
Online DR-Submodular Maximization: Minimizing Regret and Constraint
Violation

Prasanna Raut∗ 1, Omid Sadeghi∗ 2, Maryam Fazel 2

1Department of Mechanical Engineering, University of Washington
2 Department of Electrical and Computer Engineering, University of Washington

{raut, omids, mfazel}@uw.edu

Abstract
In this paper, we consider online continuous DR-submodular
maximization with linear stochastic long-term constraints.
Compared to the prior work on online submodular maximiza-
tion, our setting introduces the extra complication of stochas-
tic linear constraint functions that are i.i.d. generated at each
round. In particular, at each time step a DR-submodular util-
ity function and a constraint vector, i.i.d. generated from an
unknown distribution, are revealed after committing to an ac-
tion and we aim to maximize the overall utility while the
expected cumulative resource consumption is below a fixed
budget. Stochastic long-term constraints arise naturally in ap-
plications where there is a limited budget or resource avail-
able and resource consumption at each step is governed by
stochastically time-varying environments. We propose the
Online Lagrangian Frank-Wolfe (OLFW) algorithm to solve
this class of online problems. We analyze the performance of
the OLFW algorithm and we obtain sub-linear regret bounds
as well as sub-linear cumulative constraint violation bounds,
both in expectation and with high probability.

1 Introduction
The Online Convex Optimization (OCO) problem has been
extensively studied in the literature (Hazan 2016; Shalev-
Shwartz 2012; Zinkevich 2003; Orabona 2019). In this
problem, a sequence of arbitrary convex cost functions
{ft(·)}Tt=1 are revealed one by one by “nature” and at each
round t ∈ [T ], the decision maker chooses an action xt ∈ X ,
where X is the fixed domain set, before the corresponding
function ft(·) is revealed. The goal is to minimize the regret
defined as (Zinkevich 2003)

T∑
t=1

ft(xt)−min
x∈X

T∑
t=1

ft(x).

In other words, regret characterizes the difference between
the overall cost incurred by the decision maker and that of
a fixed benchmark action which has access to all the cost
functions {ft}Tt=1.

In many applications, however, in addition to maximizing
the total reward (minimizing the overall cost), there are re-
strictions on the sequence of decisions made by the learner
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that need to be satisfied on average (Agrawal and Devanur
2015; Badanidiyuru, Kleinberg, and Slivkins 2018; Agrawal
and Devanur 2014; Rivera, Wang, and Xu 2018). There-
fore, it may be beneficial to sacrifice some of the reward to
meet other desired goals or restrictions over the time hori-
zon. Such long-term constraints arise naturally in applica-
tions with limited budget (resource) availability (Balseiro
and Gur 2019; Besbes and Zeevi 2012; Ferreira, Simchi-
Levi, and Wang 2018).
As an illustrative example, consider the online ad allocation
problem for an advertiser. At each round t ∈ [T ], the adver-
tiser should choose her investment on ads to be placed on
n different websites. Beyond the immediate goal of max-
imizing the overall impressions of the ads, the advertiser
needs to balance her total investment against an allotted bud-
get on a daily, monthly or yearly basis (Balseiro and Gur
2019). However, the cost of ad placement in each round de-
pends on the number of clicks the ads receive, so they are
not known ahead of time. Therefore, the advertiser needs to
strike the right balance between the total reward and budget
used. See Appendix B for a number of other motivating ap-
plications that can be naturally cast in our framework (see
Raut, Sadeghi, and Fazel (2021) for the full version of the
paper including all the appendices).
In this paper, we study a new class of online allocation prob-
lems with long-term resource constraints where the utility
functions are DR-submodular (and not necessarily concave)
and the constraint functions are linear with coefficient vec-
tors drawn i.i.d. from some unknown underlying distribu-
tion. The problem has been extensively studied in the con-
vex setting (Yuan and Lamperski 2018; Wei, Yu, and Neely
2020; Neely and Yu 2017; Liakopoulos et al. 2019); fur-
thermore, Sadeghi and Fazel (2020) considered a similar
framework under the assumption that the linear constraint
functions are chosen adversarially. However, Sadeghi and
Fazel (2020) do not provide any high probability bounds for
the regret and constraint violation with random i.i.d. linear
constraints, and their expected constraint violation bound is
worse than ours as well (see Section 3.2 and the Appendix
for an overview of related work and comparison of our re-
sults with the existing bounds respectively). In this paper,
we provide the first sub-linear bounds for the regret and total
budget violation that hold in expectation as well as with high
probability. Specifically, our contributions are as follows:
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• In Section 4.1, We propose the Online Lagrangian Frank-
Wolfe (OLFW) algorithm for this class of online con-
tinuous DR-submodular maximization problems with
stochastic cumulative constraints. The OLFW algorithm
is inspired by the quadratic penalty method in constrained
optimization literature (Nocedal and Wright 1999) and
it generalizes a Frank-Wolfe variant proposed by Chen,
Hassani, and Karbasi (2018) for solving online continu-
ous DR-submodular maximization problems to take into
account the additional stochastically time-varying linear
constraints. Note that this extension is not straightforward
and the choice of the penalty function and the update rule
for the dual variable are crucial in obtaining bounds for
the total budget violation as well as the regret (see Sec-
tion 4.1 for more details).

• We analyze the performance of the OLFW algorithm with
high probability and in expectation in Section 4.2 and
Section 4.3 respectively and we establish the first sub-
linear expected and high probability bounds on both the
regret and total budget violation of the algorithm.

Finally, in Section 5, we demonstrate the effectiveness of
our proposed algorithm on simulated and real-world prob-
lem instances, and compare the performance of the OLFW
algorithm with several baseline algorithms. All the miss-
ing proofs, motivating applications and examples of DR-
submodular functions are provided in the Appendix of the
full version of the paper (Raut, Sadeghi, and Fazel 2021).

1.1 Notations
[T ] is used to denote the set {1, 2, . . . , T}. For u ∈ R, we
define [u]+ := max{u, 0}. For a vector x ∈ Rn, we use
xi to denote the i-th entry of x. The inner product of two
vectors x, y ∈ Rn is denoted by either 〈x, y〉 or xT y. Also,
for two vectors x, y ∈ Rn, x � y implies that xi ≤ yi ∀i ∈
[n]. A function f : Rn → R is called monotone if for all x, y
such that x � y, f(x) ≤ f(y) holds. For a vector x ∈ Rn,
we use ‖x‖ to denote the Euclidean norm of x. The unit
ball of the Euclidean norm is denoted by B, i.e., B = {x ∈
Rn | ‖x‖ ≤ 1}. For a convex set X , we will use PX (y) =
arg minx∈X ‖x−y‖ to denote the projection of y onto setX .
The Fenchel conjugate of a function f : Rn → R is defined
as f∗(y) = supx(xT y − f(x)).

2 Preliminaries
2.1 DR-Submodular Functions
Definition 1. A differentiable function f : X → R, X ⊂
Rn+, is called DR-submodular if

x � y ⇒ ∇f(x) � ∇f(y).

In other words, ∇f is element-wise decreasing and satis-
fies the DR (Diminishing Returns) property.
If f is twice differentiable, the DR property is equivalent to
the Hessian matrix being element-wise non-positive. Note
that for n = 1, the DR property is equivalent to concav-
ity. However, for n > 1, concavity corresponds to negative
semidefiniteness of the Hessian matrix (which is not equiva-
lent to the Hessian matrix being element-wise non-positive).

DR-submodular functions are also known as “smooth sub-
modular” in the submodularity literature (e.g., see Vondrak
(2008)). Bian et al. (2017) showed that a DR-submodular
function f is concave along any non-negative and any non-
positive direction; that is, if t ≥ 0 and v ∈ Rn satisfies v � 0
or v � 0, we have

f(x+ tv) ≤ f(x) + t〈∇f(x), v〉.

See Appendix A for examples of non-concave DR-
submodular functions.

3 Problem Statement
Consider the following overall offline optimization problem:

maximize
∑T
t=1 ft(xt)

subject to xt ∈ X , ∀t ∈ [T ]∑T
t=1〈p, xt〉 ≤ BT .

(1)

The online setup is as follows: At each round t ∈ [T ], the
algorithm chooses an action xt ∈ X , where X ⊂ Rn+ is a
fixed, known set. Upon committing to this action, the util-
ity function ft : X → R+ and a random i.i.d. sample
pt ∼ D(p,Σ) are revealed and the algorithm receives a re-
ward of ft(xt) while using 〈p, xt〉 of its fixed total allotted
budget BT . The overall goal is to maximize the total ob-
tained reward while satisfying the budget constraint asymp-
totically (i.e.,

∑T
t=1〈p, xt〉 − BT being sub-linear in T ).

Mahdavi, Yang, and Jin (2012) considered a similar setup
and performance metric for the special case of linear utility
functions.
Note that our proposed algorithm can handle multiple linear
constraints as well, and similar regret and constraint viola-
tion bounds can be derived. However, for ease of notation,
we focus on the case with only one linear constraint.
We make the following assumptions about our problem
framework:
A1. The domain X ⊂ Rn+ is a closed, bounded, convex set
containing the origin, i.e., 0 ∈ X . We denote the diameter of
X with R; i.e., R := maxx,y∈X ‖y − x‖.
A2. For all t ∈ [T ], the utility function ft(·) is normalized
(i.e., ft(0) = 0), monotone, DR-submodular, βf -Lipschitz
and L-smooth. In other words, for all x, y ∈ X and u ∈ Rn
where u � 0 or u � 0, the following holds:

ft(x+ u)− ft(x) ≥ 〈u,∇ft(x)〉 − L

2
‖u‖2

|ft(y)− ft(x)| ≤ βf‖y − x‖.

A3. For all t ∈ [T ], pt ∈ Rn+ is i.i.d. generated from the
distributionD with bounded support βpB∩Rn+, mean p � 0
and covariance matrix Σ, i.e., pt ∼ D(p,Σ).
Let β = max{βf , βp}. Under the above assumptions, we
have:

F := max
t∈[T ]

max
x,y∈X

|ft(x)− ft(y)| ≤ βR <∞

G := max
p′∼D(p,Σ)

max
x∈X
|〈p′, x〉 − BT

T
| ≤ βR− BT

T
<∞.
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3.1 Performance Metric
We characterize the performance of our proposed algorithm
through bounding the notions of regret and cumulative con-
straint violation which are defined below:

Definition 2. The (1− 1
e )-regret is defined as:

RT = (1− 1

e
) max
x∈X∗

T∑
t=1

ft(x)−
T∑
t=1

ft(xt),

where:

X ∗ = {x ∈ X :
T∑
t=1

〈p, x〉 ≤ BT } = {x ∈ X : 〈p, x〉 ≤ BT
T
}.

The regret metric RT quantifies the difference of the
reward obtained by the algorithm and the (1 − 1

e )-
approximation of the reward of the best fixed benchmark
action that has access to all the utility functions ft ∀t ∈ [T ],
the mean p of the linear constraint functions, and satisfies the
cumulative budget constraint. Note that 1− 1

e is the optimal
approximation ratio for offline continuous DR-submodular
maximization; in other words, even if all the online input
were available beforehand, we could only obtain a (1 − 1

e )
fraction of the maximum reward in polynomial time. The
(1 − 1

e )-regret is commonly used in the online submodular
maximization literature (Chen, Hassani, and Karbasi 2018).

Definition 3. The cumulative constraint violation is defined
as follows:

CT =
T∑
t=1

〈p,xt〉 −BT .

Note that since pt ∀t ∈ [T ] is i.i.d. drawn from the dis-
tributionD with mean p, our cumulative constraint violation
metricCT is defined with respect to the true underlying fixed
linear constraint p (as opposed to pt).

3.2 Related Work
Consider the following general framework of online prob-
lems with long-term constraints: At round t ∈ [T ], the player
chooses xt ∈ X . Then, cost (utility) function ft : X → R
(X is a fixed convex set) and constraint function gt : X → R
are revealed, the player incurs a loss (obtains a reward) of
ft(xt) and uses the amount gt(xt) of her budget (with the
long-term constraint

∑T
t=1 gt(xt) ≤ 0). This problem has

been extensively studied under various assumptions where
the cost (utility) functions are adversarially chosen and are
assumed to be linear, convex or DR-submodular and the con-
straint functions are linear or convex and are either fixed
(i.e., gt(·) = g(·) ∀t ∈ [T ]), stochastic and i.i.d drawn from
some unknown distribution, or adversarial. For the setting
with adversarial utility and constraint functions, Mannor,
Tsitsiklis, and Yu (2009) provided a simple counterexample
to show that regardless of the decisions of the algorithm, it is
impossible to guarantee sub-linear regret against the bench-
mark action while the overall budget violation is sub-linear.
Therefore, prior works in this setting have further restricted
the fixed comparator action to be chosen from XW = {x ∈

X :
∑t+W−1
τ=t gτ (x) ≤ 0, 1 ≤ t ≤ T −W + 1}. In other

words, in addition to merely satisfying the overall cumula-
tive constraint (which corresponds to the W = T case), the
benchmark action is required to satisfy the budget constraint
proportionally over any window of length W . On the other
hand, for fixed or stochastic constraint functions, sub-linear
regret and constraint violation bounds have been derived in
the literature. A summary of the state of the art results for
online problems with long-term constraints is provided in
Table 1.

4 Online Lagrangian Frank-Wolfe (OLFW)
Algorithm

In this section of the paper, we first introduce our pro-
posed algorithm, namely the Online Lagrangian Frank-
Wolfe (OLFW) algorithm, in Section 4.1 and subsequently,
we analyze the performance of the algorithm with high prob-
ability and in expectation in Section 4.2 and Section 4.3 re-
spectively.

4.1 Algorithm

The Online Lagrangian Frank-Wolfe (OLFW) algorithm is
presented in Algorithm 1. First, note that for all t ∈ [T ],
xt = 1

K

∑K
k=1 v

(k)
t is the average of vectors in the convex

domain X and hence, xt ∈ X . The intuition for using K
online maximization subroutines to update xt is the Frank-
Wolfe variant proposed in Bian et al. (2017) to obtain the
optimal approximation guarantee of 1 − 1

e for solving the
offline DR-submodular maximization problem without the
additional linear constraints. To be more precise, consider
the first iteration t = 1 of our online setting (ignoring the
linear cumulative constraints) and the corresponding DR-
submodular utility function f1(·) arriving at this step. Note
that f1 is not revealed until the algorithm commits to an ac-
tion x1 ∈ X . If we were in the offline setting, we could use
the mentioned Frank-Wolfe variant of Bian et al. (2017), run
it for K iterations and maximize f1 over X . Starting from
x

(1)
1 = 0, for all k ∈ [K], we would find a vector v(k)

1 that
maximizes 〈x,∇f1(x

(k)
1 )〉 over x ∈ X , perform the update

x
(k+1)
1 = x

(k)
1 + 1

K v
(k)
1 and derive x1 = x

(K+1)
1 as the out-

put. However, in the online setting, the utility function f1

is not available before committing to the action x1. There-
fore, for each k ∈ [K], we instead use a separate instance of
a no-regret online linear maximization algorithm to obtain
v

(k)
1 . We repeat the same process for the subsequent utility

functions {ft}t>1. This intuition was first provided in Chen,
Hassani, and Karbasi (2018) and they managed to obtain an
O(
√
T ) regret bound for the unconstrained online monotone

submodular maximization problem.
Our choice of Lagrangian function is inspired by the
quadratic penalty method in constrained optimization (No-
cedal and Wright 1999). The penalized formulation of the
overall optimization problem (1) with quadratic penalty
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Paper Cost (utility) Constraint Window size RT CT
Yuan and Lamperski (2018) convex convex (fixed) — O(

√
T ) O(T

3
4 )

Wei, Yu, and Neely (2020) convex convex (stochastic) — O(
√
T ) O(

√
T )

Neely and Yu (2017) convex convex (adversarial) 1 O(
√
T ) O(

√
T )

Liakopoulos et al. (2019)(a) convex convex (adversarial) W O(
√
T + WT

V ) O(
√
V T )

Sadeghi and Fazel (2020) DR-submodular linear (adversarial) W O(
√
WT ) O(W

1
4T

3
4 )

Table 1: State of the art results for online problems with cumulative constraints in various settings. Note that in (a), V ∈ (W,T )
is a tunable parameter.

function could be written as follows:

max
xt

T∑
t=1

ft(xt)−
1

2δµ

( T∑
t=1

〈p, xt〉 −BT
)2

subject to xt ∈ X ∀t ∈ [T ].

Considering that the Fenchel conjugate of the function
h(·) = 1

2δµ (·)2 is h∗(·) = δµ
2 (·)2, we can write the above

problem in the following equivalent form:

max
xt

min
λ

T∑
t=1

ft(xt)− λ
( T∑
t=1

〈p, xt〉 −BT
)

+
δµ

2
λ2

subject to xt ∈ X ∀t ∈ [T ].

Therefore, the corresponding Lagrangian function at round
t ∈ [T ] is Lt(x, λ) = ft(x) − λ(〈p, x〉 − BT

T ) + δµ
2 λ

2.
However, p is unknown to the online algorithm. Therefore,
we alternatively use p̂t := 1

t−1

∑t−1
s=1 ps instead of p in the

Lagrangian function. Note that p̂t is the empirical estimation
of p at round t.

We first provide a lemma which is central to obtaining the
regret and constraint violation bounds both in expectation
and with high probability.
Lemma 1. Let x ∈ X be a fixed vector. In the OLFW algo-
rithm, set δ = β2. We then have:

T∑
t=1

(
(1− 1

e
)ft(x)− ft(xt)

)
≤ LR2T

2K
+
R2

µ
+ β2µT

+
T∑
t=1

λtg̃t(x). (2)

4.2 Performance Analysis with High Probability
In order to analyze the performance of the OLFW algo-
rithm with high probability, the following lemmas detailing
the concentration inequalities for the stochastic linear con-
straints are used.
Lemma 2. The following holds with probability at least 1−
ε:

T∑
t=2

‖p̂t − p‖ ≤ Cσ
√
T log

(2nT

ε

)
.

Lemma 3. Let x ∈ X be fixed. Define ĝt(x) := 〈p̂t, x〉−BT
T

and g(x) := 〈p, x〉 − BT
T . For a fixed t ∈ {2, 3, . . . , T} and

Algorithm 1 Online Lagrangian Frank-Wolfe (OLFW)

Input: X is the constraint set, T is the horizon, µ > 0,
δ > 0, {γt}Tt=1 and K.
Output: {xt : 1 ≤ t ≤ T}.
Initialize K instances {Ek}k∈[K] of Online Gradient As-
cent with step size µ for online maximization of linear
functions over X .
for t = 1 to T do
x

(1)
t = 0.

for k = 1 to K do
Let v(k)

t be the output of oracle Ek from round t− 1.
x

(k+1)
t = x

(k)
t + 1

K v
(k)
t .

end for
Set xt = x

(K+1)
t .

Let p̂t := 1
t−1

∑t−1
s=1 ps for t > 1.

Let

g̃t(·) =

{
〈p̂t, ·〉 − BT

T (I)
〈p̂t, ·〉 − BT

T − γt (II)
.

Set λt = [g̃t(xt)]+
δµ for t > 1 and 0 otherwise.

Play xt and observe the Lagrangian function
Lt(xt, λt) = ft(xt)− λtg̃t(xt) + δµ

2 λ
2
t .

for k = 1 to K do
Feedback 〈v(k)

t ,∇xLt(x(k)
t , λt)〉 as the payoff to be

received by Ek.
end for

end for

{γt :=

√
2G2 log( 2T

ε )

t }Tt=2, |ĝt(x) − g(x)| ≤ γt holds with
probability at least 1− ε

T .

Proof. First, note that E[ĝt(x)] = E[〈p̂t, x〉 − BT
T ] =

〈p, x〉 − BT
T = g(x). If yt = gt(x) is a random variable,

then by assumption, yt ∈ [−G,G] holds for each t, i.e.,
yt is a bounded random variable. Therefore we can apply
Hoeffding’s inequality and get P{|ĝt(x) − g(x)| > γt} ≤
2 exp(− tγ2

t

2G2 ). Substituting the value of γt in the right hand
side, we get that P{|ĝt(x) − g(x)| > γt} ≤ ε

T . The result
follows immediately. �

Now, we have all the machinery to obtain the high proba-
bility performance bounds of the OLFW algorithm.
Theorem 1. (High probability regret bound) Let ε ∈ (0, 1)

be given. Set µ = R
β
√
T

, K =
√
T , δ = β2 and {γt}Tt=2 be

chosen according to Lemma 3. Then, the OLFW algorithm
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with update (II) for g̃t(·) obtains the following regret bound
with probability at least 1− ε.

RT ≤
(LR2

2
+ 2Rβ

)√
T .

Proof. We begin from Lemma 1. Substitute the bench-
mark x = x∗ as the fixed vector in (2) and the constants as
given in the hypothesis. We get: RT ≤ (LR

2

2 + 2Rβ)
√
T +∑T

t=1 λtg̃t(x
∗). Now let us bound

∑T
t=1 λtg̃t(x

∗). From
Lemma 3, we have that with probability at least 1 − ε

T ,
ĝt(x

∗) − γt ≤ g(x∗) holds, i.e., g̃t(x∗) ≤ g(x∗). Also,
g(x∗) ≤ 0 holds according to the definition of the bench-
mark action. Therefore, we have: g̃t(x∗) ≤ 0. As λt ≥ 0,
λtg̃t(x

∗) ≤ 0 holds. Now, taking union bound over all
t ∈ [T ], we have with probability at least 1 − ε that∑T
t=1 λtg̃t(x

∗) ≤ 0. The result follows immediately. �
We will use the following lemma to get performance bounds
for the constraint violation.

Lemma 4. Let {γt}Tt=2 be defined as in Lemma 3, then the
following holds.

CT ≤
T∑
t=1

[g̃t(xt)]+ +R
T∑
t=1

‖p̂t − p‖+
T∑
t=2

γt,

where g̃t(·) is derived using update (II).

Theorem 2. (High probability constraint violation bound)
Let ε ∈ (0, 1) be given. Set µ = R

β
√
T

, K =
√
T , δ =

β2 and {γt}Tt=2 be chosen according to Lemma 3. Then the
following holds with probability at least 1− ε for the OLFW
algorithm with update rule (II).

CT ≤
√

2G2T log(
2T

ε
) + CRσ

√
T log(

2nT

ε
)

+
T

BT
RβF

√
T +

TRβ

BT
(
LR2

2
+ 2Rβ) +Rβ.

So, we obtain Õ(
√
T ) constraint violation bound with high

probability.

Proof. We begin with Lemma 1 again but now substitute
x = 0 as the fixed vector in (2).

BT
T

T∑
t=1

λt +
T∑
t=1

λtγt ≤
T∑
t=1

ft(xt)︸ ︷︷ ︸
≤FT

+
LR2T

2K
+
R2

µ
+ β2µT.

(3)

Rearranging and substituting the values of input parameters
as given in the hypothesis, we get:

T∑
t=1

[g̃t(xt)]+ +
Tδµ

BT

T∑
t=1

λtγt ≤
T

BT
RβF

√
T

+
TRβ

BT
(
LR2

2
+ 2Rβ).

Both terms in the left hand side of the above equation are
positive. Thus, we can drop the second term. We have:

T∑
t=1

[g̃t(xt)]+ ≤
T

BT
RβF

√
T +

TRβ

BT
(
LR2

2
+ 2Rβ).

Combining Lemma 4 and the equation above, we obtain:

CT ≤
T

BT
RβF

√
T +

TRβ

BT
(
LR2

2
+ 2Rβ)

+R
T∑
t=1

‖p̂t − p‖+
T∑
t=2

γt.

Therefore, we can conclude:

CT ≤
T

BT
RβF

√
T +

TRβ

BT
(
LR2

2
+ 2Rβ)

+

√
2G2T log(

2T

ε
) +R

T∑
t=1

‖p̂t − p‖︸ ︷︷ ︸
(A)

,

where the last inequality follows from summing γt’s. Now,

Lemma 2 tells us that (A) ≤ Rβ+CRσ
√
T log( 2nT

ε ) holds
with probability at least 1− ε. Thus, we get the result. �
Theorem 1 and Theorem 2 are indeed the first high proba-
bility bounds obtained for the online DR-submodular max-
imization problem with stochastic cumulative constraints.
Note that the O(

√
T ) regret bound obtained in Theorem 1

is known to be optimal.

4.3 Performance Analysis in Expectation
We first provide a simple lemma that will be used throughout
the analysis in expectation.

Lemma 5. For t > 1, we have:

E‖p̂t − p‖2 =
Tr(Σ)

t− 1
,

where Tr(Σ) denotes the trace of the covariance matrix Σ.

Now, we present the main performance bounds in expec-
tation, namely the expected regret bound and the expected
cumulative constraint violation bound. In the Appendix,
we have also considered the case where we only have ac-
cess to unbiased stochastic gradient estimates of the util-
ity functions {ft}Tt=1 and exact gradient computation is not
possible. For this setting, we modify the OLFW algorithm
through incorporating the variance reduction technique in-
troduced by Chen et al. (2018) and we obtain similar regret
and constraint violation bounds in expectation for the modi-
fied algorithm.

Theorem 3. (Expected regret bound) The regret bound of
the OLFW algorithm with update rule (I) is the following:

E[RT ] ≤ Õ(T
3
4 ).
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Proof. We first observe from (3) that
∑T
t=1 λt ≤ O(T ).

Now, substitute x = x∗, the benchmark, in (2) and take
expectation on both sides to obtain:

E[RT ] ≤ LR2T

2K
+
R2

µ
+ β2µT

+ E[
T∑
t=1

λt(ĝt(x
∗)− g(x∗))] +

T∑
t=1

λtg(x∗)

≤ LR2T

2K
+
R2

µ
+ β2µT + E [

T∑
t=1

λt(ĝt(x
∗)− g(x∗))]︸ ︷︷ ︸

(B)

.

Now we bound (B) as follows:

(B) =
T∑
t=1

λt(ĝt(x
∗)− g(x∗))

≤

√√√√ T∑
t=1

λ2
t

√√√√ T∑
t=1

(ĝt(x∗)− g(x∗))2

=
√
‖λ‖2

√√√√ T∑
t=1

(〈p̂t − p, x∗〉)2

≤ ‖λ‖

√√√√ T∑
t=1

‖p̂t − p‖2R2

= R‖λ‖

√√√√ T∑
t=1

‖p̂t − p‖2.

Both the inequalities above are obtained using Cauchy-
Schwarz inequality, where λ := [λ1, λ2, . . . , λT ]T .

Using the Cauchy-Schwarz inequality again, we have
‖λ‖ ≤

√
‖λ‖1‖λ‖∞. Thus, we obtain ‖λ‖ ≤√

(
∑T
t=1 λt)(

G
δµ ) ≤ O(T 3/4). Therefore, the following

holds:

‖λ‖ ≤ O(T 3/4). (4)

Using Jensen’s inequality, we have

E

√√√√ T∑
t=1

‖p̂t − p‖2 ≤

√√√√ T∑
t=1

E‖p̂t − p‖2.

We can use Lemma 5 and write:

E

√√√√ T∑
t=1

‖p̂t − p‖2 ≤
√
Tr(Σ) log(T ). (5)

Thus, combining (4) and (5), we obtain:

E[(B)] ≤ O(T 3/4
√
Tr(Σ) log(T )).

The result thus follows. �

Remark. The main challenge in bounding RT in expec-
tation is the fact that in our algorithm, the choice of λt is
dependent on p̂t and thus, we cannot use

E[λtĝt(x
∗)] = E[λtE[ĝt(x

∗)]] = E[λtg(x∗)] ≤ 0

and this term is indeed the dominating term in the regret
bound. However, as we saw earlier, we do not encounter this
problem in the high probability setting due to subtracting γt
from all the constraint functions and using the concentration
inequalities, and thus we were able to obtain O(

√
T ) high

probability regret bound.

Theorem 4. (Expected cumulative constraint violation
bound) For the OLFW algorithm with update rule (I), we
have:

E[CT ] ≤ T

BT
RβF

√
T +R

√
Tr(Σ)

√
T

+
TRβ

BT
(
LR2

2
+ 2Rβ) +Rβ.

Therefore, E[CT ] ≤ Õ(
√
T ) holds.

Theorem 3 and Theorem 4 provide the first sub-linear ex-
pectation bounds on the regret and cumulative constraint vi-
olation of the online DR-submodular maximization problem
with stochastic cumulative constraints.

5 Numerical Results
We conduct numerical experiments, over simulated and real-
world datasets in the following.
Joke Recommendation We look at the problem of DR-
submodular function maximization over the Jester dataset1.
We consider a fraction of the dataset where there are 100
jokes and user ratings from 10000 users are available for
these jokes. The ratings take values in [−10, 10], we re-scale
them to be in [0, 10]. LetRu,j be the rating of user u for joke
j. As some of the user ratings are missing in the dataset, we
set such ratings to be 5. In the online setting, a user arrives
and we have to recommend at most M = 15 jokes to her.
The utility function for each round t ∈ [T ] is of the form
ft(x) =

∑100
i=1R

t
ut,i

xi +
∑
i,j:i6=j θijxixj , where ut is the

user being served in the current round. {θij}i6=j are chosen
such that the function is monotone. These DR-submodular
utility functions capture the overall impression of the dis-
played jokes on the user. There is a limited total time (de-
noted by BT = 1.5T ) available to recommend the jokes to
the users. For all i ∈ [n], pi denotes the average time it takes
to read joke i. As some jokes are relatively longer, we do not
want the user to spend more time on jokes which do not lead
to larger utility. The linear budget functions are chosen ran-
domly with entries uniformly drawn from [0.03, 0.35]. We
compare the performance of our algorithm against the fol-
lowing strategies:

• Uniform: At every round, we assign 15 randomly chosen
jokes to the user.

1http://eigentaste.berkeley.edu/dataset/
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• Greedy: We deploy an exploration-exploitation strategy
where with probability 0.1, we randomly assign 15 jokes
and with probability 0.9, we present the top 15 jokes
based on the ratings observed so far.

• Meta-FW (Chen, Hassani, and Karbasi 2018): This cor-
responds to solving the unconstrained DR-submodular
maximization problem (i.e., ignoring the budget con-
straints).

• Budget-Cautious: At each round, we assign 15 jokes
which have the lowest average budget consumption ob-
served so far.

The results are presented in Figure 1. As it can be seen in
the plots, our OLFW algorithm obtains a reasonable utility
while approximately satisfying the budget constraint as well.

Indefinite quadratic functions. We choose X = {x ∈
R2 : 0 � x � 1} and for each t ∈ [T ], we generate
quadratic functions of the form ft(x) = 1

2x
THtx + hTt x

whereHt ∈ R2×2 is a random matrix whose entries are cho-
sen uniformly from [−1, 0]. We let ht = −HT

t 1 to ensure
the monotonocity of the objective. We let T = 1000. At each
round, we randomly generate linear budget functions whose
entries are chosen uniformly from [0.5, 2.5] and the mean
vector is p = [1, 2]T . Also, we set the total budget to be
BT = 2T . We run the OLFW algorithm 10 times and take
the respective averages for the cumulative utility and total
remaining budget. We vary δ, the parameter of the penalty
function, in the range [0.1, 1000] and plot the trade-off curve(
i.e.,

∑1000
t=1 ft(xt) versus BT −

∑1000
t=1 〈p, xt〉

)
for 100 cho-

sen values of δ in Figure 2. In this example, our choice of δ
in the OLFW algorithm, highlighted in the plot, achieves the
highest possible cumulative utility while satisfying the total
budget constraint.

Log-determinant functions. We choose X = {x ∈
R10 : 0 � x � 1} and for each t ∈ [T ], we
generate log-determinant functions of the form ft(x) =
log det

(
diag(x)(Lt − I) + I

)
, where each Lt is a random

positive definite matrix with eigenvalues falling in the range
[2, 3]. The choice of eigenvalues ensures the monotonocity
of the function. Let T = 4900. At each round, we generate
linear budget functions whose entries are chosen uniformly
from the range [0.3, 5.7]. We run the OLFW algorithm for
different choices of the step size µ and plot the cumulative
utility and the total budget violation in Figure 3. Our OLFW
algorithm chooses µ such that the overall utility and cumu-
lative budget consumption are balanced.

6 Conclusion and Future Work
In this work, we studied online continuous DR-submodular
maximization with stochastic linear cumulative constraints.
We proposed the Online Lagrangian Frank-Wolfe (OLFW)
algorithm to solve this problem and we obtained the first
sub-linear bounds, both in expectation and with high prob-
ability, for the regret and constraint violation of this algo-
rithm. The current work could be further extended in a num-
ber of interesting directions. First, it is yet to be seen whether
the online DR-submodular maximization setting could han-
dle general, stochastic or adversarial, convex long-term con-

straints. Furthermore, it is interesting to see whether it is
possible to improve the expected regret bound to match the
O(
√
T ) high probability regret bound. Finally, studying this

problem under bandit feedback (as opposed to the full in-
formation setting considered in this paper) is left to future
work.

Figure 1: Comparison of the overall utility
∑T
t=1 ft(xt) and

cumulative budget violation
∑T
t=1〈p, xt〉−BT for the Jester

dataset.

Figure 2: Trade-off between the overall utility
∑T
t=1 ft(xt)

and the total remaining budget BT −
∑T
t=1〈p, xt〉 of

quadratic functions for different choices of parameter δ.
δ = 10.2 is our choice of the penalty parameter.

Figure 3: Running average of cumulative utility
1
t

∑t
τ=1 fτ (xτ ) and running average of budget viola-

tion 1
t

∑t
τ=1(〈p, xτ 〉 − BT

T ) for different choices of the step
size µ, where µ0 := R

β
√
T

is our choice of step size in the
OLFW algorithm.
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