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Abstract

Bayesian neural networks (BNN) can estimate the uncertainty
in predictions, as opposed to non-Bayesian neural networks
(NNs). However, BNNs have been far less widely used than
non-Bayesian NNs in practice since they need iterative NN
executions to predict a result for one data, and it gives rise
to prohibitive computational cost. This computational bur-
den is a critical problem when processing data streams with
low-latency. To address this problem, we propose a novel
model VQ-BNN, which approximates BNN inference for
data streams. In order to reduce the computational burden,
VQ-BNN inference predicts NN only once and compensates
the result with previously memorized predictions. To be spe-
cific, VQ-BNN inference for data streams is given by tem-
poral exponential smoothing of recent predictions. The com-
putational cost of this model is almost the same as that of
non-Bayesian NNs. Experiments including semantic segmen-
tation on real-world data show that this model performs sig-
nificantly faster than BNNs while estimating predictive re-
sults comparable to or superior to the results of BNNs.

1 Introduction
While deterministic neural networks show high accuracy in
many areas, they cannot estimate reliable uncertainty. Pre-
dictions cannot be perfect and some incorrect predictions
might bring about fatal consequences in areas such as medi-
cal analysis and autonomous vehicles control. Therefore, es-
timating uncertainty as well as predictions is crucial for the
safer application of machine learning based systems.

Bayesian neural network (BNN) uses probability distribu-
tions to model neural network (NN) weights and estimates
not only predictive results but also uncertainties. This allows
computer systems to make better decisions by combining
prediction with uncertainty. Moreover, BNNs can achieve
high performance in a variety of fields, e.g. image recogni-
tion (Kendall, Badrinarayanan, and Cipolla 2015; Kendall
and Gal 2017), language modeling (Fortunato, Blundell,
and Vinyals 2017), reinforcement learning (Kahn et al.
2017; Osband, Aslanides, and Cassirer 2018), meta-learning
(Yoon et al. 2018; Finn, Xu, and Levine 2018), and multi-
task learning (Kendall, Gal, and Cipolla 2018).
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Despite these merits, BNNs have a major disadvantage
that make it difficult to use as a practical tool; the predictive
inference speed of BNNs is dozens of times slower than that
of deterministic NNs. It has held back BNNs from wide ap-
plications. Particularly, this problem is a significant barrier
for processing data streams with low-latency. This will be
further elaborated below.

BNN inference. Let p(w|D) be a posterior probability
of NN weights w with respect to training dataset D, and
p(y|x,w) be a probability distribution parameterized by
NN’s result for an input data vector x and a weight w. Then,
the inference result of BNN is a predictive distribution:

p(y|x0,D) =

∫
p(y|x0,w) p(w|D)dw (1)

where x0 is observed input data vector and y is output vec-
tor. Since this equation cannot be solved analytically, we use
the MC estimator to approximate it:

p(y|x0,D) '
∑
wi

1

Nw
p(y|x0,wi) (2)

where wi ∼ p(w|D) and Nw is the number of the sam-
ples. The MC estimator implies that NN needs to be exe-
cuted iteratively to calculate the predictive distribution. As
many real-world data is large and practical NNs are deep,
multiple NN execution cannot be fully parallelized (Kendall
and Gal 2017). Consequently, the computation speed is sig-
nificantly decreased. For example, according to Appendix B
and (Kendall and Gal 2017), BNN requires up to fifty pre-
dictions to obtain high predictive performance in computer
vision tasks, which means that the data processing speed of
BNN could be fifty times lower than that of deterministic
NN.

VQ-BNN inference. Suppose we have access to mem-
orized input dataset {x0,x1, · · · } consisting of similar
data and corresponding predictions with different weights
{p(y|x0,w0), p(y|x1,w1), · · · } in the process of infer-
ence. Then, the predictive distribution of BNN can be ap-
proximated by combining these predictions. Based on this
idea, we propose novel predictive distribution called vec-
tor quantized BNN (VQ-BNN) inference that approximates
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Figure 1: Comparison of BNN inference and VQ-BNN inference. The predictive distribution of BNN inference is the
sum of the probabilities {p(y|x0,wi)} parameterized by NN’s results—e.g. for classification tasks, p(y|x0,wi) =
Softmax(NN(x0,wi)) where NN(·) is logit of NN—for the same observed input data and different NN weights. The predic-
tive distribution of VQ-BNN inference is the importance weighted sum of one prediction p(y|x0,w0) for the observed data and
the previously memorized predictions {p(y|xi,wi)} for different inputs and weights. The importance is defined as the simi-
larity between the observed data and memorized data. VQ-BNN inference for continuously changing data streams is temporal
smoothing of recent predictions with exponentially decaying importances because we assume that the similarity between the
latest data and the past data decreases exponentially over time. In this figure, the inputs are toy examples.

BNN inference by using the quantized vectors to speed up
calculating the predictive distribution.

In order to reduce the computational burden, VQ-BNN
inference performs NN prediction for the observed input x0

only once. Then, it compensates the result with previously
memorized predictions. We expect that the predictive distri-
bution of VQ-BNN is analogous to that of BNN, since NN
produces similar predictions for similar inputs. For a more
sophisticated approximation, the importance of the predic-
tion in the predictive distribution is determined based on
the similarity between the observed input x0 and the predic-
tion’s input xi. To sum up, VQ-BNN inference is as follows:

p(y|x0,D) '
∑

(xi,wi)

π(xi|x0) p(y|xi,wi) (3)

where wi ∼ p(w|D) and π(xi|x0) is an importance of xi
with respect to x0. To estimate this predictive distribution,
only p(y|x0,w0) needs to be calculated, since remainders
are obtained from memorized predictions. This makes the
computational performance of VQ-BNN comparable to that
of deterministic NN.

VQ-BNN inference requires memorizing input vectors,
similar to the observed input data x0, and corresponding
predictions. To obtain them, we suppose that most of the
time-varying data streams are continuously changing. Based
thereupon, we prepare the proximate data sequence for VQ-
BNN inference on data streams by memorizing the last few
data and NN predictions. Also, we propose the importance
of a previous data that decreases exponentially over time,
i.e., π(xi|x0) = exp(−∆ti/τ)/

∑
i exp(−∆ti/τ) where τ

is hyperparameter and ∆ti is the time difference between xi
and x0. In conclusion, VQ-BNN inference for data streams
is temporal smoothing with exponentially decaying impor-
tance of recent predictions. We summarize VQ-BNN infer-
ence in Figure 1.

Results. We evaluate VQ-BNN with computer vision
tasks namely semantic segmentation and depth estimation
on a variety of high-dimensional video sequence datasets.
The results show that VQ-BNN has almost no degradation in
computational performance compared to deterministic NNs.
The predictive performance of VQ-BNN is comparable to or
superior to that of BNN in various situations.

Contributions. The main contributions of this work are as
follows.

• We propose vector quantized Bayesian neural network
(VQ-BNN) inference as an approximation of Bayesian
neural network inference to enhance the computational
performance.

• We propose temporal smoothing of predictions with ex-
ponentially decaying importance by applying VQ-BNN
inference to data streams.

• We empirically show that the computational performance
of VQ-BNN is almost the same as that of deterministic
NN and the predictive performance is comparable to or
better than that of BNN on real-world data streams.

9323



2 Vector Quantized
Bayesian Neural Network Inference

Let S be a set of data points {x0, · · · ,xK} generated by
a source and p(x|S) be an estimated probability distribu-
tion of the set of data. The data points are also known as
prototypes because they represent the probability. When the
source is stationary, the estimated probability represents the
observation noise.

We propose a predictive distribution for S as an alterna-
tive to the predictive distribution of BNN for one data point
x0:

p(y|S,D) =

∫
p(y|x,w) p(x|S) p(w|D) dxdw (4)

=

∫
p(y|z) p(z|S,D) dz (5)

For simplicity, we introduce z = (x,w) and p(z|S,D) =
p(x|S) p(w|D) in this expression. We call p(x|S) data un-
certainty and p(w|D) model uncertainty.

In general, Eq. (5) cannot be solved analytically. We ob-
tain VQ-BNN inference, i.e.,

p(y|S,D) '
∑
zi

π(xi|S) p(y|zi) (6)

by approximating p(z|S,D). In this equation, we use the
following quantized vector samples with importances:

(zi, π(zi|S,D)) ∼ p(z|S,D) (7)

where zi is a joint of a prototype xi ∈ S and a random NN
weight sample wi ∼ p(w|D), i.e., zi = (xi,wi). Then,
p(y|zi) is a NN prediction for xi with a random weight.
π(zi|S,D) is the importance of zi with

∑K
i=0 π(zi|S,D) =

1. In Eq. (6), we assume that π(zi|S,D) ' π(xi|S) because
wi is i.i.d.. VQ-BNN inference implies that importances and
predictions are required to obtain the predictive distribution.
Equation (6) is equivalent to Eq. (3) except that the set of
prototypes is denoted by x0 instead of S .

Consider the case where the prototypes are given from a
noiseless stationary source, i.e., p(x|S) = δ(x − x0). In
this case, all prototypes and importances are the same, and
all predictions p(y|xi,wi) become p(y|x0,wi). As a result,
VQ-BNN inference which is Eq. (6) reduces to BNN infer-
ence which is Eq. (2). In the same manner, when S consists
of data proximate to x0, the predictive distribution of VQ-
BNN is similar to that of BNN.

We can improve the computational performance of calcu-
lating predictive distribution by using VQ-BNN inference.
Without loss of generality, let x0 be the observed input
data. Also, suppose that we have access to memorized pro-
totypes {x1, · · · ,xK} and the corresponding predictions
{p(y|z1), · · · , p(y|zK)}. To calculate the predictive distri-
bution of VQ-BNN, π(xi|S) for all prototypes and only
p(y|z0) for z0 are required since the remainders are ob-
tained from the memorized predictions. Because the time to
calculate importances and to aggregate memorized predic-
tions are negligible, it takes almost the same amount of time
to perform VQ-BNN inference and to perform NN predic-
tion once.

The case of data stream. In order to use VQ-BNN as the
approximation theory of BNN, we have to take the proxi-
mate dataset as prototypes and derive the importances of the
prototypes. To calculate the predictive distribution for data
streams, VQ-BNN exploits the fact that most real-world data
streams change continuously.

Thanks to the temporal proximity of data stream, we take
the latest data and the recent subsequence from the data
stream as proximate prototypes as follows:

S = {xt| 0 ≥ t ≥ −K} (8)

where t is integer timestamp and K is non-negative number
of prototypes from old data streams. In most cases, we need
to derive the NN predictions for every data points from the
data stream, and it is easy to memorize the sequence of NN
predictions {p(y|zt)}.

We define the importance in a similar way as above. Tem-
poral proximity of data stream implies that older data con-
tributes less to the estimated probability distribution for a
data stream. Based on this idea, we propose a model in
which the importance decreases exponentially over time as
follows:

π(xt|S) =
exp(−|t|/τ)∑−K
t=0 exp(− |t|/τ)

(9)

where τ is given non-negative parameter. τ is determined
experimentally depending on the characteristics of model
and data stream. As τ approaches 0, the latest prototypes
will mainly contribute to the results. As τ approaches ∞,
old prototypes also will equally contribute to the results. In
summary, VQ-BNN inference for data stream is temporal
smoothing of recent predictions of BNN with exponentially
decaying importances.

We have to mention that if the input vector is high-
dimensional, VQ-BNN might need a very large number of
prototypes to represent the probability of a dataset. The more
prototypes are required, the more memory is required, which
makes VQ-BNN inference impractical. Despite these con-
cerns, VQ-BNN achieve high prediction performance by us-
ing a very small number of prototypes. This is because the
relevant data in the data stream are concentrated in a short
time interval. Appendix C shows that the semantic segmen-
tation task on a real-world video sequence requires the re-
cent 5 frames to obtain high predictive performance.

There are more complex algorithms that can be used to
estimate prototypes from a data stream. For example, (Xu,
Shen, and Zhao 2012; Frezza-Buet 2014; Ghesmoune, Leb-
bah, and Azzag 2016) proposed algorithms that change pro-
totypes depending on data stream. However, these algo-
rithms are not suitable for VQ-BNN since they are too com-
plicated and slow. It is an important drawback because VQ-
BNN is developed to achieve high computational perfor-
mance to process data. The experimental results shows that
this simple importance model can achieve high predictive
performance.

Implementation. In order to calculate VQ-BNN infer-
ence, we have to determine the prediction p(y|zi) param-
eterized by NN. For classification tasks, we set p(y|zi) as a
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categorical distribution parameterized by the softmax of NN
logit:

p(y|S,D) '
−K∑
t=0

π(xt|S)Softmax(NN(xt,wt)) (10)

where NN(·) is logit of NN, xt is given by Eq. (8), wt ∼
p(w|D), and π(xt|S) is given by Eq. (9). For regression
tasks, p(y|zi) are usually modeled to have a Gaussian dis-
tribution with the mean of the NN’s result:

p(y|S,D) '
−K∑
t=0

π(xt|S)N (y|NN(xt,wt), σ
2) (11)

where σ is a given parameter.
For stream processing, we further simplify the VQ-

BNN inference with exponentially decaying importance. Let
qt′(y|S,D) be the predictive distribution for prototypes in
t′ ≥ t ≥ −∞. Then, we rewrite q0(y|S,D) as follows:

q0(y|S,D) =
−∞∑
t=0

α exp(− |t|/τ) p(y|zt) (12)

= αp(y|z0) + (1− α) q−1(y|S,D) (13)

where α =
(∑−∞

t=0 exp(− |t|/τ)
)−1

. According to this
equation, the predictive distribution is the mixture of the lat-
est prediction and the previous predictive distribution.

Training. The loss function of a BNN, such as evidence
lower bound (ELBO) or negative log-likelihood (NLL), de-
pends on a predictive distribution. Therefore, we can calcu-
late the loss function by using VQ-BNN inference instead of
by using BNN inference when training NNs.

However, we obtain the posterior distribution in the same
way as BNN training for some practical limitations. First,
VQ-BNN inference depends on the order of the input data
stream. It increases the implementation complexity of train-
ing with VQ-BNN inference. Next, many training datasets
do not have all the labels corresponding to the input data
stream. To derive the predictive distribution for an input with
a label, VQ-BNNs have to predict the result for the previous
inputs without a label. It significantly increases the time re-
quired for the NN training process. Experiments show that
VQ-BNN inference achieves high predictive performance
even though it uses the posterior distribution by BNN train-
ing.

3 Experiments
This section evaluates the performance of VQ-BNN in three
sets of experiments. The first experiment visualizes the char-
acteristics of VQ-BNN with simple linear regression on syn-
thetic data. The second experiment performs semantic seg-
mentation on high-dimensional real-world video sequences.
This classification task compares the performances of VQ-
BNN with other baselines of deep NNs in a practical situa-
tion. The last experiment performs monocular depth estima-
tion on high-dimensional real-world video sequences. This
experiment compares the performance of VQ-BNN in a re-
gression task.

(a) DNN (b) BNN (c) VQ-BNN

Figure 2: Visualization of VQ-BNN with simple linear re-
gression. The top are approximated distributions of input
and NN weight prototypes p(x,w0|S,D) and the bottom are
approximated distributions of output prototypes with data
p(x, y|S,D) at t = 0. The sizes of the circles indicate the
importances of each prototype. They also show marginal
distributions p(x|S), p(w0|D), and p(y|S,D). In Figure 2c,
data points at x < 0 are memorized prototypes from the past
data stream. The black dotted lines and gray distributions
represent true values. The error is 80% confidence interval.

Baselines. We compare the following three methods in the
experiments:

• DNN. Let Softmax(ŷ) be predictive probability of de-
terministic NN (DNN) where ŷ is NN logits for classifica-
tion tasks. It is easy to implement, but it deviates from the
true classification probability when the NN is deepened,
broadened, and regularized well (Guo et al. 2017).

• BNN. BNNs use the MC estimator Eq. (2) to calculate a
predictive distribution. It is difficult to analytically deter-
mine the sufficient number of NN weight samples to con-
verge predictive distribution. Instead, we experimentally
set the number of the samples to 30—i.e., BNNs with MC
dropout (Gal and Ghahramani 2016) layers predict results
with 30 forward passes in Section 3.2 and Section 3.3—
so that the negative log-likelihood (NLL) converge. Ap-
pendix B shows the predictive performance of BNN for
different numbers of forward passes.

• VQ-BNN. As explained in Section 2, VQ-BNN inference
uses the same model and weight distribution as BNN. In
all experiments, we use the same hyperparameters,K = 5
and τ = 1.25, which implies that VQ-BNN is not overly
sensitive to hyperparameter selection. See Appendix C for
performance changes according to hyperparameters.

3.1 Simple Linear Regression
This experiment uses a linear regression model y = w0x +
w1 to find out the characteristics of VQ-BNN. The pos-
teriors for BNN and VQ-BNN are given by p(w0|D) =
N (1.0, 0.022) and p(w1|D) = N (0.0, 0.22). The weights
for DNN are expected values of the posteriors, i.e.,w0 = 1.0
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METHOD
BAT THR

(IMG/SEC)
STR THR

(IMG/SEC) NLL ACC
(%)

ACC90

(%)
UNC90

(%)
IOU
(%)

IOU90

(%)
FREQ90

(%)
ECE
(%)

DNN 27.5 10.5 0.314 91.1 96.1 61.3 66.1 77.7 86.4 4.31
BNN 0.824 0.788 0.276 91.8 96.5 63.0 68.1 79.9 86.8 3.71
VQ-BNN 25.5 9.41 0.253 92.0 97.4 72.4 68.6 83.7 83.1 2.24

Table 1: Computational and predictive performance with semantic segmentation for each method.

and w1 = 0.0. The distribution of time-varying input data
streams is given by p(x|t) = N (x|vt, 0.12) where t is inte-
ger timestamp from −10 and v = 0.01.

Results. Figure 2 shows the probability distributions ap-
proximated by prototypes at t = 0. In this figure, the up-
per row displays approximated distributions of input and
NN weight prototypes, i.e., p(x,w0|S,D), and the lower
row shows approximated distributions of output prototypes
with data, i.e., p(x, y|S,D). The sizes of the circle indicate
the importances of each prototype. It also show the three
kinds of marginal distributions: the probability distribution
of data p(x|S,D), the posterior distribution of NN weight
p(w0|S,D), and the predictive distribution p(y|S,D). w1 is
omitted from w in these figures, but it behaves like w0.

To make a prediction, DNN uses a data point and a
point-estimated NN weight. BNN uses a data point and a
NN weight distribution, instead of point-estimated weight.
VQ-BNN estimates predictive distribution by using the NN
weight distribution and the set of data from the past to now
that represents the probability distribution of data. In other
words, VQ-BNN without distribution of x is equivalent to
BNN, and BNN without distribution of w is equivalent to
DNN.

In this experiment, the most recent data sample is x =
0.4. It is a noisy value because the expected value of x at
t = 0 is 0. Since DNN and BNN only use the most recent
data point to predict results, their predictive distributions are
highly dependent on the noise of the data. As a result, an
unexpected data makes the predictive distributions of DNN
and BNN inaccurate. In contrast, VQ-BNN smoothen the
predictive distribution by using predictions with respect to
past data. Therefore, the predictive distributions of VQ-BNN
are robust to the noise of data and its prediction.

Implications. These results imply that VQ-BNN may give
a more accurate predictive result than BNN when the input
and its prediction are noisy. Also, VQ-BNN is less likely
to be overconfident than BNN since VQ-BNN uses both NN
weight distribution and a probability distribution of data. For
this reason, VQ-BNN might be better calibrated than BNN.

3.2 Semantic Segmentation
Semantic segmentation experiment, which is a pixel-wise
classification, evaluates the computational and predictive
performance of VQ-BNN with a modern deep NN in
practical situation. We use the CamVid dataset (Brostow,

Fauqueur, and Cipolla 2009) consisting of 360×480 pix-
els 30 frame-per-second (fps) video sequences of real-world
day and dusk road scenes. We use U-Net (Ronneberger, Fis-
cher, and Brox 2015) as the backbone architecture. Bayesian
U-Net, similar to (Kendall, Badrinarayanan, and Cipolla
2015), contains six MC dropout layers. For more informa-
tion about experimental settings, see Appendix A.1. See Ap-
pendix D.1 for experiments on a different dataset and model.

Computational performance. The throughput (BAT
THR, ↑1) column of Table 1 shows the number of video
frames processed by each model per second in batch pro-
cessing. In this table, VQ-BNN processes 25.5 images per
second, which is only 7% slower than DNN, and 33× faster
than BNN. Likewise, the throughput column for stream
processing (STR THR, ↑) shows that VQ-BNN processes
9.41 images per second in stream processing, which is only
10% slower than DNN, and 12× faster than BNN.

In conclusion, the computational performance of VQ-
BNN is comparable to that of DNN and significantly better
than that of BNN. See Appendix D.1 for more information.

Predictive performance. We use global pixel accuracy
(ACC, ↑) and mean Intersection over Union (IOU, ↑) to
evaluate predictive results. We also use NLL (↓), Expected
Calibration Error (ECE, ↓) (Naeini, Cooper, and Hauskrecht
2015; Guo et al. 2017), and the following metrics to measure
predictive uncertainty:
• Accuracy-90 (ACC90, ↑). If NN is confident in its predic-

tion, it must be accurate. Therefore, we select predictions
with confidence higher than 90% and measure the accu-
racy, i.e., p(accurate|confident). Likewise, we measure
IoU for the confident predictions (IOU90, ↑).

• Unconfidence-90 (UNC90, ↑). If the prediction of
NN is incorrect, NN should not be confident in it.
Therefore, we measure the probability of prediction
which is not 90% confident for incorrect prediction, i.e.,
p(unconfident|inaccurate).

• Frequency-90 (FREQ90, ↑). Even if NN derives re-
liable uncertainty, the model is ineffectual if it rarely
predicts high-confidence results. Therefore, we measure
the percentage of predictions with 90% confidence, i.e.,
p(confident).
The NLL to ECE columns of the Table 1 show the quan-

titative comparison of the predictive performance for each

1We use arrows to indicate which direction is better.
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Figure 3: Reliability diagram with semantic segmentation.
The black dotted line shows the accuracy we expect for each
confidence.

method. This table shows that the predictive performance
of BNN is better than that of DNN. Also, according to un-
certainty metrics, VQ-BNN predict uncertainty better than
BNN. Moreover, ACC and IOU show that VQ-BNN predicts
more accurate results than BNN, which is beyond our expec-
tations.

Figure 3 shows the reliability diagram (Niculescu-Mizil
and Caruana 2005; Naeini, Cooper, and Hauskrecht 2015;
Guo et al. 2017). As shown in this figure, DNN is miscali-
brated; there is significant discrepancy between confidence
and accuracy. In contrast, VQ-BNN is better calibrated than
DNN, and surprisingly better than BNN.

According to these results, VQ-BNN is the most appropri-
ate method not only to distinguish uncertain predictions but
also to predict accurate results. Table 4 in Appendix D.1
shows the predictive performance of VQ-BNN in various
situations. Appendix D.1 also evaluates VQ-DNN, which is
the temporal smoothing of DNN’s predictions. Its predictive
performance is better than that of DNN, but worse than that
of VQ-BNN.

Analysis. The results of Section 3.1 imply that VQ-BNN
is effective in compensating for noisy predictions. For se-
mantic segmentation task, the data that derives inaccurate
results mainly correspond to the edges of objects.

VQ-BNN smoothens the predictive distribution by using
past predictions. Because objects move slowly every frame,
the uncertainty predicted by VQ-BNN is located at the edges
of the objects. Even if VQ-BNN accidentally predicts a
wrong result for the most recent frame, the past predictions
compensate for this error. Figure 4 shows that predictive un-
certainty of VQ-BNN is mainly located at the edge of the
car, and past predictions correct the most recent incorrect
predictions for the car.

We quantitatively show that VQ-BNN achieves higher
predictive performance than other methods at the edges of
objects. We measure predictive performance for pixels rep-
resenting the object edges, and we call it edge predictive
performance. The results of this experiment show that the
edge predictive performance lags behind the predictive per-
formance for all pixels. It implies that there are many inaccu-

METHOD
BAT THR

(IMG/SEC)
STR THR

(IMG/SEC) NLL RMSE
(M)

DNN 54.0 14.5 1.55 0.804
BNN 1.59 1.61 1.10 0.705
VQ-BNN 50.8 13.6 1.09 0.700

Table 2: Computational and predictive performance with
depth estimation for each method.

rate predictions on object edges. In addition, the difference
in the edge predictive performance between VQ-BNN and
BNN is greater than the difference in the predictive perfor-
mance between VQ-BNN and BNN. This implies that VQ-
BNN works well for edge pixels. See Appendix D.1 and Ta-
ble 6 for more details on the edge predictive performance.

VQ-BNN relies on temporal consistency of data streams.
Appendix D.1 evaluate the sensitivity to the temporal con-
sistency, and the result show that the predictive performance
is degraded when temporal consistency decreases.

3.3 Depth Estimation
Monocular depth estimation experiment shows the perfor-
mance of VQ-BNN with a deep NN in a regression task on a
real-world dataset. We use the NYUDv2 dataset (Nathan Sil-
berman and Fergus 2012), which consists of 240×320 pixels
20-30 fps video sequences from a variety of indoor scenes.
As in Section 3.2, we use U-Net and Bayesian U-Net as
backbone architectures. For more information about experi-
mental settings, see Appendix A.2.

Computational performance. The throughput for batch
processing (BAT THR, ↑) of Table 2 shows the number of
video frames processed by each model per second. In this
table, VQ-BNN processes 54.0 images per second, which
is only 6% slower than DNN, and 32× faster than BNN.
Similarly, the throughput for stream processing (STR THR,
↑) shows that VQ-BNN processes 13.6 images per second
in stream processing, which is only 6% slower than that of
DNN, and 8× faster than that of BNN. These results are
consistent with the results in Section 3.2; the computational
performance of VQ-BNN is significantly better than that of
BNN, and is similar to that of DNN. See Appendix D.2 for
more information.

Predictive performance. We use root-mean-square error
(RMSE, ↓) to evaluate predictive results for depth estima-
tion. We use NLL to evaluate predictive uncertainty.

RMSE and NLL columns of Table 2 show predictive
performances for each method. This table shows that both
RMSE and NLL of VQ-BNN are the lowest among those
of the three methods. In conclusion, VQ-BNN is the most
appropriate method for predicting accurate predictive results
as well as reliable uncertainty in the regression task. See Ap-
pendix D.2 for more information on depth regression exper-
iment.
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Figure 4: Qualitative Analysis of VQ-BNN with semantic segmentation. The first row is (cropped and adjusted) input image, the
second row is prediction for the image, and the last row is confidence. A whiter background corresponds to higher confidence.
VQ-BNN predicts the result once for the most recent image (t = 0). Then, it derives the predictive distribution by adding the
latest prediction (t = 0) and past predictions (t ∈ {−1,−2, · · · }), with exponentially decaying importances. Since the objects
in the video sequence move slowly, the predictive distribution of VQ-BNN has high uncertainty at the edges of the objects. Even
if VQ-BNN accidentally predicts a wrong result for the most recent frame, the past predictions compensate for this error. In
this figure, the predictive uncertainty of VQ-BNN is mainly located at the edge of the car, and VQ-BNN derives more accurate
predictive result for the car than BNN does.

4 Related Work

Several sampling-free BNNs, e.g. (Hernández-Lobato and
Adams 2015; Wang, Xingjian, and Yeung 2016; Wu et al.
2018), were proposed recently and they might be a solu-
tion to the problem that BNNs require multiple NN predic-
tions. Sampling-free BNNs approximate the posterior and
the probability of layer’s outputs using a simple type of para-
metric distribution such as Gaussian distribution or expo-
nential family. Therefore, they predict results with one or
two forward passes.

However, neural networks used in real world situations
have dozens or more of layers, and sampling-free BNNs
are not suitable for deep NNs. To the best of our knowl-
edge, most sampling-free BNN have been evaluated only
with a couple of layers on low-dimensional data such as UCI
datasets. One of the reasons is that the Gaussian approxi-
mation in sampling-free BNNs can be inaccurate to repre-
sent real-world probabilities. Since the discrepancy between
true values and approximate values accumulates in every NN
layer, the error of deep sampling-free BNNs becomes not
negligible. Moreover, in many cases, sampling-free BNN
can not use variational inference to obtain a posterior be-
cause ELBO is not amenable. For these reasons, we mainly
consider sampling-based BNNs for comparison in this pa-
per. Recently, (Gast and Roth 2018) and (Haußmann, Ham-
precht, and Kandemir 2020) applied sampling-free BNNs to
LeNet. (Postels et al. 2019) applied it to SegNet; however,
the neural network does not predict well-calibrated results.
See Appendix E for more details on the sampling-free BNN.

(Riquelme, Tucker, and Snoek 2018) and (Kohl et al.
2018), which utilize Bayesian methods only in the last layer,
predict results efficiently. However, this approach generally
achieves poor predictive performance and are not robust to

corrupted inputs (Ovadia et al. 2019).
A temporal smoothing has been widely used to reduce

noise for accurate time-series forecasting (Pai and Lin 2005;
Ediger and Akar 2007; Benvenuto et al. 2020). (Zhang 2003;
Khashei and Bijari 2010; Chan et al. 2011) combined it
with NN to improve accuracy for forecasting tasks on low-
dimensional data streams. In this paper, we show that the
temporal smoothing can significantly improve the compu-
tational performance of BNNs on high-dimensional data
streams.

5 Conclusion

We present VQ-BNN inference, which is a novel approxima-
tion of BNN inference, to improve the computational perfor-
mance of BNN inference for data streams. BNN inference
iteratively executes NN prediction for a data, which makes
it dozens of times slower. In contrast, VQ-BNN inference
executes NN prediction only once for the latest data from
the data stream, and compensate the result with previously
memorized predictions. Specifically, VQ-BNN inference for
data streams is temporal smoothing of recent predictions
with exponentially decaying importance, and it is easy to
implement. This method results in an order of magnitude
times improvement in computational performance compared
to BNN. Experiments with computer vision tasks such as
semantic segmentation on various real-world datasets show
that the computational performance of VQ-BNN is almost
the same as that of deterministic NN, and the predictive per-
formance is comparable to or even superior to that of BNN.
Since the computational performance of deterministic NN is
the best we can expect, VQ-BNN is an efficient method to
estimate uncertainty.
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