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Abstract

Generally, the existing graph-based multi-view clustering mod-
els consists of two steps: (1) graph construction; (2) eigen-
decomposition on the graph Laplacian matrix to compute a
continuous cluster assignment matrix, followed by a post-
processing algorithm to get the discrete one. However, both
the graph construction and eigen-decomposition are time-
consuming, and the two-stage process may deviate from direct-
ly solving the primal problem. To this end, we propose Fast
Multi-view Discrete Clustering (FMDC) with anchor graphs,
focusing on directly solving the spectral clustering problem
with a small time cost. We efficiently generate representa-
tive anchors and construct anchor graphs on different views.
The discrete cluster assignment matrix is directly obtained by
performing clustering on the automatically aggregated graph.
FMDC has a linear computational complexity with respect to
the data scale, which is a significant improvement compared
to the quadratic one. Extensive experiments on benchmark
datasets demonstrate its efficiency and effectiveness.

Introduction
Multi-view clustering is a fundamental technique in multi-
view data analysis. As an efficiency method for solving clus-
tering problem, graph-based multi-view clustering has been
widely investigated and used in pattern recognition, data min-
ing, natural language processing, etc.

Most of the existing graph-based multi-view clustering
models consists of two steps: (1) graph construction; (2)
eigen-decomposition on the graph Laplacian matrix to com-
pute a continuous cluster assignment matrix, followed by a
post-processing algorithm such as k-means or spectral rota-
tion to get the discrete one (Kang et al. 2020; Wang, Yang,
and Liu 2020; Zhou et al. 2019; Nie et al. 2016a). Despite
their attractive performance, there are still two drawbacks.
One is the expensive time cost. Usually, the time complexity
of traditional graph construction and eigen-decomposition
operation are O(n2d) and O(n2c), respectively, where n is
the data scale, d is the feature dimensionality and c is cluster
number. The other is that the two-stage process of obtain-
ing the interpretable discrete cluster assignment matrix may
deviate from directly solving the primal problem.
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Many efforts have been devoted to accelerate graph con-
struction or eigen-decomposition, such as constructing an-
chor graph (Kang et al. 2020; Liu, He, and Chang 2010; Zhu,
Nie, and Li 2017; Zhang et al. 2020) and sparse graph (Spiel-
man and Teng 2011; Chen et al. 2010), approximate eigen-
decomposition (Fowlkes et al. 2004). Anchors can be gen-
erated by random sampling or lightweight clustering meth-
ods such as k-means. Generally, anchors generated by k-
means are more representative than random anchors. Howev-
er, it is time-consuming and may generate unbalanced clus-
ters. The Balanced K-means based Hierarchical K-means
(BKHK) (Zhu, Nie, and Li 2017) hierarchically separates the
data into two balanced clusters with k-means and obtains an-
chors by calculating the center of the sub-clusters. It has been
successfully applied to accelerate the graph based methods
including hashing (Li, Hu, and Nie 2017), clustering (Zhu,
Nie, and Li 2017), dimensionality reduction (Nie, Zhu, and
Li 2017), semi-supervised learning (Zhang et al. 2020), etc.
In addition, it should be noted that in existing literatures on
graph-based multi-view clustering, solving the label matrix
in one step has not been well explored.

In this study, we propose a method termed Fast Multi-view
Discrete Clustering (FMDC) with anchor graphs to address
the aforementioned issues. We generate m (m � n) repre-
sentative anchors more efficiently by replacing k-means in
BKHK with k-means++ (Arthur and Vassilvitskii 2006), and
separately construct anchor graph on each view to describe
the geometric structure. By computing an automatically in-
tegrated similarity matrix, we directly optimize the primal
spectral problem. The main contributions include:

• We propose FMDC, which generates anchors more effi-
ciently, and directly calculates the discrete cluster assign-
ment matrix.

• We automatically weigh different views to measure the di-
verse contributions, and compute a symmetric and double-
stochastic aggregated similarity matrix.

• FMDC takes a linear computational complexity w.r.t. n.
It is a major improvement over the quadratic time.

• Comprehensive experiments are conducted on benchmark
datasets to verify the proposed model.
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Related Work
In this section, we will introduce the notations used through-
out this paper and review some closely relevant works.

Notations
Let X = [x1, · · · ,xn]T ∈ Rn×d denote the single-view
dataset and U = [u1, · · · ,um]T ∈ Rm×d denote the gen-
erated anchors. xi ∈ Rd×1 (1 6 i 6 n) is the ith sam-
ple, uj ∈ Rd×1 (1 6 j 6 m) is the jth anchor, n is the
data number, m (m � n) is the anchor number and d is
the dimensionality. Denote the cluster assignment matrix as
Y = [y1, · · · ,yn]T ∈ {0, 1}n×c, where yi ∈ {0, 1}c×1 is
the cluster assignment vector of xi, c is the cluster number.
yij = 1 if xi is assigned to the jth cluster; 0, otherwise. The
`2-norm is ‖·‖2. The Frobenius norm is ‖·‖F . I is the identity
matrix. 1 is a vector with all the elements as 1.

k-means++
The k-means algorithm randomly chooses cluster centers.
k-means++ is a careful seeding k-means. It chooses the first
center at random and select other centers by weighing the data
points according to their distance squared from the closest
center already chosen (Arthur and Vassilvitskii 2006). A data
point farther from the current centers has a higher probability
of being selected as the next center. k-means++ generally
outperforms k-means in terms of both accuracy and speed.

Anchor Graph Construction
Constructing anchor graph is a well-researched problem (Liu,
He, and Chang 2010). To improve the efficiency and per-
formance, we adopt a parameter-free but effective neighbor
assignment strategy (Nie et al. 2016b) to construct a sparse
k-nn anchor graph Z = [z1, · · · , zn]T ∈ Rn×m between X
and U. According to (Nie et al. 2016b), the neighbor assign-
ment for xi can be modeled by solving

min
zT
i 1=1,zi>0

m∑
j=1

‖xi − uj‖22 zij+γ(zij)
2
, (1)

where zij encodes the similarity between xi and uj , and γ is
the regularization parameter. Following (Nie et al. 2016b), γ
can be set as γ = k

2 ‖xi − uk+1‖22 −
1
2

∑k
h=1 ‖xi − uh‖22,

and the solution of Eq. (1) is

zij=

{
‖xi−uk+1‖22−‖xi−uj‖22

k‖xi−uk+1‖22−
∑k

h=1 ‖xi−uh‖22
j ≤ k

0 j > k
. (2)

Constructing Z is extremely efficient because it only needs
O(ndm) to calculate distances. After obtaining Z, a symmet-
ric and doubly-stochastic similarity matrix S can be comput-
ed by (Liu, He, and Chang 2010)

S = Z∆−1ZT , (3)

where ∆ ∈ Rm×m is a diagonal matrix and Mjj =
∑n
i=1 zij

is the jth diagonal element of it.

Spectral Clustering Algorithm
Let G(X,S) be a weighted undirected graph with dataset
X and similarity matrix S. The goal of graph cutting is to
cut it into c unconnected subgraphs with nonempty subsets
X1, · · · ,Xc, satisfying Xl∩Xh = ∅ and X1∪, · · · ,∪Xc =
X (1 6 l, h 6 c). In graph cutting, there are two ways to
measure the volume of Xl

|Xl| := the number of entrties in Xl, (4)

vol(Xl) :=
∑

i∈Xl

dii, (5)

where dii =
∑n
j=1 sij is the degree of xi. To avoid the poor

cutting caused by the minimum cut and ensure the subgraphs
have balanced scales, there are two cutting methods: Rati-
oCut (Rcut) (Hagen and Kahng 1992) and Normalized cut
(Ncut) (Shi and Malik 1997) whose definitions are

Rcut(X1, · · · ,Xc) =
c∑
l=1

cut(Xl,Xl)

|Xl|
, (6)

Ncut(X1, · · · ,Xc) =
c∑
l=1

cut(Xl,Xl)

vol(Xl)
, (7)

where Xl is the complement of Xl, and cut(Xl,Xl) =∑
i∈Xl,j∈Xl

sij is defined as the “cut” between Xl and Xl.

Taking in
∑c
i=1

cut(Xi,Xi)
|Xi| =

∑c
i=1

yT
l Lyl

yT
l yl

, Eq. (6) can be
written in the following form of minimizing trace

min
Y∈Ind

Tr((YTY)−1/2YTLY(YTY)−1/2), (8)

where L = D − S is the graph Laplacian matrix, D is
the degree matrix with the ith element dii. Considering the
computational difficulty of Eq. (8), the scaled indicator matrix

H = [h1, · · · ,hc] = Y(YTY)−1/2 (9)

is introduced. The lth column of H is given by

hl = (0, · · · , 0, 1, · · · , 1︸ ︷︷ ︸
|Xl|

, 0, · · · , 0)T
/√
|Xl|. (10)

Noting HTH = I, the Rcut problem is relaxed as

min
H=Y(YTY)−1/2

Tr((HTH)−1HTLH). (11)

In Ncut, hl is defined the same as Eq. (10), except that |Xl|
is replaced by vol(Xl). Now, HTDH = I and hTl Lhl =
cut(Xl,Xl)
vol(Xl)

. Let F = D1/2H = D1/2Y(YTDY)
−1/2, the

Ncut problem is relaxed as

min
F=D1/2Y(YTDY)−1/2

Tr((FTF)−1FT L̃F), (12)

where L̃ = D−1/2LD−1/2 is the normalized L. The optimal
solution of H or F is formed by the c eigenvectors of L or L̃
corresponding to the c smallest eigenvalues. Finally, k-means
is used to get the discrete cluster assignment matrix.
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The Proposed Model
Formulation
In this section, we propose FMDC which performs cluster-
ing on anchor graphs and directly solves the primal spectral
problem. We first generate anchors. Different from BKHK,
we iteratively segment the raw data into two balanced clus-
ters by adopting k-means++ instead of k-means to generate
anchors more efficiently. For multiple views, considering that
if we independently generate anchors on each view, different
views will obtain distinct anchors, which leads to unreason-
able results. Therefore, we use the concatenating features of
all views to generate anchors, and then split the results into
different views according to the dimensionality.

For the vth view ( 1 ≤ v ≤ V , V is the view number),
we can obtain a symmetric and doubly-stochastic similari-
ty matrix Sv = Zv(∆v)−1(Zv)T with Eq. (3). To achieve
the consistency of different views and measure their diverse
contributions, we automatically assign coefficients to dis-
tinct views to express the correlation and complementarity
between them. The problem is formulated as

V∑
v=1

αvS
v s.t. αT1 = 1, αv > 0, (13)

where α = [α1, · · · , αV ]T ∈ RV×1 is a non-negative nor-
malized weight vector.

∑
v αvS

v can be regarded as an ag-
gregated graph, which is symmetric and doubly-stochastic.
THEOREM 1. Given the similarity matrix Sv calculated with
Eq. (3),

∑
v αvS

v is symmetric and doubly-stochastic.

Proof.

(

V∑
v=1

αvS
v)T = (

V∑
v=1

αvZ
v(∆v)

−1
(Zv)

T
)T =

V∑
v=1

αvS
v.

(14)
It verifies that

∑
v αvS

v is symmetric. Furthermore,

(

V∑
v=1

αvS
v)1 =

V∑
v=1

αvZ
v(∆v)

−1
(Zv)

T
1 =

V∑
v=1

αvZ
v1 = 1.

(15)
Accordingly,

∑
v αvS

v is doubly-stochastic.

With above discussion, L = I −
∑
v αvS

v = L̃. Now,
the solution of H in Eq. (11) equals to that of F in Eq. (12),
which shows the unified viewpoint of Rcut and Ncut. In
FMDC, we are committed to getting rid of the two-stage
process, and directly solving the primal spectral problem to
obtain a multi-view shared discrete cluster assignment matrix
Y. Therefore, we fulfill the idea as follows

min
Y∈Ind,
αT 1=1,α≥0

Tr((YTY)−1(YT (I−
V∑
v=1

αvS
v)Y)). (16)

The non-negative and discrete Y provides sufficient inter-
pretability of the relationship between data points and clus-
ters. Compared with the relaxed continuous value, Eq. (16) is
much closer to Rcut and Ncut. However, Eq. (16) is difficult

Algorithm 1 Algorithm to solve the problem in Eq. (17)

Input: A multi-view dataset {X1, · · · ,XV }, anchor num-
ber m, cluster number c.
Construct anchor graphs according to Eq. (2).
Initialize α(v) = 1/V and Y.
repeat

Update Y according to Eq. (22).
Update α by using Algorithm 2.

until converge
Output: The cluster assignment matrix Y.

to compute and α will obtain the trivial solution, i.e., only
one single view will be active. Thus, we propose a new form
that is easy to solve and smooths the weight distribution to
obtain the non-trivial solution as follows

min
Y∈Ind,αT 1=1,α>0

∥∥∥∥∥
V∑
v=1

αvS
v −Y(YTY)

−1
YT

∥∥∥∥∥
2

F

.

(17)
THEOREM 2. When α is fixed, solving Eq. (17) is equivalent
to solving Eq. (16).

Proof. Tr(
∑
v αvS

v(
∑
v αvS

v)
T

) is a constant once the
graphs are constructed and

∑
v αvS

v = (
∑
v αvS

v)T . Be-
sides, Tr(Y(YTY)−1YT ) = c. Consequently, we have

min
Y∈Ind

∥∥∥∥ V∑
v=1

αvS
v −Y(YTY)

−1
YT

∥∥∥∥2
F

⇔ min
Y∈Ind

Tr(−(
V∑
v=1

αvS
v)Y(YTY)−1YT )

⇔ min
Y∈Ind

Tr((YTY)−1YT (I− (
V∑
v=1

αvS
v))Y)

. (18)

This completes the proof.

Optimization
We design an efficient two-step optimization algorithm which
is summarized in Algorithm 1 to solve Eq. (17) iteratively.

Solving Y with fixed α. When α is fixed, we have

min
Y∈Ind

∥∥∥∥ V∑
v=1

αvS
v −Y(YTY)

−1
YT

∥∥∥∥2
F

⇔ max
Y∈Ind

Tr((YTY)−1YTSY)
. (19)

where S =
∑
v αvS

v . This problem can be written as

max
Y∈Ind

c∑
l=1

yTl Syl
yTl yl

. (20)

Since yTl Syl
/
yTl yl involves all rows of Y, we sequentially

solve Y row by row and fix the other rows as constants.
To determine the solution of the ith row yTi , we need to
compare the objective value when it goes from [1, 0, · · · , 0]
to [0, 0, · · · , 1], and select the one with the largest objective
function value as the optimal solution. Record Y in these c
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cases as Y(1), · · · ,Y(c). In the hth (1 ≤ h ≤ c) case Y(h),
the hth element in the ith row is 1. The other rows of the c
cases are identical. Define the objective vale of the hth case
as obj(Y(h)), then, we need to solve maxh obj(Y(h)).

Assume that in Y(0), yTi is [0, 0, · · · , 0]. Defining ∆(h) =
obj(Y(h))−obj(Y(0)), solving problem maxh obj(Y(h)) is
equivalent to solving maxh ∆(h):

max
h

∆(h)⇔ max
h

c∑
l=1

(y
(h)
l )

T
Sy

(h)
l

(y
(h)
l )

T
y
(h)
l

−
c∑
l=1

(y
(0)
l )

T
Sy

(0)
l

(y
(0)
l )

T
y
(0)
l

⇔ max
h

(y
(h)
l )

T
Sy

(h)
l

(y
(h)
l )

T
y
(h)
l

− (y
(0)
l )

T
Sy

(0)
l

(y
(0)
l )

T
y
(0)
l

(21)
Then, we obtain the optimal solution:

yip =< p = arg max
h

∆(h) >, (22)

where if the argument is true, < · > is 1, otherwise, it is 0.

Solving α with fixed Y. When Y is fixed, we have

min
αT 1=1,α≥0

∥∥∥∥∥
V∑
v=1

αvS
v −Y(YTY)

−1
YT

∥∥∥∥∥
2

F

. (23)

Expanding Sv and Y(YTY)
−1

YT to large vectors vec(Sv)
and y, Eq. (23) can be reformulated as

min
αT 1=1,α≥0

∥∥∥S̃α− y
∥∥∥2
F

⇔ min
αT 1=1,α≥0

Tr(αT S̃T S̃α− 2αT S̃Ty)
, (24)

where S̃ = [vec(S1), · · · , vec(SV )]. Assuming M = S̃T S̃

and b = 2S̃Ty, Eq. (24) is equivalent to

min
αT 1=1,α≥0

αTMα−αTb. (25)

The Augmented Lagrangian Multiplier (ALM) method is
used to solve this problem. Introducing an auxiliary variable
β and let α = β, Eq. (25) becomes

min
αT 1=1,α≥0,α=β

αTMβ −αTb. (26)

We solve the following problem alternatively and iteratively

min
αT 1=1,α≥0,β

αTMβ−αTb+
µ

2

∥∥∥∥α− β +
1

µ
Λ

∥∥∥∥2
2

, (27)

where µ is the quadratic penalty parameter and Λ is the
Lagrangian multiplier. Algorithm for solving α is outlined in
Algorithm 2 and the first two steps are as follows.

Step 1: Fix α, solve β. The subproblem becomes

min
β

αTMβ +
µ

2

∥∥∥∥α− β +
1

µ
Λ

∥∥∥∥2
2

. (28)

Vanishing the derivative of Eq. (28) w.r.t β, we have

β = α +
1

µ
(Λ−MTα). (29)

Then, β is updated.

Algorithm 2 Algorithm to solve the problem in Eq. (25)

Initialization: Initialize α, Λ, µ > 0, 1 < ρ < 2.
repeat

Update β by using Eq. (29).
Update α by using Eq. (33).
Update Λ by Λ = Λ + µ (α− β).
Update µ by µ = ρµ.

until converge
Output: Weight vector α.

Step 2: Fix β, solve α. The subproblem becomes

min
αT 1=1,α≥0

αTMβ −αTb + µ
2

∥∥∥α− β + 1
µΛ
∥∥∥2
2

⇔ min
αT 1=1,α≥0

‖α− r‖22
(30)

where r = 1
µ (µβ −Λ−Mβ + b). Eq. (30) can be solved

with a closed-form solution. Its Lagrangian function is

L(α, ϕ, ζ) =
1

2
‖α− r‖22 − ϕ(αT1− 1)− ζTα, (31)

where ϕ and ζ ≥ 0 are the Lagrange multipliers. The optimal
solution of α should satisfy that the derivative of Eq. (31)
w.r.t. α is equal to zero, so we have

α− r− ϕ1− ζ = 0. (32)

For the lth element of α, noting αlζl = 0 according to the
KKT condition (Huang, Nie, and Huang 2015), we obtain

αl = (rl + ϕ)+. (33)

Discussion
We end up this section by briefly analyzing the convergence
and discussing the complexities.

Convergence analysis: The objective of Algorithm 1 is
guaranteed to be monotonically decreased when solving one
variable with the other fixed at each iteration. Besides, E-
q. (17) is lower-bounded by 0. As a result, the algorithm can
be guaranteed to be convergent.

Computational complexity: FMDC consists of three parts:
(1) anchor generation, which needs O(nd log(m)t1), where
d is the total dimensionality of V views and t1 is the iteration
number of balanced k-means++; (2) anchor graph construc-
tion, which costs O(nmd); (3) iterative optimization, which
needs O(nc) to update Y and O(V ) to solve α. Since V is

Dataset n V c d1/d2 · · · /dV
BBCSport 544 2 5 3183/3203
WebKB 1051 2 2 1840/3000
Reuters1 1500 5 6 21531/24892/34251/15506/11547
MNIST 10000 3 10 30/9/30
Reuters2 15000 5 6 21531/24892/34251/15506/11547
NUS 20721 5 24 65/226/145/74/129

Table 1: Overview of the adopted datasets.
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Dataset Cotrain CoregSC SwMC MVGL MLAN OMSC LMVSC GMC FMDC
ACC

BBCSport 0.7518 0.7243 0.6618 0.7004 0.7279 0.5581 0.4485 0.7390 0.7657
WebKB 0.8976 0.9581 0.7774 0.8259 0.7793 0.7831 0.8344 0.7764 0.9657
Reuters1 0.4160 0.4340 0.3247 0.3153 0.2860 OM 0.3660 0.3053 0.4593
MNIST 0.5845 0.5926 0.5760 0.7335 0.5886 0.5005 0.4669 0.7437 0.7389
Reuters2 0.4510 0.4251 0.2739 0.2877 0.3237 OM 0.4900 0.2839 0.5108
NUS OM 0.1431 0.1328 0.1425 0.1635 OM 0.1420 OM 0.1771

NMI
BBCSport 0.6176 0.6467 0.5186 0.6551 0.6889 0.4122 0.1145 0.6047 0.7657
WebKB 0.3738 0.6760 0.0018 0.1314 0.0022 0.0056 0.1648 0.0010 0.7259
Reuters1 0.2227 0.2304 0.0524 0.0979 0.0807 OM 0.1482 0.0883 0.2371
MNIST 0.5112 0.5057 0.5817 0.6152 0.6168 0.3927 0.4391 0.6339 0.6378
Reuters2 0.2793 0.2386 0.0134 0.0384 0.0622 OM 0.3140 0.0321 0.3226
NUS-WIDE OM 0.1166 0.0568 0.1132 0.0083 OM 0.0966 OM 0.1269

purity
BBCSport 0.7235 0.7511 0.6746 0.7210 0.7647 0.5643 0.7354 0.7529 0.7714
WebKB 0.8976 0.9581 0.7812 0.8259 0.7812 0.7831 0.8937 0.7812 0.9657
Reuters1 0.4604 0.4913 0.3307 0.3307 0.3134 OM 0.4501 0.3233 0.5039
MNIST 0.5761 0.5925 0.5782 0.7335 0.6302 0.5011 0.5987 0.7437 0.7392
Reuters2 0.5333 0.5199 0.2779 0.2943 0.3263 OM 0.5458 0.2927 0.5567
NUS OM 0.2651 0.1390 0.2518 0.1664 OM 0.2476 OM 0.2760

Table 2: Clustering performance comparison of different methods on all datasets.

Dataset Cotrain CoregSC SwMC MVGL MLAN OMSC LMVSC GMC FMDC
BBCSport 8.36 7.75 30.37 36.13 29.39 228.73 2.71 11.28 0.31
WebKB 14.76 10.99 41.11 8.35 2.54 127.85 3.87 2.21 1.02
Reuters1 80.64 34.25 215.26 133.38 19.98 OM 78.07 13.85 6.96
MNIST 6756.06 2599.33 96021.83 34901.54 1249.61 1143.28 3926.07 1268.18 263.82
Reuters2 35306.71 5889.54 16196.32 260553.93 6961.28 OM 2297.85 2529.91 1537.12
NUS OM 13581.59 190479.31 196671.95 10190.42 OM 4286.32 OM 1932.54

Table 3: Running time (seconds) of different methods on all datasets (seconds).

usually negligible, the third part costs O((nc)t2), where t2
is the iteration number. Considering m� n, c� m, and t1
and t2 are pretty small, FMDC approximately takesO(nmd).
It is much faster than the conventional graph-based method
which needs O(n2d) as least.

Storage complexity: During the process, it needs to store
Zv and Y. The storage complexity is O(nmV + nc), which
is much less than the quadratic complexity.

Experiments
In this section, we experimentally evaluate the proposed mod-
el. All the experiments are implemented on a Windows 10
desktop computer with a 3.6 GHz Intel Core i7-7700 CPU,
64 GB RAM and Matlab R2018b (64 bit).

Experimental settings
The proposed model is evaluated on five widely used bench-
mark datasets with different scales and cluster numbers: B-
BCSport (Greene and Cunningham 2006), WebKB (Sun and
Chao 2013), Reuters1, MNIST (LeCun et al. 1998) and NUS-
WIDE (Chua et al. 2009). BBCSport, WebKB and Reuters

1http://archive.ics.uci.edu/ml

exhibit high dimensionality. NUS-WIDE have large scale.
Since certain approaches encounter a memory overflow prob-
lem when experimenting, we sample the first 24 clusters of
NUS-WIDE namely NUS, and two different scales of Reuters
namely Reuters1 and Reuters2 for comparative experiments.
The details are shown in Table 1.

We compare FMDC with the classical single-view Spec-
tral Clustering (SC) (Ng, Jordan, and Weiss 2001) and sev-
eral graph-based multi-view methods: Graph-based Multi-
view Clustering (GMC) (Wang, Yang, and Liu 2020),
Large-scale Multi-View Subspace Clustering in linear time
(LMVSC) (Kang et al. 2020), One-step Multi-view Spectral
Clustering (OMSC) (Zhu et al. 2019), Multi-view Learning
with Adaptive Neighbors (MLAN) (Nie et al. 2017a), Multi-
view Clustering with Graph Learning (MVGL) (Zhan et al.
2017), Self-weighted Multiview Clustering (SwMC) (Nie
et al. 2017b), Co-training approach (Cotrain) (Kumar and
Daumé 2011), Coregularized multiview Spectral Clestering
(CoregSC) (Kumar, Rai, and Daume 2011).

We download the source codes from the author’s websites
and follow the experimental settings just as reported in each
paper. We empirically construct fifteen-nearest graphs. The
anchors need to be sufficiently dense for effective adjacency
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(a) BBCSport (b) WebKB (c) Reuters1

(d) MNIST (e) Reuters2 (f) NUS

Figure 1: Comparison of FMDC and SC.

(a) (b) (c) (d) (e) (f)

Figure 2: The learned weights for different views on: (a) B-
BCSport, (b) WebKB, (c) Reuters1, (d) MNIST, (e) Reuters2,
(f) NUS.

relations, so we set anchor number m according to the scale
in different datasets: m was set to 128 on BBCSports, We-
bKB and Reuters1, and 1024 on MIST, Reuters2 and NUS.
The proposed model is not terminated until the difference of
objective is less than 1e−10. All experiments are repeated
tenfold and we report the average results and running time.
For the results, we report three evaluation metrics: accuracy
(ACC), normalized mutual information (NMI) and purity.

In the following subsection, we verify FMDC from five as-
pects: clustering performance, running time, learned weights,
parameter sensitivity and convergence.

Clustering Results
Clustering performance and running time. Figure 1
shows the results of FMDC and SC on each view of all
datasets. We observe that FMDC constantly outperforms
the single-view method, verifying that combing information
from different views can strengthen the performance. Tables 2
and 3 show the clustering results and running time, respec-
tively. “OM”: “Out-of-memory error” while running the ex-
periment. The best performance is shown in bold face and the
second-best is underlined. In general, FMDC achieves com-
parable or even better performance with less time cost than
the other methods. The proposed method can greatly reduce
the running time and needs less associated computational
resources, especially in the large scale datasets. Accordingly,
our model is a good choice for applications in real life.

Learned weights. The resultant weights learned by FMDC
are plotted in Figure 2. The x-axis and y-axis represent view
index and resultant weights, respectively. We observe that the

(a) ACC (b) Running time

Figure 3: ACC and running time versus m.

(a) BBCSport (b) WebKB (c) Reuters1

(d) MNIST (e) Reuters2 (f) NUS

Figure 4: The objective values with iterations.

proposed model clearly weighs each view and simultaneous-
ly assigns a nonzero weight to each view. Despite different
views own specific geometric structures and internal proper-
ties, FMDC is capable of well exploring the complementary
or independent relations among them.

Parameter Sensitivity. The anchor number m needs to be
tuned to obtain efficient performance. For simplicity, the We-
bKB dataset is used to analyze the influence ofm on computa-
tional time and clustering accuracy. We conduct experiments
by varying m = {16, 32, 64, 128, 512}. Figure 3 shows the
experimental performance. As shown in Figure 3(a), a large
m improves the clustering accuracy and the overly large m
does not improve the performance. Figure 4(f) indicates that
the running time increases as m increases. Based on the pre-
ceding analysis, it is necessary to select an appropriate m in
practical applications to obtain enhanced clustering results
and acceptable running time.

Convergence. Algorithm 1 is theoretically guaranteed to
convergence. Here, we experimentally study the convergence
rate of FMDC. We visualize the objective value after each
iteration on all datasets. The results are recorded in Figure 4.
The x-axis and y-axis represent iteration number and ob-
jective value, respectively. As observed, FMDC absolutely
converges with few iterations.
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Conclusion
In this paper, we propose a multi-view clustering model FMD-
C. For each view, representative anchors are generated and
an anchor graph is efficiently constructed. We automatical-
ly weigh different views in the clustering process. By per-
forming clustering on the learned symmetric and doubly-
stochastic aggregated similarity matrix, we directly solve
the primal spectral problem and get the discrete cluster as-
signment matrix. The clustering process can be significantly
accelerated and the computational complexity is linear to the
data size. The proposed model is evaluated on benchmark
datasets, and the the experimental results show its superiority,
efficiency and practicality.
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