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Abstract

We address the problem of performing Principal Component
Analysis over a family of probability measures on the real
line, using the Wasserstein geometry. We present a novel rep-
resentation of the 2-Wasserstein space, based on a well known
isometric bijection and a B-spline expansion. Thanks to this
representation, we are able to reinterpret previous work and
derive more efficient optimization routines for existing ap-
proaches. As shown in our simulations, the solution of these
optimization problems can be costly in practice and thus pose
a limit to their usage. We propose a novel definition of Princi-
pal Component Analysis in the Wasserstein space that, when
used in combination with the B-spline representation, yields
a straightforward optimization problem that is extremely fast
to compute. Through extensive simulation studies, we show
how our PCA performs similarly to the ones already proposed
in the literature while retaining a much smaller computational
cost. We apply our method to a real dataset of mortality rates
due to Covid-19 in the US, concluding that our analyses are
consistent with the current scientific consensus on the dis-
ease.

1 Introduction
In many fields of machine learning and statistics, compar-
ing, averaging, and, broadly speaking, performing inference
on a set of distributions is an ubiquitous but arduous task. In
some cases, the single datum itself can be seen as a distribu-
tion, as in the analysis of images (Cuturi and Doucet 2014),
census data (Cazelles et al. 2017), econometric surveys (Pot-
ter et al. 2017) and process monitoring (Hron et al. 2014). In
others, distributions could be the output of different machine
learning models, and one wants to aggregate the outputs as
in (Srivastava et al. 2015).

The possibility to carry out meaningful statistical analysis
on distributions depends on the tools that can be employed,
with a focus on the ability to scale to big dataset and the in-
terpretability of the obtained results. Along this line, among
the statistical tools which can be defined on a space, Princi-
pal Components Analysis (PCA) is one of the richest ones.
One of the key features of PCA, which contributes to its
popularity among practitioners, is its interpretability, since it
provides insights into the variability of the data. Moreover,
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by projecting the data into the Euclidean space of the scores
relative to the principal components, one can apply well es-
tablished machine learning techniques, defined on multivari-
ate data, also to more complex data such as distributions.

Optimal Transport (OT) defines a natural framework to
compare different probability measures, as testified by the
huge interest sparkled on different topics related to OT in re-
cent years, especially in the field of machine learning (Cuturi
and Doucet 2014; Genevay, Peyré, and Cuturi 2018; Cuturi,
Teboul, and Vert 2019). Closely related to OT, lies the defi-
nition of Wasserstein distances and, henceforth, Wasserstein
spaces (Villani 2008; Ambrosio, Gigli, and Savaré 2008).

PCA in Wasserstein spaces has already been investigated
in (Bigot et al. 2017; Cazelles et al. 2017), where the authors
define the concepts of geodesic and log PCA, in analogy to
the definitions for Riemannian manifolds. In their work, it
is clearly shown how the log PCA loses its effectiveness as
soon as data is not well concentrated around the barycen-
ter. On the other hand, the geodesic PCA is less sensitive to
this kind of issues, but can become impractical due to the
complex optimization problems that need to be solved.

The contribution of this work is two-folded. First we
show how by employing a suitable B-spline representation
of the space of quantile functions, the optimization prob-
lems required for the geodesic PCA can be solved in a much
more efficient manner. Despite the improvements obtained
with this representation, the computational cost to perform
geodesic PCA on a real dataset can still be burdensome. This
motivates our second contribution, that is an alternative def-
inition of PCA in Wasserstein spaces, that we call projected
PCA. Our methodology is substantially different from both
the geodesic and log PCA, while being connected to both. In
particular, our insight is that our projected PCA shares the
same spirit of the geodesic approach in preserving the met-
ric structure, while leading to a much simpler optimization
problem required to find the principal components, as in the
case of log PCA.

2 Related Works
As already mentioned, at least two definitions of PCA on
distributions are available using the geometry of the Wasser-
stein space. However, several other works have proposed dif-
ferent PCAs on distributions, outside the domain of Wasser-
stein spaces. Here, we make a brief review of these methods.
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In the context of histogram data, symbolic data analysis
(SDA) has been employed to perform PCA in (Nagabhushan
and Kumar 2007; Rodrıguez, Diday, and Winsberg 2000;
Le-Rademacher and Billard 2017). Moreover, in (Verde, Ir-
pino, and Balzanella 2015) some of these attempts have also
been extended to work with generic distributional data us-
ing Wasserstein metrics. However, the components of PCA
in SDA are difficult even to be represented, providing an ef-
ficient framework but with low interpretability.

When working with absolutely continuous distributions,
hence endowed with a probability density function (pdf),
the techniques generally employed derive from functional
data analysis (FDA), as in (Delicado 2011; Kneip and Utikal
2001), by considering, for instance, the pdfs as functions
in Hilbert spaces like L2. Despite its simplicity (FDA tech-
niques are well established and readily available in various
software packages), it is clear that this approach has a ma-
jor drawback in that it completely disregards the structure of
the space of distributions. This is due to the fact that the lin-
ear structure of the traditionally employed functional spaces
cannot capture the constrained nature of probability densi-
ties. Moreover, we also notice that functional PCA under
the L2 metric is not always easy to interpret as shown in
(Colosimo and Pacella 2007).

In an attempt to overcome this drawback, while continu-
ing to use FDA tools, (Hron et al. 2014) employs a trans-
formation that maps the space of continuous distributions
endowed with the Aitchison geometry (called Bayes space),
into L2 through an isometric bijection. In such a way, the
transformed densities are analyzed using the L2 metric and
the results are mapped back to the original Bayes space via
the inverse map. However Bayes spaces are defined only for
densities, and not for discrete measures, moreover all the
densities must share the same support (the smallest closed
set with probability 1), which must also be a compact inter-
val in order for the maps employed to be well defined. Of
course, this assumption is hardly verified in practice.

On the other hand, there have already been proposals to
define a PCA in Wasserstein spaces that avoid all the draw-
backs of the more traditional approaches discussed above.
In particular, the authors in (Bigot et al. 2017; Cazelles
et al. 2017) have defined geodesic and log PCA, translat-
ing the corresponding techniques available for Riemannian
Manifolds into the Wasserstein setting. As shown in (Bigot
et al. 2017), the geodesic PCA enjoys several nice theoret-
ical properties, but the optimization problems to be solved
in order to find the principal components is highly nonlinear
and requires complex and time consuming optimization rou-
tines to be carried out. Moreover, as discussed in (Cazelles
et al. 2017), despite the computational advantages of the log
PCA, the fact that the Wasserstein space is not a manifold
causes some limitations. In particular, the log principal com-
ponents are not always accurate and may sometimes be hard
to interpret.

3 Preliminaries
In the remaining of the paper, we will denote with P(R)
the space of probability measures on R and with µ and ν

generic probability measures in P(R). For any fixed proba-
bility measure µ let Fµ be its cumulative distribution func-
tion (cdf) and let F−µ be the associated quantile function, i.e.
the pseudo inverse of the cdf. We also denote with p1 and
p2 the canonical projection operators, p1 : (x, y) 7→ x and
p2 : (x, y) 7→ y.

Given a probability measure µ and a function f : R →
R, we denote with f#µ the pushforward of µ through f ,
defined by the identity (f#µ)(B) = µ(f−1(B)) for every
measurable B, where f−1 denotes the preimage of f .

3.1 Wasserstein Spaces
We give a brief summary of the main mathematical defini-
tions and results needed to develop our methodology.
Definition 1. (Adapted from (Villani 2008) Def. 6.1) Let
Γ(µ, ν) be the set of probability measures on R × R with
marginals µ and ν, i.e. for every γ ∈ Γ, p1#γ = µ and
p2#γ = ν. The squared 2–Wasserstein distance between µ
and ν is:

W 2
2 (µ, ν) = inf

γ∈Γ(µ,ν)

∫
R×R
|x− y|2dγ(x, y) (1)

Observe that (1) can be unbounded. In order for W2 to
define a metric, we shall restrict ourselves to the space of
probability measures with finite second moment, as in the
following definition.
Definition 2. The Wasserstein spaceW2(R) is defined as

W2(R) = {µ ∈ P(R) : Eµ[X2] <∞} (2)

Equation (1) is due to Kantorovich and is the weak for-
mulation of Monge’s optimal transport problem:

inf
T :T#µ=ν

∫
R
|x− T (x)|2dµ(x) (3)

which can be ill posed.
The following theorems are the base tools needed to de-

fine our PCA.
Theorem 1. ((Ambrosio, Gigli, and Savaré 2008) Theorem
6.0.2) Let µ, ν ∈ P(R).

1. We have

min
γ∈Γ(µ,ν)

∫
R2

|x−y|2dγ(x, y) =

∫ 1

0

|F−µ (s)−F−ν (s)|2ds

2. If µ has not atom, i.e. Fµ is continuous, then T νµ := F−ν ◦
Fµ is the unique optimal transport map in (3).
Following (Panaretos and Zemel 2020) Sec 2.3.2, it is

possible to embed W2(R) into L2([0, 1]) through the iso-
metric map µ 7→ F−µ . Indeed, one has that F−µ is square
integrable on [0, 1] if and only if Eµ[X2] < +∞. The im-
age of this map, L2([0, 1])↑ ⊂ L2([0, 1] is the closed convex
set given by (equivalence classes of) left-continuous non de-
creasing functions on [0, 1].

The geodesics inW2(R) are obtained by pushing forward
straight lines between functions in L2([0, 1]), see (Panaretos
and Zemel 2020), i.e. the line between F−µ and F−ν gives the
unique geodesic between µ and ν:

β(t) = (tF−µ + (1− t)F−ν )#U([0, 1]),
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where U([0, 1]) denotes the uniform distribution on [0, 1].
Note that inverse of the map µ 7→ F−µ is given by

F−µ 7→ F−µ #U([0, 1]). For coherence of notation with
(Bigot et al. 2017), we call log : W2(R) → L2([0, 1]) such
that log(µ) = F−µ and exp : L2([0, 1]) → W2(R), with
exp(f) = f#U([0, 1]).

Hence, through the use of these maps, we can carry out
statistical inference in the space L2([0, 1])↑ and retrieve the
corresponding results inW2(R) through the exp map.

3.2 Quadratic B-Splines
In this section we give a very handy representation of the
space L2([0, 1])↑ of non decreasing functions on [0, 1].
Proposition 1. Let {ψkj }Jj=1 be a basis of B-splines of or-
der k defined over the knots x1, . . . , xJ+k+2. Let f(x) =∑J
j=1 ajψ

k
j (x), then:

1. If the coefficients {aj} are monotonically increasing (de-
creasing) f is monotonically increasing (decreasing).

2. If k = 2, then the statement in Item 1. holds with an ”if
and only if”.
This result implies that any finite sum of quadratic B-

splines which is in L2([0, 1])↑, lies in the convex polytope
defined by the linear equations which constrain the coeffi-
cients to be non decreasing. Moreover any such truncation
is obviously left-continuous and so it represents the quantile
function of some probability distribution. Being monotone
splines dense in L2([0, 1])↑ we can use them to approxi-
mate any quantile function. In what follows we will focus
on quadratic splines, i.e. fix k = 2 and omit the superscript
k when referring to spline functions.

Having fixed J ∈ N > 0 and a quadratic B-spline basis
{ψj}Jj=1, we call L2([0, 1])J↑ the space of monotone splines
spanned by such basis, that is, the space of quantile functions
of the kind:

F−(x) =
∑J
j=1 ajψj(x) s.t. ai − ai−1 ≥ 0

for every i = 2, . . . , J . These constraints can be equivalently
written as:

{G · [a1, · · · , aJ ]T }i ≥ 0 i = 2, . . . , J

where G is the (J − 1)× J matrix with entries gij such that∑
j gij · aj = ai − ai−1.

Remark 1. Define RJ↑ ⊂ RJ the convex polytope given by
all vectors with non decreasing coefficients. By fixing J ∈
N > 0 and a quadratic B-spline basis {ψj}Jj=1 the space
L2([0, 1])J↑ is isomorphic to RJ↑ endowed with the metric
induced by E = {elm} where elm =< ψl, ψm >L2

.

4 Principal Component Analysis
As already mentioned, (Bigot et al. 2017) exploits exp and
log maps to give different definitions of PCA: a geodesic
PCA and a log PCA, both translating into the Wasserstein
space tools developed for Riemannian manifolds (Hucke-
mann, Hotzand, and Munk 2010; Patrangenaru and Elling-
son 2015). We refer to their papers for a comprehensive and
detailed description.

Figure 1: An example in which solving problem (5) differs
from problem (6), with the constraint’s polytope being the
colored rectangle. Notice that the difference is caused by the
amount of points on the borders of the politope.

In this section, we summarize the definitions of global
and nested PCA given in (Bigot et al. 2017; Cazelles et al.
2017) and reformulate them in light of the spline basis we
introduced above, deriving alternative optimization prob-
lems. Furthermore, we propose another definition of PCA,
called projected PCA, and show how this definition yields a
straightforward optimization problem.

4.1 Geodesic PCA
The geodesic PCA inW2(R) amounts to finding closed con-
vex subsets in L2([0, 1])↑ minimizing the average distance
from the data (mapped in L2([0, 1]) with the log map).

Remark 2. The choice of restricting the search to con-
vex sets is due to the fact that geodesic subsets (i.e. sets
which contains all the geodesics connecting any couple of
points in the set) ofW2(R) are mapped to convex subsets of
L2([0, 1])↑ through the log map (Bigot et al. 2017).

In this context, the dimension of a closed convex subset
is defined as the dimension of the smallest affine subset of
L2([0, 1]) containing it and the distance of a point x from
a closed convex set C is the minimum distance from x to a
point in C. Moreover, a k dimensional principal component
(PC) refers to a closed convex set inL2([0, 1])↑ of dimension
k and not to a set of k orthonormal elements, as instead is
the case for standard PCA in Euclidean spaces.

As in (Cazelles et al. 2017), we distinguish between a
global approach and an iterative (or nested) one to the prob-
lem. In the following let F−1 , · · · , F−n denote a set of n
quantile functions, each one associated to one data point, and
F−0 ∈ L2([0, 1])↑ be another quantile function to be consid-
ered as the “center” of the PCA. We report the definitions
from (Bigot et al. 2017).

Definition 3. (Global geodesic PCA) A (k, F−0 )-global
geodesic PC is a set C∗ minimizing n−1

∑n
i=1 d(F−i , C)

over the closed convex sets C ⊂ L2([0, 1])↑ such that
F−0 ∈ C and dim(C) ≤ k
Definition 4. (Nested geodesic PCA) A (k, F−0 )-nested
geodesic PC is a set C∗k such that C∗k is a minimizer
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of n−1
∑n
i=1 d(F−i , C) over the closed convex sets C ⊂

L2([0, 1])↑ such that F−0 ∈ C, dim(C) ≤ k, and C ⊃
C∗k−1, where C∗k−1 is a (k − 1, F−0 )-nested geodesic PC.
When k = 0, the PC coincides with {F−0 }.

4.2 Projected PCA
In this section, we propose an alternative way to use the log
map to define our projected PCA. The idea is quite natural,
and is to exploit the Hilbert structure of L2([0, 1]), where the
PCA is well defined and easily available (see Ramsay 2004),
and the fact that the metric projection on a convex set always
exists and is unique. For a given set of quantile functions
F−1 , . . . , F

−
n , call Uk = {u1, . . . , uk} the principal com-

ponents of the L2([0, 1])-PCA. Given the PCs in L2([0, 1]),
we project their span Sp({u1, . . . , uk}) onto L2([0, 1])↑ and
then find the biggest closed convex subset of this projection.
We formalize the definition as follows:
Definition 5. (Projected PCA) A (k, F−0 )-projected PC is
the biggest closed convex subset C∗ of L2([0, 1])↑ such that:
(i) F−0 ∈ C∗, (ii) dim(C∗) = k and (iii) C∗ ⊆ Π(Sp(Uk)),
where Π denotes the metric projection onto L2([0, 1])↑.

We observe that simply considering the projection
Π(Sp(Uk)) cannot define a valid PCA. Indeed, the projec-
tion of Sp(Uk) might have a dimension greater than k and,
moreover, it is not guaranteed to be a convex subset. To see
this, think for example of projecting the line y = −x onto
the first quadrant in R2.

It is clear from the definition that, in general, the projected
PCA is less respectful of the metric structure of the Wasser-
stein space than the geodesic ones. We will comment more
on such differences in the next section.
Remark 3. We point out that projected PCA is very dif-
ferent from log PCA defined in (Bigot et al. 2017; Cazelles
et al. 2017) since the composition exp ◦ log : L2([0, 1]) →
L2([0, 1])↑ is by no means a projection. As a consequence,
the log-principal directions might even end up not being
geodesics, as opposed to the projected ones which are surely
geodesics thanks to Remark 2. See also (Pegoraro and Be-
raha 2021).

4.3 Computing the PCAs in Practice
In their work, (Cazelles et al. 2017) show how the definitions
of global and nested PCA can be translated into numeri-
cal optimization problems, which however are hard to solve.
Here, we firstly show how our spline representation yields
more tractable optimization routines for both the global and
nested PCA and secondly demonstrate that the projected
PCA instead can be solved in a straightforward way.

Let {ψj}Jj=1 be a fixed quadratic B-spline basis and de-
note by ai = {aij}j and a0 = {a0j}j the coefficients asso-
ciated to F−i and F−0 respectively, i.e. F−i =

∑J
j= aijψj .

Thanks to Remark 1, we can develop our methodolo-
gies in RJ , considering the metric induced by E instead
of the usual one. Indeed, given a vector w ∈ RJ , we
can identify the corresponding function in L2 by the map
w 7→

∑J
j= wjψj .

The next three propositions formalize the optimization
problems that need to be solved. Proofs are given in the Sup-
plementary Material (Pegoraro and Beraha 2020).
Proposition 2. (Global geodesic PCA) A k dimensional
global geodesic PC centered in a0 is the subset of RJ↑
spanned by {w1, · · · ,wk}, linearly independent, which
solve:

arg min
{λi}n1 ,{wj}k1

∑n
i=1||ai − a0 −

∑k
j=1 λij ·wj ||2E (4)

subject to: G
(∑

j λijwj + a0

)
≥ 0.

Proposition 3. (Nested geodesic PCA) With the same nota-
tion as above, a k dimensional nested geodesic PC, centered
in a0 is the set spanned by {w1, · · · ,wk} in RJ↑, where the
wis are found recursively from w1 to wk, such that wh, for
every h, is a solution of:

arg min
{λih}ni=1,wh

∑n
i=1 ||ai − a0 − λihwh||2E (5)

subject to: ||wh||E = 1, < wj ,wh >E= 0 for all j =
1, . . . , h− 1 and G (λihwh + a0) ≥ 0.
Proposition 4. (Projected PCA) A k dimensional projected
PC, centered in a0, is the set spanned by {w1, · · · ,wk} in
RJ↑, where the wis are found recursively from w1 to wk,
such that wh is a solution, for every h, of:

arg max
wh:||wh||E=1

∑n
i=1 | < ai − a0,wh >E |2 (6)

subject to: < wi,wh >E= 0 for all i = 1, . . . , h− 1.
In the context of nested and projected PCA, we will call

the wi principal directions of the PCA. Observe that the
global PCA produces only a principal component and not
a set of preferential directions.

As in (Cazelles et al. 2017), the optimization problems
in (4) and (5) are non-convex and hence, to solve them, we
employed the well known solver Ipopt, which implements
an interior point method. Note that the worst-case computa-
tional cost associated to (4) is O((nk + Jk)3.5) and the one
for (5) is O((n+ J)3.5), cf. (Nocedal and Wright 2006).

As a rough comparison, we measured the execution times
needed to to find the 2-nested PC on a dataset of n = 100
Gaussian distributions, with our implementation (using J =
20 spline basis) and the one in (Cazelles et al. 2017) 1. We
observed a massive speedup (approx. 30 – 35 times faster)
gained using our formulation.

On the other hand, problem (6) can be solved trivially by
recognizing it as a Rayleigh quotient. Indeed, by letting A
the n× J matrix with rows ai − a0, (6) is equivalent to

arg max
w∈RJ

wt(AE)T (AE)w

wtEw

whose solution is the generalized eigenvalue problem
(ETATAE) which may be solved by the eigenvalue prob-
lem for ATAE. The computational cost associated to this
operation is O(J3).

1The code is publicly available at https://github.com/ecazelles/
2017-GPCA-vs-LogPCA-Wasserstein
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Figure 2: From left to right: dataset of pdfs, top row: first principal directions (PD) for different methods, bottom row: second
PD. For the Projected, Nested and Global panels, each plot displays the pdfs associated to λwi where i is the index of the
component (either i = 1 or i = 2), wi is the PC and λ ranges from −2 (darkest blue) to +2 (darkest red). For the Functional
panels, each plot displays the functions given by λwi where wi is the i–th PC found by functional PCA.

In all the three different PCAs, once the PC is found, to
project a (possibly new) datum represented by the spline co-
efficients a∗ on the component, we solve

arg min
λ

||a∗ − a0 −
∑k
j=1 λj ·wj ||2E (7)

subject to: G
(∑

j λjwj + a0

)
≥ 0.

Observe that problem (7) has the same form of (4), while
keeping the vectors wj fixed, which extremely simplifies the
problem. Indeed the projection of a point on a PC is equiv-
alent to minimizing the norm in a polytope, which in RJ is
a well studied problem (see Sekitani and Yamamoto 1993)
and can be solved using an interior point method.

The formulation of the optimization problems presented
in this section allows a straightforward description of the dif-
ferences between the projected PCA and the geodesic ones.
Indeed, the main difference lies in the the monotonicity con-
straints: in (5) these are part of the optimization problems,
while in (6) they are not present. In fact, in the projected
PCA the constraints are used only to restrict the span of
w1, . . . ,wk to RJ↑ in (7). Figure 1 shows a toy example
where the two definitions yield different principal directions.

This, a priori, might result in a loss of performance in fit-
ting the data. However, in Section 5 we show that the loss is
marginal in several simulations, especially when compared
to the computational advantages provided by our definition.

5 Numerical Illustrations
There are several situations in which one may want to per-
form PCA on a generic dataset, that mainly boil down to two
different purposes: descriptive analysis of the main sources
of variability in a set of data and dimensionality reduction.
Finally, a related but different purpose, in the context of
complex data, is to map structured data (as distributions) in
an Euclidean space and perform inference, such as regres-
sion or classification, using standard techniques.

The interpretability of the analysis (being it descriptive,
inferential, etc...) and the effectiveness of the dimensionality
reduction depend on the metric chosen and on how the PCA
is able to fit the data according to such metric.

The first issue can be checked by visual inspection, while
the second one can be measured in terms of the reconstruc-
tion error: the average distance between each datum and its
projection onto the principal components, i.e. for a datum
F ∗ =

∑J
j=1 a

∗
jψj , the quantity ||a∗−

∑k
j=1 λjwj ||E where

λjs are the solution of (7) and w1, . . . ,wk are solution of the
optimization problems defining the different PCAs.

We design three different simulations to address all these
points. In the following, we will always center the PCA in
the barycenter of the data, i.e. a0 = n−1

∑n
i=1 ai. More-

over, we consider the spline basis {ψj}Jj=1 with J = 20
and equispaced knots in [0, 1]. The average error measured
in terms of Wasserstein distance between the original data
and the spline representation is roughly ten times smaller
than the average pairwise distance between measures in each
dataset. Of course, a larger number of elements in the basis
would help reduce even more this approximation error, but
would greatly increase the computational cost required to
find the geodesic PCAs.

All experiments were performed on a laptop equipped
with a 8-core Intel i7-7700HQ CPU 2.80GHz and 16Gb
of RAM. The main numerical libraries employed consist of
the Python packages numpy, scipy and qpsolvers (v 1.1) and
of the optimization library Ipopt (v 3.12.12) interfaced with
the Python package pyomo.

5.1 Intepretability: Population of Gaussians
We consider a sample of n = 100 Gaussian measures
{µi}100

i=1, simulated as follows

µi(dx) = N (dx | mi, σ
2
i )

mi ∼ 0.5N (−3, (0.5)2) + 0.5N (3, (0.5)2)

σi ∼ U([0.5, 2])

It is clear that there are two sources of variability in this
dataset: the location of the maximum of the probability den-
sity functions as well as the width of each pdf. Thus, a well
behaved PCA should be able to detangle these two main “di-
rections”.

Figure 2 displays the results obtained using the three dif-
ferent methods, as well as functional PCA (FPCA). In the

9346



Figure 3: Left: reconstruction error as a function of the num-
ber of the number of components. Center: reconstruction er-
ror as a function of runtime. Right: example of dataset.

latter case, the pdfs are considered as functions in L2, and
the PCA is performed using the Python package scikit-fda.
It is obvious how the PCAs based on the Wasserstein metric
are able to separate the variability given by the location (first
direction) and scale (second direction), whereas the FPCA
captures only the pointwise amplitude variability in the pdfs.
In addition to that, the output of FPCA are clearly not pdfs
(being negative in some part of the domain).

Furthermore, we can appreciate that the principal direc-
tions found by the projected and nested PCA are extremely
similar, hence showing that, at least in this example, the pro-
jection does not alter much the results. Observe how the wis
found by the global PCA (especially the first one) are quite
different from the others, and in fact they are not principal
directions (see Section 4.3). For this reason we believe one
should prefer either the projected or nested PCA for visual-
ization purposes.

In summary, this example shows how the projected PCA
in Wasserstein spaces can provide a useful tool to gain in-
sights into the sources variability of a collection of probabil-
ity measures.

5.2 Dimensionality Reduction: Dirichlet Process
Mixtures

In this example, we compare the ability of the different
PCAs to efficiently compress the information present in a
dataset of distributions, especially when no particular struc-
ture is recognizable among the data, unlike in the previous
example. This example is intended to quantify the amount
of information lost in the projection step.

For this reason, we simulate data from a Dirichlet Pro-
cess Mixture (DPM, see Ferguson 1983), which is a well
known workhorse in the Bayesian literature. We argue that
this is a sensible choice for generating a sample of distribu-
tions with little (recognizable) structure (see the right panel
in Figure 3). We sample n = 100 random probability density
functions from:

pi(·) =

∫
Θ

k(· | θ)Gi(dθ), Gi ∼ DP(αH0) (8)

where k(· | θ) is the Gaussian kernel with parameters θ =
(m,σ2), H0(dm, dσ) = N (dm | 0, 4)U(dσ | [0.5, 2]), α =
50 and DP denotes the Dirichlet measure with base measure
αG0. Additional details on how we simulate from (8) are
given in the Supplementary Material.

Figure 4: Example of dataset for the classification problem,
each curve represents a pdf and the colors correspond to the
classes to be predicted.

Figure 3 reports the results obtained, averaged over
20 repetitions. All the three approaches present an expo-
nentially decreasing reconstruction error; as expected, the
nested and global PCA seem to perform a little better than
our projected PCA, for any fixed choice of the number of
components. However, when comparing the reconstruction
error against the runtime, it is clear how the projected PCA
has an almost negligible runtime. On the other hand, both the
nested and global PCA show that a much greater computa-
tional effort is needed to match the performance of the pro-
jected PCA, hence validating the choice of projected PCA as
a fast black-box tool for dimensionality reduction. Although
not shown here, the same conclusions can be drawn when
comparing the runtimes needed to obtain any PC for a vary-
ing number of basis functions.

5.3 Classification on Distributions
Finally, we consider a binary classification problem, where
the goal is to predict a class label given a distribution. Data
{(pi, yi)}, where yi ∈ {0, 1} is a class label to be predicted,
are generated again from Dirichlet Process Mixtures, with
different parameters depending on the class. In particular
n = 100 data are generated as in (8), with the difference
that Gi ∼ DP (αHyi) where

Hj(dm, dσ) = N (dm | 0, η2
j ) U(dσ | [lj , uj ]) j = 0, 1

and η0 = 4, η1 = 2, (l0, u0) = (0.5, 2.0), (l1, u1) =
(2.0, 4.0), see Figure 4. In all the simulations, the two
classes are equally balanced.

We compare on this classification task three classifiers
based the different PCAs presented. In particular, after per-
forming a PCA, a Support Vector Machine (SVM) classifier
is fit, with parameters C = 1.0, radial basis function ker-
nel and default value for the parameter γ (see the Python
package scikit-learn (Pedregosa et al. 2011)). Moreover, we
compare the results obtained with FDA techniques, namely
functional logistic regression and functional nearest neigh-
bor classifier. Both methods work as the corresponding mul-
tivariate ones, only substituting the L2 inner product and the
L2 norm in place of the inner product and norm in the finite
dimensional Euclidean space.

Results are shown in Table 1. We can notice how the three
classifiers based on the presented PCAs perform very sim-
ilarly and consistently outperform the techniques based on
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Method Accuracy
ProjectedPCA + SVM 0.86± 0.11
NestedPCA + SVM 0.86± 0.11
GlobalPCA + SVM 0.85± 0.10

Functional Logistic Regression 0.71± 0.15
Functional Nearest Neighbor 0.75± 0.13

Table 1: Accuracy of classification for different algorithms.
Each result displays the average 10-fold cross validation ac-
curacy, averaged again over 20 repetitions ± one standard
deviation.

FDA, hence again providing empirical evidence of: (i) the
advantages of using the Wasserstein metric to analyze distri-
butional data and (ii) the similarity in performance between
the projected PCA and the geodesic ones. Finally, similar
considerations with respect to computational time hold as
discussed in the previous examples.

5.4 Covid-19 Mortality Data in the USA
We illustrate the projected PCA using data from the US
Centers for Disease Control and Prevention. In particular,
we examine the Covid-19 mortality in 53 among US states
and inhabited territories. Further, we divide the data between
males and females, as there is a scientific consensus that
mortality due to Covid-19 is higher among males. Data con-
sists of unnormalized histograms, counting the number of
deaths subdivided in 11 age bins.2

We apply the projected PCA after having normalized the
histograms and computed the spline basis representation of
the quantile functions; using J = 20 basis we obtain an aver-
age approximation error of 2×10−4. We selected the dimen-
sion of the PC by looking at the reconstruction error: using
the 2 dimensional PC, we obtained an error, weighted by the
L2 norm of the quantile function, as low as 0.01. Therefore,
we stick to this choice for subsequent analyses.

Figure 5 reports a summary of the inference. We observe
how the first principal direction highlights differences in the
mortality of the elders, while the second one discriminates
the mortality in the age range 50 − 75. In particular, neg-
ative values on the first principal direction correspond to
higher mortality rates among the elders while positive val-
ues in the second principal direction correspond to higher
mortality rates in the age range 50− 75.

By looking at the scores of the projections on these di-
rections, we notice two slightly overlapping point clouds:
in orange the women and in blue the men. The fact that the
blue dots tend to have higher values on the y-axis is in accor-
dance to the fact that Covid-19 mortality affects more males
in their 50− 70s than women in the same age range.

Finally we report also the plots for the two populations
having the most extreme values on the first direction, namely
woman in Massachussets (green) and men in Hawaii (red).
In the first case, the mortality is concentrated in the last bin

2Data are freely available at https://data.cdc.gov/NCHS/
Provisional-COVID-19-Death-Counts-by-Sex-Age-and-S/9bhg-
hcku.

Figure 5: Top left: first principal direction. Top right: second
principal direction. Each plot displays the pdfs associated to
λwi (i is the index of the direction), wi is the principal direc-
tion and λ ranges from−4 (darkest blue) to +4 (darkest red).
Bottom left: scores of the projections on the 2-projected PC,
in blue: male populations, in orange: female populations, the
other colors match the one of the bottom right plot. Bottom
right: data for three particular populations.

of the histogram, while in the latter one there are numerous
deaths of people in their 30s and 50s.

6 Discussion and Future Work

In this paper, we have introduced a simple and handy repre-
sentation of the 2-Wasserstein space, based on the isomet-
ric bijection that associates to a measure on the real line
the corresponding quantile function. By considering a suit-
able B-spline representation of this space, and truncating the
number of basis, we were able to reinterpret the definition of
nested and global PCA, defined in (Bigot et al. 2017), in a
simpler way, thus leading to easier optimization problems.

Furthermore, we introduced a novel notion of PCA in
Wasserstein spaces, based on the projection of a standard
PCA onto a convex polytope. Although our method is differ-
ent from the geodesic approach and shares some similarities
with the less accurate log approach, we showed empirically
how in several different tasks our projected PCA has a sim-
ilar performance, while requiring an almost null computa-
tional effort, when compared to the geodesic PCAs.

We believe that this work is a first step towards the devel-
opment of fast and easy statistical methodologies in Wasser-
stein spaces. Nonetheless, there is broad room for improve-
ments: many novel methodologies can be defined starting
from our spline representation, such as linear models in
Wasserstein spaces. Moreover, we still need to clarify the
impact that the truncation of the B-spline basis produces
over the inference.
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PCA in the Wasserstein space by convex PCA. Annales De
L Institut Henri Poincare-probabilites Et Statistiques 53: 1–
26.

Cazelles, E.; Seguy, V.; Bigot, J.; Cuturi, M.; and Papadakis,
N. 2017. Log-PCA versus Geodesic PCA of histograms in
the Wasserstein space. SIAM Journal on Scientific Comput-
ing 40.

Colosimo, B.; and Pacella, M. 2007. On the use of prin-
cipal component analysis to identify systematic patterns in
roundness profiles. Quality and Reliability Engineering In-
ternational 23: 707 – 725.

Cuturi, M.; and Doucet, A. 2014. Fast Computation of
Wasserstein Barycenters. In International Conference on
Machine Learning, 685–693.

Cuturi, M.; Teboul, O.; and Vert, J.-P. 2019. Differentiable
ranking and sorting using optimal transport. In Advances in
Neural Information Processing Systems, 6861–6871.

Delicado, P. 2011. Dimensionality reduction when data are
density functions. Computational Statistics & Data Analysis
55: 401–420.

Ferguson, T. S. 1983. Bayesian density estimation by mix-
tures of normal distributions. In Recent advances in statis-
tics, 287–302. Elsevier.
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