
Multiple Kernel Clustering
with Kernel k-Means Coupled Graph Tensor Learning

Zhenwen Ren1,2, Quansen Sun1∗ and Dong Wei1

1 School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
2 School of National Defence Science and Technology, Southwest University of Science and Technology, Mianyang, China

{rzw, sunquansen}@njust.edu.cn, dongweinjust@163.com

Abstract

Kernel k-means (KKM) and spectral clustering (SC) are two
basic methods used for multiple kernel clustering (MKC),
which have both been widely used to identify clusters that are
non-linearly separable. However, both of them have their own
shortcomings: 1) the KKM-based methods usually focus on
learning a discrete clustering indicator matrix via a combined
consensus kernel, but cannot exploit the high-order affinities
of all pre-defined base kernels; and 2) the SC-based meth-
ods require a robust and meaningful affinity graph in kernel
space as input in order to form clusters with desired cluster-
ing structure. In this paper, a novel method, kernel k-means
coupled graph tensor (KCGT), is proposed to graciously cou-
ple KKM and SC for seizing their merits and evading their
demerits simultaneously. In specific, we innovatively develop
a new graph learning paradigm by leveraging an explicit the-
oretical connection between clustering indicator matrix and
affinity graph, such that the affinity graph propagated from
KKM enjoys the valuable block diagonal and sparse prop-
erty. Then, by using this graph learning paradigm, base ker-
nels can produce multiple candidate affinity graphs, which are
stacked into a low-rank graph tensor for capturing the high-
order affinity of all these graphs. After that, by averaging all
the frontal slices of the tensor, a high-quality affinity graph is
obtained. Extensive experiments have shown the superiority
of KCGT compared with the state-of-the-art MKC methods.

Introduction
To overcome the challenging problem of non-linear data
clustering, kernel methods have been widely studied. How-
ever, for the traditional kernel methods, the most suitable
kernel and the associated parameter for a specific dataset
are difficult to decide in advance. To alleviate the problem
of kernel choice, multiple kernel clustering (MKC) has at-
tracted intense attention in recent years, which only requires
users to pre-specify a set of base kernels, and automatically
fuse the information of them for clustering purpose. Overall,
kernel k-means (KKM) and spectral clustering (SC) are two
basic methods used for MKC.

KKM-based MKC methods usually learn a consensus ker-
nel by linearly or non-linearly combining the given base
kernels, and simultaneously/subsequently employ the the

∗Corresponding author.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

kernel k-means to output the clustering indicator matrix.
Some representative methods, (Huang, Chuang, and Chen
2012; Gönen and Margolin 2014; Du et al. 2015), assume
that the optimal kernel is a linear combination of base ker-
nels. In (Huang, Chuang, and Chen 2012), the algorithm al-
ternatively performs kernel k-means and updates the ker-
nel weights. The method proposed in (Gönen and Mar-
golin 2014) combines the base kernels by sample-adaptive
weights. To improve the robustness with respect to noises
and outliers, (Du et al. 2015) presents a robust kernel k-
means by using `21-norm to measure the distances between
data points and cluster centers. By relying on neighborhood
kernel learning, there are also other methods (Liu et al. 2016,
2017, 2020a), which learn a non-linearly combination of
base kernels to enhance the representability of the optimal
kernel. Both (Liu et al. 2016) and (Liu et al. 2017) incor-
porate a matrix-induced regularization to sufficiently con-
sider the correlation among base kernels, with the difference
that the former learns a clustering indicator matrix directly,
and the latter learns a neighborhood consensus kernel as the
input of kernel k-means. Recently, (Liu et al. 2020a) pro-
poses to maximally align the consensus partition with the
weighted base partitions to significantly reduce the compu-
tational complexity.

SC-based MKC methods consist of first constructing an
affinity matrix (graph) based on graphical representations
of the relationships among data points in kernel space, and
then applying spectral clustering algorithm to obtain the la-
bel assignments. It is well know that the performance of
such SC-based methods are heavily dependent on the qual-
ity of the affinity graph (Huang, Nie, and Huang 2015).
Therefore, these methods aim to learn a more high-quality
affinity graph by jointing some graph learning paradigms. In
the perspective of graph learning, the existing researches on
this aspect can roughly be grouped into two categories. The
first category learns a consensus graph via kernelized self-
expressiveness subspace learning (Kang et al. 2018; Zhou
et al. 2019b; Ren and Sun 2020). In (Kang et al. 2018), a
consensus affinity graph is directly learned for clustering and
semi-supervised classification. (Zhou et al. 2019b) defines a
neighbor kernel and linearly combine these base neighbor
kernels to learn a consensus affinity matrix via an exact-
rank-constrained. The work in (Ren and Sun 2020) considers
the global and local structure information of the data simul-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9411

taneously, such that the quality of the affinity graph can be
improved. By leveraging the adaptive neighbors graph learn-
ing, the other category assigns a probability for each sample
as the neighborhood of another sample to construct an affin-
ity graph, such that the local manifold structure of the data
can be effectively exploited (Ren et al. 2020a,c). The work in
(Ren et al. 2020c) learns multiple candidate affinity graphs
from base kernels, and then fuse these graphs to learn a con-
sensus affinity graph via a two-step manner. Similar work
has also been done in (Ren et al. 2020a), with the major dif-
ference that the candidate graphs and consensus graph are
learned in a one-step learning paradigm.

Though the above methods have obtained excellent per-
formance for non-linear data clustering, we find that: 1) due
to the limitations of the model, KKM-based methods cannot
exploit the high-order affinities of all base kernels, leading to
unsatisfying clustering performance; and 2) SC-based meth-
ods require a robust and meaningful affinity graph in kernel
space; meanwhile, except for self-expressiveness subspace
learning and adaptive neighbors graph learning (Ren et al.
2020c), a new graph learning paradigm is urgent needed to
enlarge the graph learning method for non-linear data.

Regarding the observations mentioned above, in this pa-
per, we propose a novel MKC method, namely kernel k-
means coupled graph tensor (KCGT), which seamlessly
couples the ideas of both KKM and SC. Specifically, KCGT
proposes a graph learning paradigm, kernel k-means graph
(KKG), to bridge the relationship between the clustering in-
dicator matrix and affinity graph dexterously. Consequently,
multiple candidate affinity graphs can be obtained from base
kernels via KKG. Afterwards, the high-order affinities of all
candidate graphs is captured in a three-order graph tensor
by introducing tensor singular value decomposition based
tensor nuclear norm, such that an optimal affinity graph can
be obtained subsequently. After that, the spectral clustering
algorithm is employed to segment the clusters. The contri-
butions of this paper are summarized as follows,
• A new graph learning paradigm, KKG, is proposed to

learn a high-quality affinity graph, which bridges the rela-
tionship between the clustering indicator matrix of KKM
and the affinity graph of SC dexterously, such that the
learned candidate affinity graph enjoys the valuable block
diagonal and sparse property.

• A novel MKC method, KCGT, is proposed for non-linear
data clustering, which deeply exploit the high-order struc-
ture information of all candidate graphs produced by
KKG. Moreover, an effective solver based on the alter-
nating direction method of multipliers (ADMM) is devel-
oped to solve the objective function.

• Compared with state-of-the-art methods, including KKM-
based ones and SC-based ones, the superiority of KCGT
is demonstrated by conducting extensive experiments.
Notation Summary: We denote bold upper case letters

for matrices, e.g., M, bold lower case letters for vectors,
e.g., m, lower case letters for entries of vectors or ma-
trices, e.g., mij , bold calligraphy letters for tensors, e.g.,
M. Positive semi-definite M is denoted as M � 0. We
denote M1 � M2 or M2 � M1 if M2 − M1 �

0 for symmetric matrices M1, M2. For a 3-order ten-
sor M ∈ Rn1×n2×n3 , it involves the main two defini-
tions, i.e., fiber and slice. The fiber represents that an or-
der is free while the other two orders are fixed, i.e., mode-
1 fiber M(:, j, k), mode-2 fiber M(i, :, k), and mode-
3 fiber M(i, j, :). The slice indicates that only one or-
der is fixed while the other two orders are free, i.e., hor-
izontal slice M(i; :, :), lateral slice M(:, j, :), and frontal
slice M(:, :, k). For simplicity, M(:, :, k) is simplified as
M(k) or M(k). And, Mf = fft(M, [], 3) and M =
ifft(Mf , [], 3) are the fast Fourier transformation (FFT)
and inverse FFT along the third direction of tensor M,
respectively. bvec(M) = [M(1);M(2); · · · ;M(n3)] ∈
Rn1n3×n2 and fold(bvec(M)) = M are defined as the
block vectorizing and the inverse operation of bvec, re-
spectively. bdiag(M) ∈ Rn1n3×n2n3 and bcirc(M) ∈
Rn1n3×n2n3 denotes the block diagonal matrix and the cor-
responding block circulant matrix, respectively.

Related Work
Kernel k-Means (KKM) Clustering
Let X = {xi}ni=1, xi ∈ Rd be a data set consisting of n
samples with d dimensions from c clusters, and φ : x ∈
R 7−→ H be a feature mapping which maps x onto a re-
producing Hilbert space. The objective of KKM is to min-
imize the sum-of-squares loss over the clustering indicator
matrix F ∈ {0, 1}n×c , which can be formulated as (Liu
et al. 2020b),

min
F∈{0,1}n×c

n∑
i=1

c∑
j=1

fij ‖φ (xi)− µj‖22 s.t.
c∑
j=1

fij = 1, (1)

where nj =
∑n
i=1 fij and µj = 1

nj

∑n
i=1 fijφ(xi) are the

size and distribution centroid of the j-th cluster, respectively.
Note here that the variables F is discrete, which makes

(1) very difficult to solve. However, we can approximate (1)
through relaxing F to take arbitrary real values. Specifically,
by defining D = diag([1/n1, · · · , 1/nc]) and P = FD

1
2 ,

and letting P take real values, the relaxed version of (1) is

min
P∈Rn×c

Tr (H (I−PPᵀ)) s.t. PᵀP = I. (2)

where H ∈ Rn×n is the kernel Gram matrix with entry
hij = φ(xi)

ᵀφ(xj). Accordingly, one can obtain the opti-
mal P by choosing the c eigenvectors that correspond to the
c largest eigenvalues of H.

Preliminaries of Three-Order Tensor
Here, the preliminaries related to three-order tensor are in-
troduced to help understand tensor better (Wu et al. 2020).

Definition 1 (T-Product). The t-product between two
tensors with matched dimensions, M ∈ Rn1×n2×n3 and
N ∈ Rn2×n4×n3 , is defined as M ∗N ∈ Rn1×n4×n3 , i.e.,

M ∗N = fold(bcirc(M) bvec(N)) . (3)

Definition 2 (Identity Tensor). The identity tensor I ∈
Rn1×n1×n3 satisfies that its first frontal slice is an identity
matrix while the others frontal slices are zeros.

9412

Definition 3 (Tensor Transpose). The transpose opera-
tor of M ∈ Rn1×n2×n3 is denoted as Mᵀ ∈ Rn2×n1×n3 ,
which is calculated by transposing all frontal slices of M.

Definition 4 (Orthogonal Tensor). A tensor F ∈
Rn1×n1×n3 is orthogonal if

Fᵀ ∗F = F ∗Fᵀ = I . (4)

Definition 5 (f -Diagonal Tensor). A tensor is called f -
diagonal if each of its frontal slices is diagonal matrix.

Definition 6 (Tensor Singular Value Decomposition, t-
SVD). The t-SVD of tensor M ∈ Rn1×n2×n3 is defined
as

M = U ∗ G ∗ Vᵀ . (5)

where G ∈ Rn1×n2×n3 is a f -diagonal tensor, and U ∈
Rn1×n1×n3 and V ∈ Rn2×n2×n3 are orthogonal tensors.

Definition 7 (t-SVD Based Tensor Nuclear Norm, t-
TNN). ‖M‖~ is the t-SVD based tensor nuclear norm of
M ∈ Rn1×n2×n3 , which is given by the sum of singular
values of all the frontal slices of Mf , i.e.,

‖M‖~ =

n3∑
k=1

‖M(k)
f ‖∗ =

min(n1,n2)∑
i=1

n3∑
k=1

|G(k)
f (i, i)|. (6)

According to the frontal slices of {M(k)
f }

n3

k=1, we employ

t-SVD, M(k)
f = U (k)

f G(k)
f V(k)ᵀ

f , to compute {G(k)
f }

n3

k=1. It
has been demonstrated that the t-TNN can exploit the struc-
tural information of a tensor better than the unfolding-based
tensor nuclear norm (Zhang et al. 2015).

Proposed Methodology
Kernel k-Means Graph (KKG) Learning Paradigm
The key of graph-based method is to construct an affinity
graph (Zhang et al. 2015). As we know, the block diagonal
property of affinity graph plays a significant role for graph-
based learning task (Lu et al. 2019) and is explicitly pursued
in recent SC-based MKC methods (Yang et al. 2019; Kang
et al. 2018; Ren et al. 2019, 2020c).

Now, we aim to pursue a high-quality affinity graph based
on KKM for clustering purpose. Ideally, since P := {P|P ∈
Rn×c,PᵀP = I} is the clustering indicator matrix produced
by KKM, so PPᵀ is a strictly block diagonal matrix. That
is, we can learn a symmetric affinity graph S ∈ Rn×n that
best approximates PPᵀ, i.e., S = PPᵀ. Here, we give a
toy example to show the connection between the clustering
indicator matrix P and the affinity graph S mathematically.
As shown in Fig. 1, there are 1, 2, 3 samples in 3 different
clusters, respectively. Ideally, the affinity graph S produced
by PPᵀ has obvious spare and block diagonal property.

In practice, however, it is difficult to guarantee the learned
graph S can educe an eligible indicator matrix P, under
without any constraint. As for this point, we enforce graph
S to have a good sharp by introducing Theorem 1.
Theorem 1 (Boyd, Boyd, and Vandenberghe 2004) Let
S1 := {S = PPᵀ|P ∈ Rn×c,PᵀP = I} and S2 :=
{S|S = Sᵀ,Tr(S) = c,0 � S � 1}, S2 is the convex
hull of S1, and S1 is exactly the set of extreme points of S2.

1 00

0 01

0 01

0 10

0 10

0 10

1 00 0 00

0 00 1 11

0 11 0 00* =

1 00

0 11

0 11

0 00

0 00

0 00

0 00

0 00

0 00

1 11

1 11

1 11T
PP = S

Figure 1: The relation between indicator P and graph S.

Furthermore, as shown in Fig. 1, it is often more desir-
able to obtain a sparse affinity graph with high intra-cluster
affinity and zero inter-cluster affinity. However, the learned
S is usually not sparse in practice. Therefore, it is essential
to impose the spare norm on S (i.e., ‖S‖1). Hereto, the high-
quality affinity graph S can be obtained by

min
S

Tr(−HS) + α‖S‖1

s.t. S ∈ Rn×n,Tr(S) = c,Sᵀ = S,0 � S � 1 .
(7)

where α is a balancing parameter. We dub this graph learn-
ing paradigm as kernel k-means graph (KKG).

In MKL scenarios, since a kernel pool consisting of m
base kernels {H(k)}mk=1 is given in advance, we can obtain
m candidate affinity kernel graphs {S(k)}mk=1 by leveraging
KKG accordingly.

Kernel k-Means Coupled Graph Tensor (KCGT)
With m candidate kernel affinity graphs {S(k)}mk=1 at hand,
we strongly desire that an intrinsic graph tensor can be
learned to capture the complementary information with
high-order affinity by integrating thesem graphs. To achieve
so, we stack the m kernel graphs into a tensor S∗ ∈
Rn×n×m (i.e., S∗ = bvfold([S(1); · · · ;S(m)])) along the
third dimension, and then rotate S∗ to S ∈ Rn×m×n (i.e.,
rotate(S∗)), as illustrated in Fig 2. By the stacking and
rotating operators, the graph tensor can better explore the
high-order affinities between these candidate graphs. Mean-
while, instead of using S∗, the computational complexity is
largely reduced.

Due to the fact thatm candidate kernel graphs origin from
the same dataset, different S(k) possesses some consensus
structure information; on the other hand, considering the fact
that the number of data points is usually much bigger than
the number of clusters, thus the learned tensor S should en-
joy the low-rank property (Lu et al. 2019). In this paper, a
t-TNN term, ‖S‖~, is introduced to regularize S as a con-
straint of the intrinsic low-rank graph tensor. Hereto, the fi-
nal objective function can be written as

min
S(k)

m∑
k=1

Tr(−H(k)S(k)) + α‖S(k)‖1 + β‖S‖~

s.t. S(k) ∈ Rn×n,Tr(S(k)) = c,

(S(k))ᵀ = S(k),0 � S(k) � 1,

S = rotate(bvfold([S(1); · · · ;S(m)])) .

(8)

where α and β are the balancing parameters. This method is
dubbed as kernel k-means coupled graph tensor (KCGT).

9413

n n m n m n

Figure 2: The rotated affinity graph tensor in KCGT. Note
here that rotate and irotate are two shift functions.

Optimization
Solver for Proposed KCGT Method
The final problem (8) is convex and can be effectively solved
by the alternating direction method of multipliers (ADMM).
According to the principle of ADMM, we first introduce
some auxiliary variables, {Z(k)}mk=1 and A, to make (8) sep-
arable, and then obtain the following augmented Lagrangian
function
L({S(k),Z(k)}mk=1,A) =

m∑
k=1

Tr(−H(k)S(k)) + α‖Z(k)‖1 + β‖A‖~

+
µ

2
‖S(k) − Z(k) +

J(k)

µ
‖2F +

µ

2
‖S −A+

Y
µ
‖2F

s.t. Tr(S(k)) = c, (S(k))ᵀ = S(k),0 � S(k) � 1

S = rotate(bvfold([S(1); · · · ;S(m)])) .

(9)

where {J(k)}mk=1 and Y are the Lagrangian multiplier, and
µ > 0 is the penalty parameter. Then, we calculate each
variable by fixing the remaining variables respectively.

I Step-1, S-subproblem: Fixing other variables, we up-
date each candidate affinity graph {S(k)}mk=1 in S via

min
S(k)

Tr(−H(k)S(k)) +
µ

2
‖S(k) − Z(k) +

J(k)

µ
‖2F

+
µ

2
‖S(k) −A(k) +

Y(k)

µ
‖2F

s.t. Tr(S(k)) = c, (S(k))ᵀ = S(k),0 � S(k) � 1,

(10)

where A(k) and Y(k) are the k-th frontal slice of the tensors
rotate(A) and rotate(Y), respectively. Then, (10) can
be rewritten as

min
S(k)

1

2
‖S(k) −B(k)‖2F

s.t. Tr(S(k)) = c, (S(k))ᵀ = S(k),0 � S(k) � 1,

(11)

where B(k) =
H(k)+µ(Z(k)− J(k)

2)+µ(A(k)−Y(k)

2)

2µ . Such a
problem can be solved by Theorem 2.
Theorem 2 For a symmetric affinity matrix S ∈ Rn×n,
the singular value decomposition of S is denoted as B =
UDiag(δ)Uᵀ. The following problem

min
S

1
2‖S−B‖2F s.t. Tr(S) = c,Sᵀ = S,0 � S � 1 (12)

has the optimal solution given by S∗ = UDiag(ρ∗)Uᵀ,
where ρ∗ is the solution to

min
ρ

1

2
‖ρ− δ‖22, s.t. 0 ≤ ρ ≤ 1,ρᵀ1 = c. (13)

Refer to supplemental material for the proof.
Finally, problem (13) can be efficiently solved by an iter-

ative algorithm as (Nie et al. 2016).
I Step-2, Z-subproblem: Fixing other variables, we up-

date each auxiliary variable {Z(k)}mk=1 via

min
Z(k)

α‖Z(k)‖1 +
µ

2
‖Z(k) − (S(k) +

J(k)

µ
)‖2F . (14)

Such a problem can be solved as (Ren et al. 2020b).
I Step-3, A-subproblem: Fixing other variables, the op-

timization problem w.r.t. A can be rewritten as

min
A
β‖A‖~ +

µ

2
‖A− (S +

Y
µ
)‖2F , (15)

which is a t-TNN minimization problem. Let B = S + Y
µ ,

(15) can be solved by applying the tensor tubal-shrinkage of
B, according to the below Theorem 3.
Theorem 3 (Zhou et al. 2019a) For a scalar ρ > 0 and two
three-order tensors A ∈ Rn1×n2×n3 , B ∈ Rn1×n2×n3 , the
global optimal solution of the following problem

min
A

ρ‖A‖~ +
1

2
‖A−B‖2F (16)

is given by the tensor tubal-shrinkage operator, i.e.,

A = Cn3ρ(B) = U ∗ Cn3ρ(G) ∗ V
ᵀ , (17)

where B = U ∗G ∗Vᵀ and Cn3ρ = G ∗Q. Q ∈ Rn1×n2×n3

denotes a f-diagonal tensor and each diagonal element of Q
is defined as Qf (i, i, j) =

(
1− n3ρ

G(i, i, j)

)
+

.

I Step-4, ADMM variables: We update the variables in-
volved ADMM by

Y = Y + µ(A− S)

J(k) = J(k) + µ(S(k) − Z(k))

µ = min (ρµ, µmax) .

(18)

where ρ and µmax are the scalars involved ADMM.
In each iterator, the algorithm convergence is checked via

error = max(‖A− S‖∞, ‖S(k) − Z(k)‖∞) < ε, (19)

where ε = 10−5 is a threshold value. After obtaining the
graph tensor S with size n×m× n, we can irotate it to
size n × n ×m, i.e., S∗ = irotate(S). Then, we com-
pute the final comprehensive affinity graph S̄ by averaging
all frontal slices of S∗, i.e.,

S̄ =
1

m

m∑
k=1

S∗(:, :, k) . (20)

Subsequently, take S̄ as input, the spectral clustering al-
gorithm is employed to pursue the clustering assignments.
The pseudo-code of KCGT is depicted as in Algorithm 1.

9414

Algorithm 1 Algorithm of the proposed KCGT method.

Input: m base kernel {Hk}mk=1, and parameters α and β.
Initialize: {S(k) = Z(k)}mk=1 = I, A = S, µ = 10−4,
ρ = 1.2, and µmax = 1010.

1: while not converge do
2: Update candidate graphs {S(k)}mk=1 via Eq. (10).
3: Update auxiliary variables {Z(k)}mk=1 via Eq. (14).
4: Update graph tensor A via Eq. (15).
5: Update ADMM involved variables via (18).
6: end while
7: Perform spectral clustering using affinity matrix S̄.
Output: The clustering results: ACC, NMI, and purity.

Computational Complexity
Then, we present the discussion about the computational
cost of Algorithm 1. For updating {S(k)}mk=1, the compu-
tational complexity of the step 1 is O(mn3). For updating
Z(k), the computational complexity of the step 2 is O(m).
Meanwhile, the step 1 and step 2 can be easily parallelized.
For updating A, we need to calculate the FFT and inverse
FFT of the tensor S ∈ Rn×m×n along the third dimension,
which takesO(mn2 log(n)); moreover, we need to compute
the SVD of each frontal slice of the tensor S in the Fourier
domain with complexity O(m2n2). Therefore, the step 3
takes O(mn2 log(n) +m2n2). Note that without rotate
operator, the complexity is O(mn2 log(m) + mn3), hence
it is necessary to employ rotate operator on graph ten-
sor S∗. For the variables involved in ADMM, the compu-
tation of step 4 at each iteration will take O(m). Theoreti-
cally, the computational cost of Algorithm 1 is O(t(mn3 +
mn2 log(n) +m2n2 +m)), where t denotes the total num-
ber of iterations. Till the solver is convergence, the spectral
clustering adopted for clustering usually costs O(n3). In re-
ality, we have t � n and m � n. Thus the overall cost of
Algorithm 1 isO(n3). As a matter of fact, the computational
complexity of KCGT is the same as that of the existing over-
whelming majority MKC methods.

Experiment
Datasets and Settings
Eight public benchmark datasets (i.e., BBCSport2, Protein-
Fold, Flower17, Caltech101, Mfeat, UCI-Digit, CCV, and
Flower102) of various categories are employed to evaluate
the performance of the proposed method, and all the ker-
nel matrices of these datasets are pre-computed and publicly
available (Liu et al. 2017; Zhou et al. 2019b; Wang et al.
2019). The summaries of these datasets are listed in Table 1.
From this table, it can be observed that the number of ker-
nels, clusters, samples and categories of these datasets show
considerable variations. Note here that Flower17 is a deep
feature dataset produced by deep convolutional neural net-
works as (Zhou et al. 2019b).

Comparison Methods
We compare the proposed KCGT method with the following
state-of-the-art MKC methods, i.e.,

Dataset Category Samples Clusters Kernels Size
n c m

BBCSport2 News article 554 5 2 4.40M
ProteinFold Protein sequence 694 27 12 44.5M
Flower17 Image 1360 17 3 94.3M
Caltech101 Image 1530 102 25 0.32G
Mfeat Image 2000 10 12 0.37G
UCI-Digit Image 2000 10 3 83.9M
CCV Video event 6773 20 6 1.04G
Flower102 Image 8189 102 4 1.98G

Table 1: Summaries of the public benchmark datasets.

• Single kernel methods. They include: average multiple
kernel k-means (KKMa) and single best kernel k-means
(KKMb).
• KKM-based MKC methods. They include: multiple ker-

nel k-means (MKKM) (Huang, Chuang, and Chen 2012),
robust multiple kernel k-means (RMKKM) (Du et al.
2015), localized multiple kernel k-means (LMKKM)
(Gönen and Margolin 2014), multiple kernel k-means
with matrix-induced regularization (MKKM-MR, MR for
short) (Liu et al. 2016), local kernel alignment maximiza-
tion (LKAM) (Li et al. 2016), multi-view clustering via
late fusion alignment maximization (MVC-LFA, LFA for
short) (Wang et al. 2019).

• SC-based MKC methods. They include: structure preserv-
ing multiple kernel clustering (SPMKC) (Ren and Sun
2020), consensus affinity graph learning (CAGL) (Ren
et al. 2020c), and neighbor-kernel subspace segmentation
(NKSS) (Zhou et al. 2019b).
For fair comparison, the parameters of these comparsion

methods are carefully tuned by following the recommended
experimental settings provided by their respective authors.
Moreover, three widely used metrics, clustering accuracy
(ACC), normalized mutual information (NMI) and purity,
are applied. For these metrics, the larger value indicates the
better clustering performance.

Experimental Results
The average clustering results of 20 times independent ex-
periments of all the comparison methods are presented in Ta-
ble 2. Note here that the standard deviations of most nearly
all experiments are less that 1%, so we do not show the stan-
dard deviations in Table 2. From the experimental results,
we observe that, 1) the proposed KCGT is markedly better
than all comparison methods, which obtains the best perfor-
mance in terms of ACC, NMI and purity on all the datasets;
2) in most cases, the SC-based methods perform better than
the KKM-based methods, since KKM-based methods work
on the original data in kernel space, but SC-based meth-
ods work on the spectral embedding that roughly captures
connectivity of data in kernel space; 3) compared with the
KKM-based competitors, KCGT can exploit the high-order
affinity from base kernels, such that the more important
structure information of data is captured for clustering pur-
pose; and 4) compared with the SC-based methods, KCGT
has two highlights, one is that the affinity graph produced by

9415

Dataset Metrics KKMa KKMb MKKM RMKKM LMKKM MR LKAM LFA SPMKC CAGL NKSS KCGT

BBCSport2
ACC 66.18 76.65 66.18 63.79 66.18 66.18 60.48 77.45 79.04 86.03 95.04 99.82
NMI 53.93 58.96 53.93 39.62 54.22 53.93 45.57 55.63 57.84 73.58 84.94 99.29

Purity 77.21 79.41 77.21 67.83 77.39 77.21 70.77 76.27 79.04 86.21 95.04 99.82

ProteinFold
ACC 28.10 33.86 27.23 33.29 30.26 36.31 33.00 40.49 33.58 31.70 34.87 39.63
NMI 38.53 42.03 37.16 40.17 40.26 45.89 41.25 48.96 42.21 42.02 46.93 45.89

Purity 36.17 41.21 33.86 37.61 37.18 45.39 37.90 46.85 38.16 38.04 44.38 41.35

Flower17
ACC 74.34 70.81 75.51 71.99 74.56 73.90 66.18 61.16 76.53 75.44 78.31 98.60
NMI 73.87 69.14 73.73 71.56 73.97 73.42 71.35 60.79 76.12 75.67 78.75 97.88

Purity 74.56 70.96 75.51 73.68 74.78 74.19 69.19 62.32 77.30 76.86 80.00 98.60

Caltech101
ACC 35.29 32.09 34.77 32.03 34.44 37.91 31.90 38.39 39.17 36.72 36.01 49.22
NMI 59.93 58.30 59.64 56.21 58.92 61.47 58.19 61.65 62.68 59.13 60.69 68.58

Purity 37.52 33.92 37.25 33.79 35.88 39.74 34.25 40.28 41.52 37.91 39.54 52.35

Mfeat
ACC 71.95 80.20 59.60 65.30 71.35 83.20 80.90 95.15 97.14 91.76 98.00 99.90
NMI 69.86 66.55 55.56 62.67 71.52 78.12 80.50 95.00 95.10 91.12 95.27 99.73

Purity 71.95 80.20 62.55 66.25 72.05 83.20 84.10 95.05 96.74 91.20 98.00 99.90

UCI-Digit
ACC 88.75 75.65 47.00 44.00 89.90 90.40 95.50 88.60 95.62 95.45 96.95 99.95
NMI 80.59 68.44 48.16 48.02 82.85 83.22 90.08 88.25 92.11 91.30 92.91 99.86

Purity 88.75 76.30 49.70 47.20 89.90 90.40 95.50 88.90 96.04 95.27 96.95 99.95

CCV
ACC 19.71 23.82 19.95 17.57 21.84 24.20 19.46 27.56 30.10 24.42 25.22 59.78
NMI 17.50 19.05 15.41 13.79 18.43 19.84 17.21 20.59 25.76 20.13 22.57 64.97

Purity 24.45 25.29 24.58 21.32 25.79 26.58 24.13 30.71 32.14 26.98 28.41 66.46

Flower102
ACC 27.29 33.22 21.96 27.05 26.98 42.24 42.01 42.16 43.29 41.17 42.80 79.47
NMI 46.32 49.08 42.30 46.99 45.92 57.57 58.19 60.48 59.52 58.55 59.69 94.00

Purity 32.28 38.88 27.61 32.13 32.37 48.49 48.36 50.44 51.36 49.10 50.04 86.64

Table 2: Clustering results of the comparison methods. The best results are highlighted in bold.

0

10
-6

0.5

10
-5

10
-4

1

1
0 510

-3
1
0 410

-2 1
0 3

10
-1 1

0 21
0 11 1

10
1 1

0 -110
2 1

0 -21
0 -3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) ACC

0

10
-6

0.5

10
-5

10
-4

1

1
0 510

-3
1
0 410

-2 1
0 3

10
-1 1

0 21
0 11 1

10
1 1

0 -110
2 1

0 -21
0 -3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b) NMI

Figure 3: Clustering performance (in terms of ACC and NMI) w.r.t. α and β on the Flower17 dataset.

0

10
-6

0.5

10
-5

10
-4

1

1
0 510

-3
1
0 410

-2 1
0 3

10
-1 1

0 21
0 11 1

10
1 1

0 -110
2 1

0 -21
0 -3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) ACC

0

10
-6

0.5

10
-5

10
-4

1

1
0 510

-3
1
0 410

-2 1
0 3

10
-1 1

0 21
0 11 1

10
1 1

0 -110
2 1

0 -21
0 -3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) NMI

Figure 4: Clustering performance (in terms of ACC and NMI) w.r.t. α and β on the UCI-Digit dataset.

9416

5 10 15 20 25

Number of iterations

0

2

4

6

E
rr

o
r

0

0.2

0.4

0.6

0.8

1

P
e

rf
o

rm
a

n
c
e

Residual

ACC

NMI

(a) Flower17

5 10 15 20 25

Number of iterations

0

2

4

6

8

10

E
rr

o
r

0

0.2

0.4

0.6

0.8

1

P
e
rf

o
rm

a
n
c
e

Residual

ACC

NMI

(b) UCI-Digit

Figure 5: Convergence and clustering performance versus
iteration on the Flower17 and UCI-Digit datasets.

KKG enjoys the valuable block diagonal and sparse prop-
erty, the other is that KCGT constructs a high-order graph
tensor to capture the three-order affinity, rather than the tra-
ditional two-order affinity.

Parameter Sensitivity and Convergence

In KCGT, there are two parameters α and β required to be
set properly, which are used to control the sparsity of each
candidate affinity graph S(k) (i.e., ‖S(k)‖1, 1 ≤ k ≤ m) and
the effect of the high-order graph tensor S (i.e., ‖S‖~), re-
spectively. By leveraging a grid search technique, we tune α
and β from the ranges [10−5, · · · , 102] and [10−3, · · · , 105]
with step size 10, respectively. Take the Flower17 and UCI-
Digit datasets for example. As shown in Figs. 3 and 4, the
proposed KCGT method works well for a wide range of α
and β values, and can be easily tuned. Usually, we need a
relatively large α and a relatively small β. The results of
other datasets are similar and are omitted due to space limit.

To demonstrate the convergence of Algorithm 1 experi-
mentally, we record the convergence and clustering perfor-
mance at each iteration on the the Flower17 and UCI-Digit
datasets. As illustrated in Fig. 5, we have two observations:
1) the residual curves (i.e., error w.r.t. iterator) converge
rapidly till to the stable point, some of which meet the stop
criterion (i.e., Eq. 19) within 25 epochs; and 2) the clustering
performance (i.e., ACC and NMI w.r.t. iterator) of the pro-
posed method gradually increases until the residual curves
become stable. This proves the fast and stable convergence
property of the proposed algorithm.

Conclusion
This paper proposes a new graph learning paradigm (i.e.,
KKG) and a novel MKC method (i.e., KCGT). Specifically,
KKG devotes learning a desired affinity graph in kernel
space by coupling the kernel k-means, so as to obtain mul-
tiple affinity graphs from base kernels. Meanwhile, KCGT
can exploit the high-order information of these candidate
graphs to learn a high-quality consensus graph for spectral
clustering purpose. Theoretically, KCGT can better address
the problem of how to choose the right kernel function and
pre-define its parameters optimally for a specific non-linear
dataset. Experimentally, KCGT shows clearly superior clus-
tering performance on benchmark datasets, in comparison
with state-of-the-art methods.

Acknowledgments
This work was supported by the Sichuan Science and
Technology Program (project no. 2021YJ0083), the Na-
tional Natural Science Foundation of China (project nos.
61673220 and 61906091), the Zhejiang Provincial Natural
Science Foundation of China (project no. LGF21F020003),
and the Natural Science Foundation of Chongqing (project
no. cstc2020jcyjmsxmX0473).

References
Boyd, S.; Boyd, S. P.; and Vandenberghe, L. 2004. Convex
optimization. Cambridge university press.
Du, L.; Zhou, P.; Shi, L.; Wang, H.; Fan, M.; Wang, W.;
and Shen, Y.-D. 2015. Robust multiple kernel k-means us-
ing L21-norm. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, 3476–
3482.
Gönen, M.; and Margolin, A. A. 2014. Localized data fusion
for kernel k-means clustering with application to cancer bi-
ology. Advances in Neural Information Processing Systems
27: 1305–1313.
Huang, H.-C.; Chuang, Y.-Y.; and Chen, C.-S. 2012. Mul-
tiple kernel fuzzy clustering. IEEE Transactions on Fuzzy
Systems 20(1): 120–134.
Huang, J.; Nie, F.; and Huang, H. 2015. A new simplex
sparse learning model to measure data similarity for cluster-
ing. In The Twenty-Fourth International Joint Conference
on Artificial Intelligence, 3569–3575.
Kang, Z.; Lu, X.; Yi, J.; and Xu, Z. 2018. Self-weighted mul-
tiple kernel learning for graph-based clustering and semi-
supervised classification. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intel-
ligence, 2312–2318.
Li, M.; Liu, X.; Wang, L.; Dou, Y.; Yin, J.; and Zhu, E. 2016.
Multiple kernel clustering with local kernel alignment max-
imization. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, 1704–1710.
Liu, J.; Liu, X.; Xiong, J.; Liao, Q.; Zhou, S.; Wang, S.; and
Yang, Y. 2020a. Optimal neighborhood multiple kernel clus-
tering with adaptive local kernels. IEEE Transactions on
Knowledge and Data Engineering .

9417

Liu, X.; Dou, Y.; Yin, J.; Wang, L.; and Zhu, E. 2016. Mul-
tiple kernel k-means clustering with matrix-induced regular-
ization. In Proceedings of the Thirtieth AAAI Conference on
Artificial Intelligence, 1888–1894.

Liu, X.; Zhou, S.; Wang, Y.; Li, M.; Dou, Y.; Zhu, E.; Yin,
J.; and Li, H. 2017. Optimal neighborhood kernel cluster-
ing with multiple kernels. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, 2266–2272.

Liu, X.; Zhu, X.; Li, M.; Wang, L.; Zhu, E.; Liu, T.; Kloft,
M.; Shen, D.; Yin, J.; and Gao, W. 2020b. Multiple ker-
nel k-means with incomplete kernels. IEEE Transactions
on Pattern Analysis and Machine Intelligence 42(5): 1191–
1204.

Lu, C.; Feng, J.; Lin, Z.; Mei, T.; and Yan, S. 2019. Subspace
clustering by block diagonal representation. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 41(2):
487–501.

Nie, F.; Wang, X.; Jordan, M. I.; and Huang, H. 2016. The
constrained laplacian rank algorithm for graph-based clus-
tering. In Thirtieth AAAI Conference on Artificial Intelli-
gence, 1969–1976.

Ren, Z.; Li, H.; Yang, C.; and Sun, Q. 2019. Multiple ker-
nel subspace clustering with local structural graph and low-
rank consensus kernel learning. Knowledge-Based Systems
105040.

Ren, Z.; Mukherjee, M.; Lloret, J.; and Venu, P. 2020a.
Multiple kernel driven clustering with locally consistent and
selfish graph in industrial IoT. IEEE Transactions on Indus-
trial Informatics 17(4): 2956–2963.

Ren, Z.; and Sun, Q. 2020. Simultaneous global and lo-
cal graph structure preserving for multiple kernel clustering.
IEEE Transactions on Neural Networks and Learning Sys-
tems .

Ren, Z.; Sun, Q.; Wu, B.; Zhang, X.; and Yan, W. 2020b.
Learning latent low-rank and sparse embedding for robust
image feature extraction. IEEE Transactions on Image Pro-
cessing 29(1): 2094–2107.

Ren, Z.; Yang, S. X.; Sun, Q.; and Wang, T. 2020c. Con-
sensus affinity graph learning for multiple kernel clustering.
IEEE Transactions on Cybernetics .

Wang, S.; Liu, X.; Zhu, E.; Tang, C.; Liu, J.; Hu, J.; Xia, J.;
and Yin, J. 2019. Multi-view clustering via late fusion align-
ment maximization. In Twenty-Eighth International Joint
Conference on Artificial Intelligence, 3778–3784.

Wu, J.; Xie, X.; Nie, L.; Lin, Z.; and Zha, H. 2020. Unified
graph and low-rank tensor learning for multi-view cluster-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, 6388–6395.

Yang, C.; Ren, Z.; Sun, Q.; Wu, M.; Yin, M.; and Sun, Y.
2019. Joint correntropy metric weighting and block diagonal
regularizer for robust multiple kernel subspace clustering.
Information Sciences 500: 48–66.

Zhang, C.; Fu, H.; Liu, S.; Liu, G.; and Cao, X. 2015. Low-
rank tensor constrained multiview subspace clustering. In

Proceedings of the IEEE International Conference on Com-
puter Vision, 1582–1590.
Zhou, P.; Lu, C.; Feng, J.; Lin, Z.; and Yan, S. 2019a. Ten-
sor low-rank representation for data recovery and clustering.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence .
Zhou, S.; Liu, X.; Li, M.; Zhu, E.; Liu, L.; Zhang, C.; and
Yin, J. 2019b. Multiple kernel clustering with neighbor-
kernel subspace segmentation. IEEE transactions on neural
networks and learning systems 31(4): 1351–1362.

9418

