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Abstract

Long after Turing’s seminal Reaction-Diffusion (RD) model,
the elegance of his fundamental equations alleviated much of
the skepticism surrounding pattern formation. Though Turing
model is a simplification and an idealization, it is one of the
best-known theoretical models to explain patterns as a remi-
niscent of those observed in nature. Over the years, concerted
efforts have been made to align theoretical models to explain
patterns in real systems. The apparent difficulty in identifying
the specific dynamics of the RD system makes the problem
particularly challenging. Interestingly, we observe Turing-
like patterns in a system of neurons with adversarial inter-
action. In this study, we establish the involvement of Turing
instability to create such patterns. By theoretical and empiri-
cal studies, we present a pseudo-reaction-diffusion model to
explain the mechanism that may underlie these phenomena.
While supervised learning attains homogeneous equilibrium,
this paper suggests that the introduction of an adversary helps
break this homogeneity to create non-homogeneous patterns
at equilibrium. Further, we prove that randomly initialized
gradient descent with over-parameterization can converge ex-
ponentially fast to an ε-stationary point even under adversar-
ial interaction. In addition, different from sole supervision,
we show that the solutions obtained under adversarial inter-
action are not limited to a tiny subspace around initialization.

Introduction
In this paper, we intend to demystify an interesting phe-
nomenon: adversarial interaction between generator and dis-
criminator creates non-homogeneous equilibrium by induc-
ing Turing instability in a Pseudo-Reaction-Diffusion (PRD)
model. This is in contrast to supervised learning where the
identical model achieves homogeneous equilibrium while
maintaining spatial symmetry over iterations.

Recent success of Generative Adversarial Networks
(GANs) (Goodfellow et al. 2014; Arjovsky, Chintala, and
Bottou 2017) has led to exciting applications in a wide vari-
ety of tasks (Luc et al. 2016; Zhu et al. 2017; Ledig et al.
2017; Engin, Genç, and Kemal Ekenel 2018; Rout et al.
2020). In adversarial learning paradigm, it is often required
that a particular sample is generated subject to a conditional
input. Typically, conditional GANs are employed to meet
these demands (Mirza and Osindero 2014). Further, it has
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been reported in copious literature that supervised learning
with adversarial regularization performs better than sole su-
pervision (Ledig et al. 2017; Rout 2020; Wang et al. 2018;
Wang and Gupta 2016; Karacan et al. 2016; Sarmad, Lee,
and Kim 2019). In all these prior works, one may notice sev-
eral crucial properties of adversarial interaction. It is worth
emphasizing that adversarial learning owes its benefits to the
continuously evolving loss function which otherwise is ex-
tremely difficult to model. Motivated by these findings, we
uncover another interesting property of adversarial training.
We observe that adversarial interaction helps break the spa-
tial symmetry and homogeneity to create non-homogeneous
patterns in weight space.

The reason for studying these phenomena is multi-fold.
The fact that adversarial interaction exhibits Turing-like pat-
terns creates a dire need to investigate its connections to
nature. In particular, these patterns often emerge in real
world systems, such as butterfly wings, zebra, giraffe and
leopard (Turing 1952; Meinhardt 1982; Rauch and Millonas
2004; Nakamasu et al. 2009; Kondo and Miura 2010). In-
terestingly, adversarial training captures some intricacies of
this complex biological process that create evolutionary pat-
terns in neural networks. Furthermore, it is important to un-
derstand neural synchronization in human brain to design
better architectures (Budzynski et al. 2009). This paper is
intended to shed light on some of these aspects.

It is widely believed that fully connected networks already
capture certain important properties of deep learning (Saxe,
McClelland, and Ganguli 2014; Li and Liang 2018). While
one may wish to extend these analyses to more complex net-
works, it may not allow a comprehensive study of various
fundamental aspects in the nascent state of understanding.
Besides, the complexity involved in studying the Reaction-
Diffusion (RD) dynamics of a large neural network is enor-
mous. For this reason, we study two layer neural networks
and focus more on the theory of Turing-like patterns.

While dynamical systems governed by different equations
exhibit different patterns, it is crucial to study the dynamics
through reaction and diffusion terms that laid the foundation
of pattern formation (Turing 1952). Our key observation:

A system in which a generator and a discriminator
adversarially interact with each other exhibits Turing-like
patterns in the hidden layer and top layer of a two layer

generator network with ReLU activation.
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To provide a thorough explanation to these empirical find-
ings, we derive the governing dynamics of a PRD model.

From another perspective, the generator provides a short-
range positive feedback as it tries to minimize the empirical
risk directly. On the other hand, the discriminator provides
a long-range negative feedback as it tries to maximize the
generator cost. Since the adversary discriminates between
real and fake samples, it indirectly optimizes the primary
objective function. It is safe to assume that such signals from
the discriminator to the generator form the basis of long-
range negative feedback as studied by Rauch and Millonas.

Preliminaries
Notations Bold upper-case letter A denotes a matrix. Bold
lower-case letter a denotes a vector. Normal lower-case let-
ter a denotes a scalar. ‖.‖2 represents Euclidean norm of a
vector and spectral norm of a matrix. ‖.‖F represents Frobe-
nius norm of a matrix. λmin(.) and λmax(.) denote smallest
and largest eigen value of a matrix. dx represents derivative
of x and ∂x represents its partial derivative. For g : Rd → R,
∇g and ∇2g denote gradient and Laplacian of g, respec-
tively. [m] denotes the set {1, 2, . . . ,m}.

Problem Setup Consider that we are given n training
samples {(xp,yp)}np=1 ⊂ Rdin × Rdout . Formally, we use
the following notations to represent two layer neural net-
works with rectified linear unit (ReLU) activation function
(σ(.)).

f (U ,V ,x) =
1√
doutm

V σ (Ux) (1)

Here, U ∈ Rm×din and V ∈ Rdout×m. Let us denote
uj = Uj,: and vj = V:,j . The scaling factor 1√

doutm
is de-

rived from Xavier initialization (Glorot and Bengio 2010).
In supervised learning, the training is carried out by mini-
mizing the l2 loss over data as given by

Lsup (U ,V ) =
1

2

n∑
p=1

∥∥∥∥ 1√
doutm

V σ (Uxp)− yp

∥∥∥∥2
2

=
1

2

∥∥∥∥ 1√
doutm

V σ (UX)− Y

∥∥∥∥2
F

.

(2)

The input data points are represented by X =
(x1,x2, . . . ,xn) ∈ Rdin×n and corresponding labels by
Y = (y1,y2, . . . ,yn) ∈ Rdout×n. In regularized adversar-
ial learning, the generator cost is augmented with an adver-
sary:

Laug (U ,V ,W ,a) =
1

2

∥∥∥∥ 1√
doutm

V σ (UX)− Y

∥∥∥∥2
F︸ ︷︷ ︸

Lsup

− 1

m
√
dout

n∑
p=1

aTσ (WV σ (Uxp))︸ ︷︷ ︸
Ladv

.

(3)

The adversary, g (W ,a, y) = 1√
m
aTσ (Wy) : Rdout → R

is a two layer network with ReLU activation. Here, W ∈
Rm×dout and a ∈ Rm. The discriminator cost is exactly
identical to the critic of WGAN with gradient penalty (Gul-
rajani et al. 2017). We follow the common practice to train
generator and discriminator alternatively using Wasserstein
distance. In this study, Laug is considered as the equivalent
of a continuous field in a RD system (Turing 1952).

Learning Algorithm We consider vanilla gradient de-
scent with random initialization as our learning algorithm
to minimize both supervised and augmented objective. For
instance, we update each trainable parameter in augmented
objective by the following Ordinary Differential Equations
(ODE):

dujk
dt

= −∂Laug (U(t),V (t),W (t),a(t))

∂ujk(t)
,

dvij
dt

= −∂Laug (U(t),V (t),W (t),a(t))

∂vij(t)

(4)

for i ∈ [dout], j ∈ [m] and k ∈ [din]. In ideal condition,
the system enters equilibrium when dujk

dt =
dvij
dt = 0. To

circumvent tractability issues, we seek ε-approximate equi-
librium, i.e.

∣∣∣dujkdt ∣∣∣ < ε and
∣∣∣dvijdt ∣∣∣ < ε for a small ε.

Revisiting Reaction-Diffusion Model(Turing 1952)
We focus on two body morphogenesis though it may be ap-
plied generally to many bodies upon further investigation.
Here, two bodies refer to two layers of generator network.
There are 2m differential equations governing the reaction
(R) and diffusion (D) dynamics of such a complex system:

duj
dt

= Ru
j (uj ,vj) + Du

j

(
∇2uj

)
,

dvj
dt

= Rv
j (uj ,vj) + Dv

j

(
∇2vj

)
,

(5)

where j = 1, 2, . . . ,m. Here, m denotes the total num-
ber of neurons in the hidden layer. In the current setup,
uj = (ujk)

din
k=1 , ujk ∈ R and vj = (vij)

dout
i=1 , vij ∈ R.

Thus, duj
dt =

(
dujk
dt

)din
k=1

and dvj
dt =

(
dvij
dt

)dout
i=1

. In the
current analogy, each neuron represents a morphogen as it
fulfills the fundamental requirements of Turing pattern for-
mation. For better understanding, we have grouped those in
hidden layer to one entity (uj) and top layer to another entity
(vj). Among several major advantages of RD systems, a few
that are essential to the present body of analysis are separa-
bility, stability and strikingly rich spatio-temporal dynamics.
Later parts of this paper will focus on deriving suitable ex-
pressions for the reaction and diffusion term.

Pseudo-Reaction-Diffusion Model
The analogy that has been made with RD systems in the
foregoing analysis may be rather confusing to some readers.
The succeeding analysis is intended to clarify some of these
concerns. In the traditional setting, diffusion terms are lim-
ited to the Laplacian of the corresponding morphogens. In
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the present account however, the diffusibility of one mor-
phogen depends on the other morphogens, and hence the
term pseudo-reaction-diffusion. Since later discoveries iden-
tified the root cause of pattern formation to be a short range
positive feedback and a long range negative feedback (Mein-
hardt and Gierer 1974, 2000; Rauch and Millonas 2004),
a system with adversarial interaction is fairly a pseudo-
reaction-diffusion model.

Theoretical Analysis
First, we study symmetry and homogeneity in a simplified
setup. In this regard, the separability property allows us to
choose a scalar network, i.e., dout = 1 and fix the second
layer weights. There are 2mmorphogens in the hidden layer
itself making it a critically important analysis from math-
ematics perspective. Even with this simplification, the net-
work is still non-convex and non-smooth1. The network ar-
chitecture then becomes:

f (U ,v,x) =
1√
m

m∑
j=1

vjσ
(
uTj x

)
=

1√
m
vTσ (Ux) .

(6)

Our goal is to minimize

Lsup (U ,v) =
n∑
p=1

1

2
(f (U ,v,xp)− yp)2 (7)

in a supervised setting and Laug (U ,v,w,a)

=

n∑
p=1

1

2
(f (U ,v,xp)− yp)2 −

1√
m

n∑
p=1

aT σ (w (f (U ,v,xp)))

(8)

in an adversarial setting. The architecture of an adversary
is simplified to g (w, a, y) = 1√

m

∑m
j=1 ajσ (wjy). In the

adversarial setting, this problem can be related to min-max
optimization in non-convex-non-concave setting. We follow
the definition of Gram matrix from Du et al.

Definition 1. Define Gram matrix H∞ ∈ Rn×n.
Each entry of H∞ is computed by H∞ij =

Eu∼N (0,I)

[
xTi xj1{uT xi≥0,uT xj≥0}

]
.

Let us recall the following assumption which is crucial for
the analysis in this paper.

Assumption 1. We assume λ0 , λmin (H∞) > 0 which
means thatH∞ is a positive definite matrix.

The Gram matrix has several important proper-
ties (Tsuchida, Roosta, and Gallagher 2018; Xie, Liang,
and Song 2017). One interesting property that justifies
Assumption 1 is given by Du et al.: If no two inputs are
parallel, then the Gram matrix is positive definite. This is a
valid assumption as very often we do not rely on a training
dataset that contains too many parallel samples.

1We choose to fix the weights of the second layer because the
network becomes convex and smooth if we fix the weights of the
first layer. It motivates us to make this choice which is not far from
practice and allows us to simplify the expressions.

Warm-Up: Reaction Without Diffusion
Before stating the main result, it is useful to get familiarized
with the arguments of warm-up exercise.

Theorem 1. (Symmetry and Homogeneity) Suppose As-
sumption 1 holds. Let us i.i.d. initialize uj ∼ N (0, I) and
sample vj uniformly from {+1,−1} for all j ∈ [m]. If we
choose ‖xp‖2 = 1 for p ∈ [n], then we obtain the following
with probability at least 1− δ:

‖uj(t)− uj(0)‖2 ≤ O
(

n3/2

m1/2λ0δ

)
,

‖U(t)−U(0)‖F ≤ O
(
n3/2

λ0δ

)
.

Proof. We begin proof sketch with the following lemma.
Lemma 1. If we i.i.d initialize ujk ∼ N (0, 1) for j ∈ [m]

and k ∈ [din], then with probability at least (1 − δ), ujk
induces a symmetric and homogeneously distributed matrix
U at initialization within a ball of radius ζ , 2

√
mdin√
2πδ

.
Proof. Using the law of large numbers, it is trivial to prove

symmetry and homogeneity since Gaussian distribution has
a symmetric density function. We defer the proof of upper
bound to Appendix.

Next, we prove how supervised cost helps maintain sym-
metry and homogeneity. Since U is initially symmetric and
homogeneously distributed within ζ according to Lemma 1,
the problem is now reduced to show that U(t) lies in the
close proximity of U(0). We remark three crucial observa-
tions from Du et al. that are essential to our analysis.

Remark 1. Suppose ‖uj − uj(0)‖2 ≤
cδλ0

n2 , R for
some small positive constant c. In the current setup, the
Gram matrixH ∈ Rn×n defined by

Hij = xTi xj
1

m

m∑
r=1

1{uTr xi≥0,uTr xj≥0}

satisfies ‖H −H(0)‖2 ≤
λ0

4 and λmin (H) ≥ λ0

2 .
Remark 2. With Gram matrix H(t), the prediction dy-

namics, z(t) = f (U(t),v(t),x) are governed by the fol-
lowing ODE:

dz(t)

dt
= H(t) (y − z(t)) .

Remark 3. For λmin (H(t)) ≥ λ0

2 , we have

‖z(t)− y‖2 ≤ exp

(
−λ0

2
t

)
‖z(0)− y‖2 .

Now, for 0 ≤ s ≤ t,∥∥∥∥duj(s)ds

∥∥∥∥
2

=

∥∥∥∥∂Lsup (U ,v)

∂uj(s)

∥∥∥∥
2

=

∥∥∥∥∥
n∑
p=1

(zp(s)− yp)
∂zp(s)

∂uj(s)

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
p=1

(zp(s)− yp)
1√
m
vj1{uj(s)Txp≥0}xp

∥∥∥∥∥
2

.

(9)
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By triangle inequality,∥∥∥∥duj(s)ds

∥∥∥∥
2

≤
n∑
p=1

∥∥∥∥(zp(s)− yp)
1√
m
vj1{uj(s)T xp≥0}xp

∥∥∥∥
2

.

(10)
Using the classical inequality of Cauchy-Schwarz, ‖xp‖2 =
1, |vj | = 1 and Remark 3, we get∥∥∥∥duj(s)ds

∥∥∥∥
2

≤
n∑
p=1

1√
m
|(zp(s)− yp)| |vj | ‖xp‖2

=
1√
m

n∑
p=1

|(zp(s)− yp)|

≤
√
n√
m
‖z(s)− y‖2

≤
√
n√
m

exp

(
−λ0

2
s

)
‖z(0)− y‖2 .

(11)

By integral form of Jensen’s inequality, the distance from
initialization can be bounded by

‖uj(t)− uj(0)‖2 =

∥∥∥∥∫ t

0

duj(s)

ds
ds

∥∥∥∥
2

≤
∫ t

0

∥∥∥∥duj(s)ds

∥∥∥∥
2

ds

≤
√
n√
m

∫ t

0

exp

(
−λ0

2
s

)
‖z(0)− y‖2 ds

≤
2
√
n ‖z(0)− y‖2√

mλ0

(
1− exp

(
−λ0

2
t

))
.

(12)

Since exp
(
−λ0

2 t
)

is a decreasing function of t, the above
expression simplifies to

‖uj(t)− uj(0)‖2 ≤
2
√
n ‖z(0)− y‖2√

mλ0
. (13)

Using Markov’s inequality, with probability at least 1 − δ,
we get

‖uj(t)− uj(0)‖2 ≤
2
√
nE [‖z(0)− y‖2]√

mλ0δ

≤ O
(

n3/2

m1/2λ0δ

)
.

(14)

Now, we can bound the distance from initialization.

‖U(t)−U(0)‖F =

 m∑
j=1

din∑
k=1

|ujk(t)− ujk(0)|2
1/2

≤

 m∑
j=1

‖uj(t)− uj(0)‖22

1/2

≤

 m∑
j=1

4n (E [‖z(0)− y‖2])
2

mλ20δ
2

1/2

≤
2
√
nE [‖z(0)− y‖2]

λ0δ
≤ O

(
n3/2

λ0δ

)
,

(15)
which finishes the proof. �

Main Result: Reaction With Diffusion
To limit the capacity of a discriminator, it is often sug-
gested to enforce a Lipschitz constraint on its parameters.
While gradient clipping has been quite effective in this re-
gard (Arjovsky, Chintala, and Bottou 2017), recent success
in adversarial training owes in part to gradient penalty (Gul-
rajani et al. 2017). We remark that min-max optimization
under non-convexity and non-concavity is considered NP-
hard to find a stationary point (Lei et al. 2019). Therefore,
it is necessary to make certain assumptions about discrimi-
nator, such as Lipschitz constraint, regularization and struc-
ture of the network. Different from one layer generator and
quadratic discriminator (Lei et al. 2019), we study two layer
networks with ReLU activations and rely on gradient penalty
to limit its expressive power. In the simplified theoretical
analysis, we assume ‖w‖2 ≤ L for a small constant L > 0.

Theorem 2. (Breakdown of Symmetry and Homogeneity)
Suppose Assumption 1 holds. Let us i.i.d. initialize uj , wr ∼
N (0, I) and sample vj , ar uniformly from {+1,−1} for
j, r ∈ [m]. Let ‖xp‖2 = 1 for all p ∈ [n]. If we choose

‖w‖2 ≤ L ≤ O
(

ε
√
m

κn
√

2 log(2/δ)

)
, κ = O(κ∞) where

κ∞denotes the condition number of H∞, and define µ ,
Ln
√

2 log(2/δ)√
m

, then with probability at least 1−δ, we obtain
the following2:

‖uj(t)− uj(0)‖2 ≤ O
(

n3/2√
mλ0δ

+

(
µ (1 + κ

√
n)√

m

)
t

)
,

‖U(t)−U(0)‖F ≤ O
(
n3/2

λ0δ
+ µ

(
1 + κ

√
n
)
t

)
.

Proof. We sketch the proof of the main result as following.

Reaction Term For 0 ≤ s ≤ t in augmented objective as
given by equation (8), we get∥∥∥∥duj(s)ds

∥∥∥∥
2

=

∥∥∥∥∂Laug (U ,v,w,a)

∂uj(s)

∥∥∥∥
2

=

∥∥∥∥∥∂Lsup (U ,v)

∂uj(s)
− ∂

∂uj(s)

n∑
p=1

g (w, a, zp)

∥∥∥∥∥
2

≤
∥∥∥∥∂Lsup (U ,v)

∂uj(s)

∥∥∥∥
2

+

∥∥∥∥∥ ∂

∂uj(s)

n∑
p=1

g (w, a, zp)

∥∥∥∥∥
2︸ ︷︷ ︸

Triangle inequality

.

(16)

We start our analysis by first deriving an asymptotic upper
bound of the supervised part. Then, we shift our focus to the
augmented part which essentially constitutes the adversary.

Lemma 2. In contrast to Remark 2, the prediction dynam-
ics in adversarial regularization are governed by the follow-
ing ODE:

dz(t)

dt
= H(t) (y − z(t)) +H(t)∇z(t)g(w(t),a(t), z(t)).

(17)

2Refer to Appendix for experimental evidence and further dis-
cussion on breakdown of symmetry and homogeneity.
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Proof. The above ODE is obtained by analyzing the dy-
namics as following:

dzp(t)

dt
=

m∑
j=1

〈
∂f (U ,v,xp)

∂uj(t)
,
duj(t)

dt

〉

=
m∑
j=1

〈
∂f (U ,v,xp)

∂uj(t)
,

1√
m

n∑
q=1

(yq − zq) vjxq1{uTj xq≥0}

〉
︸ ︷︷ ︸

A

+
m∑
j=1

〈
∂f (U ,v,xp)

∂uj(t)
,

1

m

n∑
q=1

m∑
r=1

arwrvjxq1{wrzq≥0,uTj xq≥0}

〉
︸ ︷︷ ︸

B

.

(18)

Following arguments of the warm-up exercise, the first part
can be simplified as:

A :=
m∑
j=1

〈
1√
m
vjxp1{uTj xp≥0},

1√
m

n∑
q=1

(yq − zq) vjxq1{uTj xq≥0}

〉

=
n∑
q=1

(yq − zq)xTp xq
1

m

m∑
j=1

1{uTj xp≥0,uTj xq≥0}

,
n∑
q=1

(yq − zq(t))Hpq(t),

(19)

where Hpq(t) denotes the elements of Gram matrix H(t)
defined by

Hpq(t) = xTp xq
1

m

m∑
j=1

1{uTj xp≥0,uTj xq≥0}. (20)

Using the predefined Gram matrix, the second part can be
simplified as:

B :=
m∑
j=1

〈
1√
m
vjxp1{uTj xp≥0},

1

m

n∑
q=1

m∑
r=1

arwrvjxq1{wrzq≥0,uTj xq≥0}

〉

=
n∑
q=1

(
1√
m

m∑
r=1

arwr1{wrzq≥0}

)
︸ ︷︷ ︸

∇zg

xTp xq
1

m

m∑
j=1

1{uTj xp≥0,uTj xq≥0}

,
n∑
q=1

∂g (w,a, zq)

∂zq
Hpq(t)

(21)

Thus, the prediction dynamics are governed by

dzp(t)

dt
=

n∑
q=1

(yq − zq(t))Hpq(t)

+
n∑
q=1

∂g (w(t),a(t), zq(t))

∂zq(t)
Hpq(t).

(22)

Rearranging the above expression in matrix form, we get
the statement of Lemma 2. �

Lemma 3. (Hoeffding’s inequality, two sided (Vershynin
2018)) Suppose a = (a1, a2, . . . , am) ∈ {±1}m be a col-
lection of independent symmetric Bernoulli random vari-
ables, and w = (w1, w2, . . . , wm) ∈ Rm. Then, for any

t > 0, we have

P

{∣∣∣∣∣
m∑
r=1

arwr

∣∣∣∣∣ ≥ t
}
≤ 2 exp

(
− t2

2 ‖w‖22

)
. (23)

With probability at least 1− δ, we get the following bound
using two-sided Hoeffding’s inequality:∣∣∣∣∣

m∑
r=1

arwr

∣∣∣∣∣ ≤ ‖w‖2
√

2 log

(
2

δ

)
. (24)

Now, the distance from true labels can be bounded by
d

dt
‖z(t)− y‖22

= 2

〈
z(t)− y,

dz(t)

dt

〉
= 2 〈z(t)− y,−H(t) (z(t)− y)〉

+ 2
〈
z(t)− y,H(t)∇z(t)g(w(t),a(t), z(t))

〉
(25)

Lemma 4. Suppose Assumption 1 holds. If we denote
λmax (H∞) by λ∞1 , then λmax (H) ≤ λ1

2 , λ∞1 + λ0

2 .
Proof. As the proof is relatively simpler, we defer it to ap-
pendix.

Since λmin(H) ≥ λ0

2 (Remark 1) and λmax(H) ≤ λ1

2
(Lemma 4), we get

d

dt
‖z(t)− y‖22

≤ −λ0 ‖z(t)− y‖22
+ λ1

〈
z(t)− y,∇z(t)g(w(t),a(t), z(t))

〉
≤ −λ0 ‖z(t)− y‖22

+ λ1‖z(t)− y‖2
∥∥∇z(t)g(w(t),a(t), z(t))

∥∥
2︸ ︷︷ ︸

Cauchy-Schwarz inequality

≤ −λ0 ‖z(t)− y‖22
+ λ1 ‖z(t)− y‖2

∥∥∇z(t)g(w(t),a(t), z(t))
∥∥
1

≤ −λ0 ‖z(t)− y‖22

+ λ1 ‖z(t)− y‖2
n∑
q=1

∣∣∣∣∣ 1√
m

m∑
r=1

arwr1{wrzq≥0}

∣∣∣∣∣
≤ −λ0 ‖z(t)− y‖22

+ λ1 ‖z(t)− y‖2
n√
m

∣∣∣∣∣
m∑
r=1

arwr

∣∣∣∣∣
(26)

Substituting equation (24) in equation (26), we get
d

dt
‖z(t)− y‖22

≤ −λ0 ‖z(t)− y‖22 + λ1 ‖z(t)− y‖2
n√
m
‖w‖2

√
2 log

(
2

δ

)

≤ −λ0 ‖z(t)− y‖22 +
λ1Ln

√
2 log

(
2
δ

)
√
m

‖z(t)− y‖2 .

(27)
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Let us define µ ,
Ln

√
2 log( 2

δ )
√
m

. Then,

d

dt
‖z(t)− y‖22 ≤ −λ0 ‖z(t)− y‖22 + λ1µ ‖z(t)− y‖2

(28)
The above non-linear ODE is a special Bernoulli Dif-
ferential Equation (BDE)3 which has known exact solu-
tions (Bernoulli 1695). For simplicity, let us suppose ψ =

‖z(t)− y‖22. Now,
dψ

dt
≤ −λ0ψ + λ1µψ

1/2 (29)

Substituting ψ = ϕ2, the BDE is reduced to an Initial Value
Problem (IVP): dϕdt + λ0

2 ϕ ≤
λ1

2 µ. By substituting ϕ = νζ,
the IVP is decomposed into two linear ODEs of the form
dν
dt + λ0

2 ν = 0 and ν dζdt −
λ1

2 µ = 0. Since these ODEs have
separable forms, for arbitrary constants C1 and C2, we get

ν = C1 exp

(
−λ0t

2

)
, ζ = C2 +

κµ

C1
exp

(
λ0t

2

)
, (30)

where κ = λ1

λ0
=

2(λ∞
1 +

λ0
2 )

λ0
= O(κ∞). Here, κ∞ is the

condition number of H∞. Thus, the solution of the BDE is
given by ψ = ϕ2 =

(
C exp

(
−λ0t

2

)
+ κµ

)2
for another

constant C. Using initial value of ψ, we get the exact solu-
tion:

‖z(t)− y‖2 ≤ (‖z(0)− y‖2 − κµ) exp

(
−λ0

2
t

)
+ κµ.

(31)
From equation (11) in the warm-up exercise, we know for
0 ≤ s ≤ t,∥∥∥∥∂Lsup (U ,v)

∂uj(s)

∥∥∥∥
2

≤
√
n√
m
‖z(s)− y‖2 . (32)

Now, substituting equation (31), we get∥∥∥∥∂Lsup (U ,v)

∂uj(s)

∥∥∥∥
2

≤
√
n√
m

(‖z(0)− y‖2 − κµ) exp

(
−λ0

2
s

)
+

√
n√
m
κµ.

(33)
Therefore, the reaction dynamics are given by

Ru
j (uj(t)) ≤

√
n√
m

(‖z(0)− y‖2 − κµ) exp

(
−λ0

2
t

)
+

√
n√
m
κµ.

(34)
Diffusion Term The augmented part on the other hand be-
comes:∥∥∥∥∥ ∂

∂uj(s)

n∑
p=1

g (w, a, zp)

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑
p=1

m∑
r=1

1√
m
ar1{wrzp≥0}wr

1√
m
vj1{vTj xp≥0}xp

∥∥∥∥∥
2

.

(35)
3A Bernoulli differential equation is an ODE of the form

dx(t)
dt

+ P (t)x(t) = Q(t)xn(t) for n ∈ R\ {0, 1} .

By Triangle and Cauchy-Schwarz inequality, we get∥∥∥∥∥ ∂

∂uj(s)

n∑
p=1

g (w, a, zp)

∥∥∥∥∥
2

≤ 1

m

n∑
p=1

∥∥∥∥∥vj1{vTj xp≥0}xp
m∑
r=1

arwr1{wrzp≥0}

∥∥∥∥∥
2

≤ 1

m

n∑
p=1

|vj | ‖xp‖2

∣∣∣∣∣
m∑
r=1

arwr

∣∣∣∣∣
≤ 1

m

n∑
p=1

∣∣∣∣∣
m∑
r=1

arwr

∣∣∣∣∣

(36)

Substituting equation (24) in equation (36), we arrive at the
following inequality:∥∥∥∥∥ ∂

∂uj(s)

n∑
p=1

g (w, a, zp)

∥∥∥∥∥
2

≤ 1

m

n∑
p=1

‖w‖2

√
2 log

(
2

δ

)

≤
Ln
√

2 log
(
2
δ

)
m

= O
(

µ√
m

)
.

(37)

Thus, the diffusion dynamics are given by

Du
j (uj(t)) ≤

Ln
√

2 log
(
2
δ

)
m

.
(38)

Now integrating the gradients over 0 ≤ s ≤ t,

‖uj(t)− uj(0)‖2 ≤
∫ t

0

∥∥∥∥duj(s)ds

∥∥∥∥
2

ds

≤
∫ t

0

√
n√
m

(‖z(0)− y‖2 − κµ) exp

(
−λ0

2
s

)
ds

+

∫ t

0

µ (1 + κ
√
n)√

m
ds

≤
2
√
n (‖z(0)− y‖2 − κµ)√

mλ0

(
1− exp

(
−λ0

2
t

))
+

(
µ (1 + κ

√
n)√

m

)
t.

(39)

Using Markov’s inequality, ‖z(0)− y‖2 ≤
E[‖z(0)−y‖2]

δ =

O
(
n
δ

)
with probability at least 1− δ. Thus,

‖uj(t)− uj(0)‖2

≤ O
(

n3/2

m1/2λ0δ
+

(
µ (1 + κ

√
n)

m1/2

)
t

)
.

(40)

Furthermore, the spatial grid of neurons satisfies:

‖U(t)−U(0)‖F ≤
√
m ‖uj(t)− uj(0)‖2

≤ O
(
n3/2

λ0δ
+ µ

(
1 + κ

√
n
)
t

)
.

(41)
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To circumvent tractability issues, it is common to seek an
ε-stationary point. As given by equation (31), z(t) in adver-
sarial learning converges uniformly to an ε-neighborhood of
y for any t ≥ T0 , 2

λ0
log
(
‖z(0)−y‖2−κµ

ε−κµ

)
. For finite time

convergence, we need κµ < ε < ‖z(0)− y‖2. The sec-
ond inequality holds because we usually look for a solution
where the error is better than what obtained during initial-
ization. The first inequality gives the upper bound on gra-

dient penalty, i.e., L ≤ O
(

ε
√
m

κn
√

2 log(2/δ)

)
by substituting

the value of µ. It is an important result in a sense that over-
parameterized networks can still enjoy linear rate of conver-
gence even under adversarial interaction. �

In a general configuration, Remark 1 asserts that the in-
duced Gram matrix is stable and satisfies our assumptions
on eigen values as long as ‖uj − uj(0)‖ ≤ R. Intuitively,
this is satisfied when the points visited by gradient descent
in adversarial learning lie within this R-ball. Formally, we
need the following condition to be satisfied for finding the
least expensive ε-stationary point:

O
(

n3/2

m1/2λ0δ
+

(
µ (1 + κ

√
n)

m1/2

)
T0

)
≤ R. (42)

Substituting R = cδλ0

n2 in the above expression, we get

m = Ω

((
n7/2

λ20δ
2

+
n2µ (1 + κ

√
n)T0

λ0δ

)2
)
. (43)

It is worth mentioning that the polynomial node complex-
ity, m = poly

(
n, 1

λ0
, 1δ

)
is also essential for finding an

ε-stationary point in sole supervision. By ignoring the dif-
fusible factors, i.e., setting µ = 0, we recover the lower
bound, m = Ω

(
n7

λ4
0δ

4

)
in supervised learning.

Discussion of Insights from Analysis
A profound implication of this finding is that adversarial
learning allows gradient descent to explore a large subspace
in contrast to supervised learning where a tiny subspace
around initialization is merely explored (Gur-Ari, Roberts,
and Dyer 2018). As a result, it offers the provision to ex-
ploit full capacity of network architectures by encouraging
local interaction. In other words, the neurons in supervised
learning do not interact with each other as much as they do
in adversarial learning. By introducing the diffusible fac-
tors, it helps break the spatial symmetry and homogeneity
in this tiny subspace. Due to more local interaction and dif-
fusion, it exhibits patterns as a reminiscent of those observed
in nature. More importantly, this is consistent with the well-
studied theory of pattern formation (Turing 1952; Meinhardt
1982; Gray and Scott 1984; Rauch and Millonas 2004).

The system of neurons is initially in a stable homoge-
neous condition due to non-diffusive elements in sole su-
pervision. It is perturbed by irregularities introduced under
the influence of an adversary. For a RD system, it is neces-
sary that these irregularities are small enough, which other-
wise would destabilize the whole system, and it may never

converge to a reasonable solution. This is easily satisfied
in over-parameterized networks as given by equation (38).
Thus, it is not unreasonable to suppose that adversarial in-
teraction in augmented objective is the only one in which
conditions are such to break the spatial symmetry. Different
from strict RD systems, the diffusibility here does not di-
rectly depend on Laplacian of each morphogen. This is not
uncommon because bell-like pattern formation in the skin
of a zebrafish is a typical example where patterns emerge
even when the system is different from the original Turing
model (Nakamasu et al. 2009). More importantly, it fits the
description of short and long range feedback which indicates
a similar mechanism must be involved in adversarial learn-
ing. This analogy provides positive support to the developed
PRD theory.

It is well known that randomly initialized gradient descent
with over-parameterization finds solutions close to its ini-
tialization (Du et al. 2018; Li and Liang 2018; Neyshabur
et al. 2018; Nagarajan and Kolter 2019). The distance from
initialization has helped unveil several mysteries of deep
learning in part including the generalization puzzle and ε-
stationarity. We ask whether such implicit restriction to a
tiny search space is a necessary condition to achieve sim-
ilar performance. The expressive power of a large network
is not fully exploited by limiting the search space. This ar-
gument is supported by Gulrajani et al. who show that the
generator in WGAN with weight clipping (Arjovsky, Chin-
tala, and Bottou 2017) fails to capture higher order moments.
One reason for such behavior is the implicit restriction of
discriminator weights to a tiny subspace around extremas
due to weight clipping. It is resolved however by incorpo-
rating gradient penalty which allows exploration in a larger
search space within clipping boundaries. In this regard, we
provide both theoretical and empirical evidence that impos-
ing such restriction is not a necessary condition. With over-
parameterization, randomly initialized gradient descent can
still find a global minimizer relatively farther from its initial-
ization. It is possible because of adversarial interaction that
helps introduce diffusible factors into the system.

Conclusion & Future Work
In this paper, we studied the evolutionary patterns formed
in a system of neurons with adversarial interaction. We
provided a theoretical justification and empirical evi-
dence of Turing instability in a pseudo-reaction-diffusion
model that underlie these phenomena. Furthermore, it was
shown that randomly initialized gradient descent with over-
parameterization could still enjoy exponentially fast conver-
gence to an ε-stationary point even under adversarial inter-
action. However, unlike sole supervision, it was found that
the obtained solutions were not limited to a tiny subspace
around initialization. It was observed that adversarial inter-
action helped in the breakdown of spatial symmetry and ho-
mogeneity which allowed exploration in a larger subspace.

While this work takes a step towards explaining non-
homogeneous pattern formation due to adversarial interac-
tion, it is far from being conclusive. Though diffusibility en-
sures more local interaction, it will certainly be interesting
to synchronize neurons based on this observation in future.
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