificities of training
with privacy. We hypothesize that activation functions need
to be bounded when learning with DP-SGD. Therefore, for
private learning, we propose to employ a general family of
bounded activations: tempered sigmoids. We note that prior
work has explored tempered losses as a means to provide ro-
bustness to noise during training (Amid et al. 2019). Because
the family of tempered sigmoids can—in the limit—represent
an approximation of ReLUs (Nair and Hinton 2010) on the
subset of their domain that is exercised in training, we ex-
pect that our approach will perform no worse than current
architectures. These architectures use ReLUs as the de facto
choice of activation function.

Through both analysis and experiments, we validate the
significantly superior performance of tempered sigmoids
when training neural networks with DP-SGD. In our analy-
sis, we relate the role of the temperature parameter in tem-
pered sigmoids to the clipping operation of DP-SGD. Unlike
prior work, which attempted to adapt the clipping norm to
the gradients of each layer’s parameters post hoc to train-
ing (McMahan et al. 2018), we find that tempered sigmoids
preserve more of the signal contained in gradients of each
layer because they rescale each layer’s activations and better
predispose the corresponding layer’s gradients to clipping.
We conclude that using tempered sigmoids is a better default
activation function choice for private ML. In summary, our
contributions facilitate DP-SGD learning as follows:

• We analytically show how tempered sigmoid activations
control the gradient norm explicitly, and in turn support

faster convergence in the settings of differentially private
ML, by reducing the negative effects of clipping. Specifi-
cally for binary logistic regression, we formally quantify
the effect of temperature (in tempered sigmoid) in control-
ling the bias introduced by clipping.

• To demonstrate empirically the superior performance of
tempered sigmoids, we show how using tempered sig-
moids instead of ReLU activations significantly improves
a model’s private-learning suitability and achievable pri-
vacy/accuracy tradeoffs.

• We advance the state-of-the-art of deep learning with differ-
ential privacy for MNIST, FashionMNIST, and CIFAR10.
On these datasets, we find For fixed privacy guarantees
ε < 3, we achieve 98.1% test accuracy (instead of 96.1%)
on MNIST, 86.1% (instead of 81.9%) on FashionMNIST,
and 66.2% (instead of 61.6% on CIFAR10.

While our paper focuses on the role of activation functions,
we demonstrate for the first time the benefits of privacy by
design: that is, how models should be architected for private
learning rather than directly adopted from non-private learn-
ing. The changes we make are simple in retrospect, but we
argue this simplicity is a strength given the significant utility
improvements they provide compared to the alternative: the
development of theoretical tools—such as new variants of
the differential privacy definition that are better suited for
deep learning (Bu et al. 2019)—is often a lengthy process
and mandates that a privacy analysis be performed again.

Training-data Memorization, Differential
Privacy, and DP-SGD

Machine learning models easily memorize sensitive, per-
sonal, or private data that was used in their training, and
models may in practice disclose this data—as demonstrated
by membership inference attacks (Shokri et al. 2017) and
secret extraction results (Song and Shmatikov 2019; Carlini
et al. 2019).

To reason about the privacy guarantees of algorithms such
as training by stochastic gradient descent, differential privacy
has become the established gold standard (Dwork and Roth
2014). Informally, an algorithm is differentially private if
it always produces effectively the same output (in a mathe-
matically precise sense), when applied to two input datasets
that differ by only one record. Formally, a learning algorithm
A that trains models from the set S is (ε, δ)-differentially-
private, if the following holds for all training datasets D and
D′ that differ by exactly one record:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ (1)

Here, ε gives the formal privacy guarantee, by placing a
strong upper bound on any privacy loss, even in the worst
possible case. A lower ε indicates a stronger privacy guaran-
tee or a tighter upper bound. The factor δ allows for some
probability that the property may not hold (in practice, this δ
is required to be very small, e.g., in inverse proportion to the
dataset size).

A very attractive property of differential-privacy guaran-
tees is that they hold true for all attackers—whatever they

9313

are probing and whatever their prior knowledge—and that
they remain true under various forms of composition. In par-
ticular, the output of a differentially-private algorithm can
be arbitrarily post processed, without any weakening of the
guarantees. Also, if sensitive training data contains multiple
examples from the same person (or, more generally, the same
sensitive group), ε-differentially-private training on this data
will result in model with a kε-differential-privacy guarantee
for each person, as long as at most k training-data records
are present per person.

Abadi et al. (2016) introduced DP-SGD as a method for
training deep neural networks with differential-privacy guar-
antees that was able to achieve better privacy and utility
than previous efforts (Chaudhuri, Monteleoni, and Sarwate
2011; Song, Chaudhuri, and Sarwate 2013; Bassily, Smith,
and Thakurta 2014). DP-SGD bounds the sensitivity of the
learning process to each individual training example by com-
puting per-example gradients {gi}i∈0..n−1 with respect to the
loss, for the n model parameters {θi}i∈0..n−1, and clipping
each per-example gradient to a maximum fixed `2 norm C:
Subsequently, to the average of these per-example gradients,
DP-SGD adds (Gaussian) noise whose standard deviation
σ is proportional to this sensitivity. In this work, we use
the canonical implementation of DP-SGD and its associated
analysis from the TensorFlow Privacy library (Google 2019).

Approach

When training a model with differential privacy, gradients
computed during SGD are computed individually for each
example (i.e., the gradient computation is not averaged across
all samples contained in a minibatch). The gradient gi for
each model parameter θi is then clipped such that the total l2
norm of the gradient across all parameters is bounded by C:

gi ← gi ·min

1,
C√∑n−1
i=0 g

2
i

 (2)

Because this operation is performed on per-example gradi-
ents, this allows DP-SGD to control the sensitivity of learning
to individual training examples. However, this clipping oper-
ation will lead to information loss when some of the signal
contained in gradients is discarded because the magnitude of
gradients is too large. One way to reduce the magnitude (or
at least control it), is to prevent the model’s activations from
exploding. This is one of the reasons why common design
choices for the architecture of modern deep neural networks
make it difficult to optimize model parameters with DP-SGD:
prominent activation functions like the REctified Linear Unit
(ReLU) are unbounded.

We hypothesize that replacing ReLUs with a bounded acti-
vation function prevents activations from exploding and thus
keeps the magnitude of gradients to a more reasonable value.
This in turn implies that, given a fixed level of privacy guar-
antee, the clipping operation applied by DP-SGD will discard
less signal from gradient updates—eventually resulting in
higher performance at test time.

Figure 1: Tempered sigmoids: we plot examples for represen-
tative values of the scale s, inverse temperature T , and offset
o. The blue line corresponds to the triplet (s = 2, T = 2, o =
1) where the tempered sigmoid is exactly a tanh.

Tempered sigmoids. Based on this intuition, we propose
replacing the unbounded activations typically used in deep
neural networks with a general family of bounded activations:
the tempered sigmoids. We note that an idea that is conceptu-
ally close to ours, the use of tempered losses, was recently
found to provide robustness to noise during training (Amid
et al. 2019).1 Tempered sigmoids are the family of functions
that take the form of:

φs,T,o : x 7→ s

1 + e−T ·x
− o (3)

where s controls the scale of the activation, T is the inverse
temperature, and o is the offset. By decreasing the value of s,
we reduce the magnitude of a neuron’s activation. Comple-
mentary to this, the inverse temperature rescales a neuron’s
weighted inputs. We note that setting s = 2, T = 2, and
o = 1 in particular yields the tanh function exactly, i.e., we
have φ2,2,1 = tanh.

Controlling the gradient norm with tempered sigmoids.
One of the main issues in practice with DP-SGD is tuning
the value of the clipping parameter:
• If C is set too low, then clipping introduces bias by chang-

ing the underlying objective optimized during learning.
• Instead if the clipping parameter C is set too high, clipping

increases variance by forcing DP-SGD to add too much
noise. Indeed, recall that DP-SGD adds Gaussian noise
with variance σ2 to the average of (clipped) per-example
gradients. This noise is scaled to the clipping norm such
that σ2 = M2C2 where M is a hyperparameter called the
noise multiplier. Thus, large clipping norms lead to noise
with large variance being added to the average gradient
before it is applied to update model parameters.

It turns out that the temperature parameter T in Equation (3)
can be used as a knob to control the norm of the gradient of
the loss function, and with an appropriate choice avoids these

1We experimented with the tempered loss of (Amid et al. 2019)
but did not find any improvements for DP-SGD training.

9314

two issues of clipping. In the following, we formalize the
relationship between our tempered sigmoids and the clipping
of DP-SGD in the context of the binary logistic loss and its
multiclass counterpart.

Consider the tempered logistic loss: `(θ; z, y) =
ln (1 + exp(−y · T · 〈z, θ〉)), where z, θ ∈ Rd, y ∈
{−1,+1}, and T ∈ R is the inverse temperature. Notice
that the above expression is an instantiation of ln (1/φs,T,o),
where s = 1 and x = y · 〈z, θ〉. Now, if we take the gradient
of ` w.r.t θ, we have the following for the `2-norm of the
gradient.

‖∇θ`‖2 =

∥∥∥∥ −T · y · z
1 + exp(T · y · 〈z, θ〉)

∥∥∥∥
2

≤ |T | · ‖z‖2 (4)

We observe the following two things from (4): i) Controlling
T directly controls the norm of the gradient of `, and hence
controls clipping norm in general (when using tempered sig-
moid as an activation), ii) Specifically, for logistic loss, T can
be thought of as linear scaling of the feature vector z, when
the point (z, y) is “grossly misclassified”. These observations
suggest that one can use the inverse temperature to control
the norm of the gradient, and may not ever cross the “clipping
threshold” in DP-SGD.

One can extend this observations to multiclass logistic loss
`(θ; z, y) = ln

(
exp(T ·〈z,θy〉)∑

j∈1..k exp(T ·〈z,θj〉)

)
where y is now a one-

hot label vector and θ ∈ Rd×k for a problem with k classes.
The partial gradient of ` w.r.t. θm, for any class m ∈ 1..k,
becomes:

∂θm` =

(
1m=y −

exp(T · 〈z, θm〉)∑
j∈1..k exp(T · 〈z, θj〉)

)
· T · z (5)

Because the norm of the expression in parenthesis is smaller
than 1, we thus have that ‖∂θm`‖2 ≤ |T | · ‖x‖2. From this
we derive that the norm of the gradient∇θ` = [∂θ1 . . . ∂θk]

would correspondingly be bound by
√
k · ‖∂θm`‖2 ≤

√
k ·

|T | · ‖z‖2, where k is the number of classes.

Controlling gradient norm helps control bias. In this
section we will formally quantify how temperature T can
control the bias introduced for binary logistic regression.
The analysis will be along line of (Song, Thakkar, and
Thakurta 2020). The formal quantification, however, cannot
be extended beyond binary logistic regression, since (Song,
Thakkar, and Thakurta 2020) already shows that even for
simple problem like multi-class logistic regression, clipped
gradients may not conform to the gradient field of a single
objective function. Hence, any formal quantification of the
bias in terms of excess empirical risk is not possible in that
case.

We define the tempered logistic loss on a data set D =
{(zi, yi)}ni=1, ‖zi‖2 ≤ 1, yi ∈ {−1,+1} as LT (θ;D) =

1
n

n∑
i=1

ln (1 + exp(−T · yi · 〈zi, θ〉)). Let D be the domain

of such data sets. For the purpose of exposition, we will
only consider full-gradient descent (GD) (Song, Thakkar,
and Thakurta 2020) where the state updates are made on the

full-gradient of LT (θ;D), rather than a a stochastic gradient
computed on a mini-batch of D.
Theorem 1. Consider the objective function LT (θ,D) for
logistic regression as defined above, and a domain of models
Θ ⊆ Rd. Let θclipped ∈ Θ be the output of GD on LT (θ,D)
with clipping norm C. For any C ∈ R+ and for all D ∈
D (where D is the domain of data sets defined above), the
following is true for appropriate choice of the learning rate
and running GD upto convergence.

LT (θclipped ;D)−min
θ∈Θ
LT (θ;D) = O (max {(T − C) · ‖Θ‖2, 0}) .

where ‖Θ‖2 = supθ,θ′∈Θ ‖θ− θ′‖2 is the diameter of set Θ.

Theorem 1 essentially shows that as we reduce the tem-
perature, the bias in terms of the excess empirical risk goes
down, for any clipping norm C. The proof can be found in
the supplemental material.

Experimental Setup
We use three common benchmarks for differentially pri-
vate ML: MNIST (LeCun, Cortes, and Burges 1998),
FashionMNIST (Xiao, Rasul, and Vollgraf 2017), and CI-
FAR10 (Krizhevsky, Hinton et al. 2009). While the three
datasets are considered as “solved” in the computer vision
community, achieving high utility with strong privacy guaran-
tees remains difficult on all three datasets (Abadi et al. 2016;
Google 2019). Concretely, the state-of-the-art for MNIST is
a test accuracy of 96.6% given an (ε, δ) = (2.93, 10−5) dif-
ferential privacy guarantee. With stronger guarantees, the ac-
curacy continues to degrade. In the same privacy-preserving
settings, prior approaches achieve a test accuracy of 81.9%
on FashionMNIST. For CIFAR10, a test accuracy of 61.6%
can be achieved given an (ε, δ) = (7.53, 10−5) differential
privacy guarantee. To ensure a fair evaluation, we fix the con-
figuration of DP-SGD to achieve these guarantees in all of our
experiments. We note that prior work already explored tuning
the configuration of DP-SGD, e.g., the clipping norm, and
concluded that this was unable to improve the privacy/utility
tradeoff (McMahan et al. 2018).

All of our experiments are performed with the JAX frame-
work in Python, on a machine equipped with a 5th generation
Intel Xeon processor and NVIDIA V100 GPU acceleration.
For both MNIST and FashionMNIST, we use a convolutional
neural network whose architecture is described in Table 1. For
CIFAR10, we use the deeper model in Table 2. The choice of
architectures is motivated by prior work which showed that
training larger architectures is detrimental to generalization
when learning with privacy (Bassily, Smith, and Thakurta
2014). This can be explained in two ways. Given a fixed
privacy guarantee, increasing the number of parameters in-
creases (a) how much each parameter needs to be clipped
relatively and (b) how much noise needs to be added, with
the norm of noise increasing as a function of the square root
of the number of parameters. For completeness and to ensure
a fair evaluation, we confirm that finetuning the number of
parameters does not affect our results in Table 3.

When we train these architectures with ReLU activations
for both the convolution and fully-connected layers, we are

9315

Figure 2: Test accuracy of architectures with tempered sigmoids φs,T,o as a function the scale s, inverse temperature T , and
offset o. Results are plotted for MNIST, FashionMNIST, and CIFAR10 from left to right. All models are trained with DP-SGD to
achieve a fixed privacy guarantee (i.e., constant ε).

Layer Parameters
Convolution 16 filters of 8x8, strides 2
Max-Pooling 2x2
Convolution 32 filters of 4x4, strides 2
Max-Pooling 2x2

Fully connected 32 units
Softmax 10 units

Table 1: Convolutional model architecture.

able to exactly reproduce the previous state-of-the-art results
mentioned above for MNIST, FashionMNIST, and CIFAR10.
To experiment with the tempered sigmoid proposed in Sec-
tion , we implement it in JAX and use it in lieu of the ReLU
in the architecture from Table 1 and Table 2. Our code will
be open-sourced through a pull request to the JAX repository
on GitHub, and we include the code snippet for the tempered
sigmoid activation below—to demonstrate the practicality of
implementing the change we propose in neural architectures.
from jax.scipy.special import expit

def temp_sigmoid(x, scale=2., inverse_temp=2., offset=1., axis=-1):
return scale * expit(inverse_temp * x) - offset

def elementwise(fun, **fun_kwargs):
"""Layer that applies a scalar function elementwise."""
init_fun = lambda rng, input_shape: (input_shape, ())
apply_fun = lambda params, inp, **kwargs: fun(inp, **fun_kwargs)
return init_fun, apply_fun

TemperedSigmoid = elementwise(temp_sigmoid, axis=-1)

Evaluating the Family of
Tempered Activation Functions

We now explore the family of tempered sigmoids empirically.
As hypothesized in the introduction, tempered sigmoids not
only do no worse than ReLU, there exists in fact many func-
tions in the tempered sigmoid family which outperform ReLU
given a fixed privacy guarantee (i.e., constant ε). We then
measure how tempered sigmoids help control the norm of
activation norms during training, thus preventing DP-SGD
from resulting in exploding gradients detrimental to learning,
as previously exposed analytically in our Approach.

Layer Parameters
Convolution ×2 32 filters of 3× 3, strides 1

Avg-Pooling 2× 2, stride 2
Convolution ×2 64 filters of 3× 3, strides 1

Avg-Pooling 2× 2, stride 2
Convolution ×2 128 filters of 3× 3, strides 1

Avg-Pooling 2× 2, stride 2
Convolution 256 filters of 3× 3, strides 1
Convolution 10 filters of 3× 3, strides 1
Averaging over spatial dimensions

Table 2: CIFAR10 model architecture.

Improved Privacy-Utility Tradeoffs
For each of the three datasets considered, we use DP-SGD to
train a pair of models. The first model uses ReLU whereas
the second model uses a tempered sigmoid φs,T,o as the
activation for all of its hidden layers (i.e., both convolutional
and fully-connected layers). The models are based off the
architecture of Table 1 for MNIST and FashionMNIST, or
Table 2 for CIFAR10. All other architectural elements are
kept identical. In our experiments, we subsequently fine-
tuned architectural aspects (i.e., model capacity) as well as
the choice of optimizer and its associated hyperparameters,
separately for the activation function in each setting (ReLU
and tempered sigmoid), to avoid favoring any one choice.

Recall from Section that tempered sigmoids φs,T,o are
bounded activations that are parameterized such that their
inputs and output can be rescaled—through the inverse tem-
perature T and scale s parameters respectively—and their
output recentered with the offset o. Tempered sigmoids help
control the norm of the gradient of the loss function, and in
turn mitigate some of the negative effects from clipping. In
Figure 2, we visualize the influence of the scale s, inverse
temperature T , and offset o on the test performance of models
trained with DP-SGD and tempered sigmoids φs,T,o.

Tempered sigmoids significantly outperform models
trained with ReLU on all three datasets. On MNIST, the
best tempered sigmoid achieves 98.1% test accuracy whereas
the baseline ReLU model trained to provide identical pri-

9316

Figure 3: Test accuracy as a function of the privacy loss when training a pair of models with DP-SGD on MNIST, FashionMNIST,
and CIFAR10 (left to right). The only difference between the two models is the activation function for their hidden layer: ReLU
or tanh. All other elements of the architecture (number, type, and dimension of layers) and the training algorithm (optimizer,
learning rate, number of microbatches, clipping norm, and noise multiplier) are identical. Results averaged over 10 runs.

Figure 4: `2 norm of pre-clipped gradients, for models trained
with SGD or DP-SGD and ReLU or tempered sigmoids. A
triangular moving average of window 3 is applied for clarity.

vacy guarantees (ε = 2.93) achieved 96.6% accuracy. This
contributes to bridging the gap between privacy-preserving
learning and non-private learning, which results in a test ac-
curacy of 99.0% for this architecture with both ReLU and
tanh. On FashionMNIST, we achieve a best performing
model of 86.0% with tempered sigmoids in comparison with
81.9% with ReLUs. A non-private model achieves 89.3%
with tanh and 89.4% with ReLUs. On CIFAR10, the best
tempered sigmoid architectures achieve 66.0% test accuracy
whereas the ReLU variant obtained 61.6% under the same
privacy guarantees and the non-private baseline 76.6%.

From Figure 2, it appears clearly that a subset of tem-
pered sigmoids performs best when learning with DP-SGD
on the three datasets we considered. This demonstrate that
the family of tempered sigmoids as a whole, rather than
one of its members only, benefits learning with privacy—
as we analytically derived previously. These members of
the tempered sigmoid family form a large cluster of points
(s, T, o) which result in models with significantly higher
test accuracy. These points are colored in dark green. For
each dataset, we compute the average value of the 10%
best-performing triplets (s, T, o). On MNIST, the average
triplet obtained is (s, T, o) = (1.97, 2.27, 1.15), on Fash-
ionMNIST (s, T, o) = (2.27, 2.61, 1.28), and on CIFAR10
(s, T, o) = (1.58, 3.00, 0.71). We come back later to this ob-
servation and its beneficial implications for the practicality
of DP-SGD with tempered sigmoids.

Impact of tempered sigmoids on gradient norms. To ex-
plain why a simple change of activations has such a large
positive impact on model accuracy, we conjectured that the
bounded nature of the tempered sigmoid activations prevents
the norm of gradients from exploding during training.

We monitored the `2 norm of the model’s gradients, com-
puted before the clipping operation is applied, for our MNIST
model, while it is being trained in four scenarios: (a) without
privacy using vanilla SGD and ReLU activations, (b) without
privacy using vanilla SGD and tempered sigmoid activations,
(c) with ReLU activations and DP-SGD, and (d) with a tem-
pered sigmoid activation and DP-SGD. For (b,d), we set the
hyperparameter triplet in the tempered sigmoid accordingly
to the average best-performing triplet noted above, i.e., a
tanh. The norm of gradients are visualized in Figure 4. As
conjectured previously, the gradients of our ReLU model
explode by a factor of more than 5 when training with pri-
vacy compared to without privacy. Switching to a tempered
sigmoid brings down the norms of DP-SGD gradients back
to levels comparable with the gradients of our non-private
ReLU network. This helps us to learn with privacy—because
it reduces the negative effects of clipping and noising large
gradients. By predisposing gradients to the operations per-
formed by DP-SGD, less information is lost: the norm of
unclipped gradients is closer to the clipping norm, and is
also more adequate to the noise scale. We observe the same
qualitative differences on other datasets, but do not repeat the
plots due to space constraints.2

Tempered Sigmoids Do Not Increase the
Computational Cost of Hyperparameter Tuning
At first glance, tempered sigmoids introduce three new hy-
perparameters in the training procedure. It is thus interesting
to note how the average values taken by the best-performing
triplets in Figure 2 happen to be close to the triplet setting

2If we repeat the experiment, but instead measure the norm of
activations, we draw qualitatively consistent conclusions: training
with tempered sigmoids prevents activations from exploding with
DP-SGD. This was explained in our analytical treatment of the role
of temperature in our Approach. This in turn explains in part why
the norm of gradients, a global object that includes among other
things activations, also does not explode in DP-SGD with tempered
sigmoids. This is found in the supplementary material.

9317

Dataset Technique Acc. ε δ

MNIST
SGD w/ ReLU (not private) 99.0% ∞ 0

DP-SGD w/ ReLU 96.6% 2.93 10−5

DP-SGD w/ tempered sigmoid [ours] 98.1% 2.93 10−5

FashionMNIST
SGD w/ ReLU (not private) 89.4% ∞ 0

DP-SGD w/ ReLU 81.9% 2.7 10−5

DP-SGD w/ tempered sigmoid [ours] 86.1% 2.7 10−5

CIFAR10
SGD w/ ReLU (not private) 76.6% ∞ 0

DP-SGD w/ ReLU 61.6% 7.53 10−5

DP-SGD w/ tempered sigmoid [ours] 66.2% 7.53 10−5

Table 3: Summary of results comparing ReLU to tempered sigmoids in their respective best performing setting (i.e., each row is
the result of a hyperparameter search). Values of (s, T, o) are set according to the average best-performing triplet, yielding a tanh.

(s, T, o) = (2, 2, 1) for MNIST and FashionMNIST—and to
a lesser extent for CIFAR10. Recall that this setting corre-
sponds exactly to the tanh function. While this observation
may not hold for other datasets, we seek to understand, for
the datasets we considered, whether tanh is able to sustain the
significant improvements of tempered sigmoids over ReLU
without having to fine-tune the three hyperparameters intro-
duced by tempered sigmoids.

Outperforming ReLU without additional hyperparam-
eters using tanh. Figure 3 visualizes the privacy-utility
Pareto curve (Avent et al. 2019) of the ReLU and tanh mod-
els trained with DP-SGD for all three datasets. Rather than
plotting the test accuracy as a function of the number of steps,
we plot it as a function of the privacy loss ε (but the privacy
loss is a monotonically increasing function of the number of
steps). The tanh models outperform their ReLU counterparts
consistently regardless of the privacy loss ε expended: the test
accuracy of the tanh model is 98.0% on MNIST, 85.5% on
FashionMNIST, and 63.84% on CIFAR10. The performance
of tanh is in line with the best test accuracy observed across
tempered sigmoids on Figure 2. Thus, we find that for these
datasets positive results observed on the general family of
tempered sigmoids can be reproduced with tanh alone, which
is obtained by setting (s, T, o) = (2, 2, 1). This means that
replacing ReLU with a tanh will already give a significant
improvement without additional hyperparameter tuning.

Fine-tuning the optimizer. To ensure that the comparison
between ReLU and tempered sigmoids is fair, we now turn
our attention to the training algorithm itself and verify that
the superior behavior of tempered sigmoids holds after a
thorough hyperparameter search.

To motivate why it is important to tailor algorithm and
hyperparameter choices to the specificities of DP-SGD, Ta-
ble 4 (in the supplementary material) shows how learning
rates obtained through a hyperparameter search based on
Batched Gaussian Process Bandits (Desautels, Krause, and
Burdick 2014) vary across the non-DP and DP settings when
training on FashionMNIST. On the contrary, the choice of
optimizer (and in particular whether it is adaptive or not)
does not influence results as much.

This begs the question of whether additional hyperparame-
ter tuning is required to compare fairly ReLU and tempered
sigmoids. Among the hyperparameters mentioned above, it
is particularly important to fine-tune the learning rate to max-
imize performance given a fixed privacy budget. This is be-
cause the privacy budget limits the number of steps we can
possibly take on the training set (as visualized on Figure 3).

Table 3 summarizes the results after performing a hyper-
parameter search over the number of filters k, learning rate,
optimizer, batch size, and number of epochs. This is done sep-
arately for each of the three datasets considered in our experi-
ments. We compare the non-private baseline and the DP-SGD
with ReLU baseline to our DP-SGD approach with tempered
sigmoids after all hyperparameters have been jointly fined-
tuned. For clarity of presentation, we report here results on a
tempered sigmoid using the average best-performing triplet
(s, T, o), i.e., a tanh. Even in their own individually-best set-
ting, tempered sigmoids continue to consistently outperform
ReLU with 98.1% test accuracy (instead of 96.6% for ReLU)
on MNIST, 86.1% test accuracy (instead of 81.9% for ReLU)
on FashionMNIST, 66.2% test accuracy (instead of 61.6%
for ReLU) on CIFAR10. Thus, our results are not impacted
and do not call for large-scale hyperparameter finue-tuning.
This in turn means that our findings may be implemented by
practitioners with little overhead.

Conclusions
Rather than first train a non-private model and later attempt
to make it private, we bypass non-private training altogether
and directly incorporate specificities of private learning in
the selection of activation functions. Selecting a tempered
sigmoid renders the architecture more suitable for learning
with differential privacy. We are able to improve substan-
tially upon the state-of-the-art privacy/accuracy trade-offs on
three benchmarks which remain challenging for deep learn-
ing with differential privacy: MNIST, FashionMNIST, and
CIFAR10. Future work may continue to explore this avenue:
model architectures need to be chosen explicitly for privacy-
preserving training. In addition, choosing the parameters
(s, T, o) to be shared across all layers was not a necessity. We
found that layer-wise parameters did not improve results on
our datasets, but it may be the case for different tasks: this is
related to the layer-wise clipping of McMahan et al. (2018).

9318

Broader Impact
Our work helps make privacy-preserving training more prac-
tical. Our analysis and experimental results help practitioners
make better choices when design neural architectures for
privacy-preserving deep learning. In particular, the conclu-
sions from our paper can readily be applied in real-world
machine learning pipelines. For this reason, we expect the
broader impact of this work to be generally positive given
the numerous applications of machine learning to sensitive
datasets. This includes applications in domains like health-
care or language modeling.

We also observe that the improved utility of tempered
sigmoids does not negatively impact the fairness of a classi-
fier, where fairness is defined as equal performance across
classes (Bagdasaryan and Shmatikov 2019). In a preliminary
experiment, we indeed compared the per-class accuracy of
models trained with tanh and ReLU activations. The standard
deviation of per-class accuracies is 0.27 for ReLU models
compared to 0.16 for tanh, for results averaged over 10 runs.

Appendix
Proof of Theorem 1
Proof of Theorem 1. By Lemma 3.1 in (Song, Thakkar, and
Thakurta 2020) we know that any clipped gradient de-
scent optimizes a well-defined objective function (call it
Lclipped
T (θ;D)). In particular, Lclipped

T is formed by replacing
the individual loss functions `(θ; z, y) = ln(1 + exp(−T ·
y〈z, θ〉)) in LT with a function ˆ̀ which matches ` when
‖∇θ`‖2 ≤ C, and has gradient

(
∇θ`
‖∇θ`‖2 · C

)
anywhere else.

The differentiability and convexity of ˆ̀follows from Lemma
3.1 in (Song, Thakkar, and Thakurta 2020).

Consider ˆ̀(θ; z, y)− `(θ; z, y). Its gradient is zero when
‖∇`‖2 ≤ C and is

(
C

‖∇θ`‖2 − 1
)
· ∇θ` when ‖∇`‖2 > C.

The norm of the gradient is upper bounded by max{T−C, 0},
and thus ∀θ ∈ Θ, |ˆ̀(θ; z, y) − `(θ; z, y)| ≤ max{T −
C, 0} · ‖Θ‖2. Define ∆ := max{T − C, 0} · ‖Θ‖2. For
any θ ∈ Θ, we have |Lclipped

T (θ;D) − LT (θ;D)| ≤
1
n

∑n
i=1

∣∣∣ˆ̀(θ; zi, yi)− `(θ; zi, yi)∣∣∣ ≤ ∆.
By definition of gradient descent in the theorem state-

ment, θclipped = arg min
θ∈Θ

Lclipped
T (θ;D). Furthermore, let

θ∗ = arg min
θ∈Θ

LT (θ;D). Notice that θclipped , θ∗ ∈ Θ.

Since θclipped is the minimizer of Lclipped
T , we have

Lclipped
T (θclipped ;D) − LT (θ∗;D) ≤ Lclipped

T (θ∗;D) −
LT (θ∗;D) ≤ ∆. Therefore, we have LT (θclipped ;D) −
LT (θ∗;D) =

(
LT (θclipped ;D)− Lclipped

T (θclipped ;D)
)

+(
Lclipped
T (θclipped ;D)− LT (θ∗;D)

)
≤ 2∆.

Additional Table and Figure
On the next page, we include additional results on the trade-
off between accuracy and privacy involving different opti-
mizers (see Table 4), as well as a detailed measurement of
the norm of activations for models trained with different
activation functions (see Figure 5).

9319

Non-private Differentially-private
Optimizer Epochs Learning Rate Test Accuracy Learning Rate Test Accuracy

SGD 40 1.07 · 10−1 90.3% 3.32 · 10−1 86.1%
Adam 40 1.06 · 10−3 90.5% 1.32 · 10−3 86.0%

Table 4: Impact of learning rate on trade-off between accuracy and privacy. The privacy budget is fixed to ε = 2.7 for all rows. A
hyperparameter search is then conducted to find the best learning rate to train the model with or without differential privacy on
FashionMNIST.

Figure 5: `2 norm of the first conv activations. Three scenarios are plotted: (a) the model is trained without privacy using
plain SGD, (b) the model is trained with ReLU activations with DP-SGD, and (c) the model is trained with tempered sigmoid
activations (here instantiated according to the average best-performing triplet, a tanh) with DP-SGD.

9320

References
Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;
Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Se-
curity, 308–318. ACM.
Amid, E.; Warmuth, M. K.; Anil, R.; and Koren, T. 2019.
Robust Bi-Tempered Logistic Loss Based on Bregman Di-
vergences. In Advances in Neural Information Processing
Systems, 14987–14996.
Avent, B.; Gonzalez, J.; Diethe, T.; Paleyes, A.; and Balle, B.
2019. Automatic Discovery of Privacy-Utility Pareto Fronts.
arXiv preprint arXiv:1905.10862 .
Bagdasaryan, E.; and Shmatikov, V. 2019. Differential Pri-
vacy Has Disparate Impact on Model Accuracy.
Bassily, R.; Smith, A.; and Thakurta, A. 2014. Private em-
pirical risk minimization: Efficient algorithms and tight error
bounds. In 2014 IEEE 55th Annual Symposium on Founda-
tions of Computer Science, 464–473. IEEE.
Bu, Z.; Dong, J.; Long, Q.; and Su, W. J. 2019. Deep
learning with Gaussian differential privacy. arXiv preprint
arXiv:1911.11607 .
Carlini, N.; Liu, C.; Erlingsson, Ú.; Kos, J.; and Song, D.
2019. The Secret Sharer: Evaluating and Testing Unintended
Memorization in Neural Networks. In USENIX Security
Symposium.
Chaudhuri, K.; Monteleoni, C.; and Sarwate, A. D. 2011.
Differentially private empirical risk minimization. Journal
of Machine Learning Research 12(Mar): 1069–1109.
Chen, X.; Wu, Z. S.; and Hong, M. 2020. Understanding
Gradient Clipping in Private SGD: A Geometric Perspective.
arXiv preprint arXiv:2006.15429 .
Desautels, T.; Krause, A.; and Burdick, J. W. 2014. Paral-
lelizing exploration-exploitation tradeoffs in gaussian process
bandit optimization. Journal of Machine Learning Research
15: 3873–3923.
Dong, J.; Roth, A.; and Su, W. J. 2019. Gaussian differential
privacy. arXiv preprint arXiv:1905.02383 .
Dwork, C.; Feldman, V.; Hardt, M.; Pitassi, T.; Reingold, O.;
and Roth, A. 2015. The reusable holdout: Preserving validity
in adaptive data analysis. Science 349(6248): 636–638.
Dwork, C.; and Roth, A. 2014. The Algorithmic Foundations
of Differential Privacy. now.
Feldman, V. 2019. Does Learning Require Memoriza-
tion? A Short Tale about a Long Tail. arXiv preprint
arXiv:1906.05271 .
Google. 2019. TensorFlow Privacy. https://github.com/
tensorflow/privacy. Last accessed on September 1st, 2020.
Kononenko, I. 2001. Machine learning for medical diagnosis:
history, state of the art and perspective. Artificial Intelligence
in medicine 23(1): 89–109.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer.

LeCun, Y.; Cortes, C.; and Burges, C. 1998.
The mnist database of handwritten digits. URL
http://yann.lecun.com/exdb/mnist Last accessed on
September 1st, 2020.
McMahan, B.; Andrew, G.; Mironov, I.; Papernot, N.;
Kairouz, P.; Chien, S.; and Erlingsson, Ú. 2018. A Gen-
eral Approach to Adding Differential Privacy to Iterative
Training Procedures. NeurIPS 2018 workshop on Privacy
Preserving Machine Learning, Montreal, Canada .
McMahan, H. B.; Ramage, D.; Talwar, K.; and Zhang, L.
2017. Learning differentially private recurrent language mod-
els. arXiv preprint arXiv:1710.06963 .
Nair, V.; and Hinton, G. E. 2010. Rectified linear units im-
prove restricted boltzmann machines. In Proceedings of the
27th international conference on machine learning (ICML-
10), 807–814.
Shokri, R.; Stronati, M.; Song, C.; and Shmatikov, V. 2017.
Membership inference attacks against machine learning mod-
els. In 2017 IEEE Symposium on Security and Privacy (SP),
3–18. IEEE.
Song, C.; and Shmatikov, V. 2019. Auditing Data Provenance
in Text-Generation Models. arXiv preprint arXiv:1811.00513
.
Song, S.; Chaudhuri, K.; and Sarwate, A. D. 2013. Stochas-
tic gradient descent with differentially private updates. In
2013 IEEE Global Conference on Signal and Information
Processing, 245–248. IEEE.
Song, S.; Thakkar, O.; and Thakurta, A. 2020. Characterizing
private clipped gradient descent on convex generalized linear
problems. arXiv preprint arXiv:2006.06783 .
Xiao, H.; Rasul, K.; and Vollgraf, R. 2017. Fashion-MNIST:
a Novel Image Dataset for Benchmarking Machine Learning
Algorithms.
Zhang, J.; He, T.; Sra, S.; and Jadbabaie, A. 2019. Why
Gradient Clipping Accelerates Training: A Theoretical Jus-
tification for Adaptivity. In International Conference on
Learning Representations.

9321

