
Adversarial Permutation Guided Node Representations for Link Prediction

Indradyumna Roy, Abir De, Soumen Chakrabarti
Indian Institute of Technology Bombay
{indraroy15, abir, soumen}@cse.iitb.ac.in

Abstract

After observing a snapshot of a social network, a link pre-
diction (LP) algorithm identifies node pairs between which
new edges will likely materialize in future. Most LP algo-
rithms estimate a score for currently non-neighboring node
pairs, and rank them by this score. Recent LP systems com-
pute this score by comparing dense, low dimensional vector
representations of nodes. Graph neural networks (GNNs), in
particular graph convolutional networks (GCNs), are popu-
lar examples. For two nodes to be meaningfully compared,
their embeddings should be indifferent to reordering of their
neighbors. GNNs typically use simple, symmetric set aggre-
gators to ensure this property, but this design decision has
been shown to produce representations with limited expres-
sive power. Sequence encoders are more expressive, but are
permutation sensitive by design. Recent efforts to overcome
this dilemma turn out to be unsatisfactory for LP tasks. In
response, we propose PERMGNN, which aggregates neigh-
bor features using a recurrent, order-sensitive aggregator and
directly minimizes an LP loss while it is ‘attacked’ by ad-
versarial generator of neighbor permutations. PERMGNN has
superior expressive power compared to earlier GNNs. Next,
we devise an optimization framework to map PERMGNN’s
node embeddings to a suitable locality-sensitive hash, which
speeds up reporting the top-K most likely edges for the LP
task. Our experiments on diverse datasets show that PERM-
GNN outperforms several state-of-the-art link predictors, and
can predict the most likely edges fast.

1 Introduction
In the link prediction (LP) task, we are given a snapshot of
a social network, and asked to predict future links that are
most likely to emerge between nodes. LP has a wide vari-
ety of applications, e.g., recommending friends in Facebook,
followers in Twitter, products in Amazon, or connections on
LinkedIn. An LP algorithm typically considers current non-
edges as potential edges, and ranks them by decreasing like-
lihoods of becoming edges in future.

1.1 Prior Work and Their Limitations
LP methods abound in the literature, and predominantly
follow two approaches. The first approach relies strongly
on hand-engineering node features and edge likelihoods

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

based on the network structure and domain knowledge (Katz
1997; Liben-Nowell and Kleinberg 2007; Backstrom and
Leskovec 2011). However, such feature engineering of-
ten demands significant domain expertise. The second ap-
proach learns low dimensional node embeddings which
serve as node features in LP tasks. Such embedding mod-
els include Node2Vec (Grover and Leskovec 2016), Deep-
Walk (Perozzi, Al-Rfou, and Skiena 2014), etc., and various
graph neural networks (GNN), e.g., GCN (Kipf and Welling
2016a), GraphSAGE (Hamilton, Ying, and Leskovec 2017),
GAT (Veličković et al. 2017), etc.
Limited expressive power of GNNs. While deep graph rep-
resentations have shown significant potential in capturing
complex relationships between nodes and their neighbor-
hoods, they lack representational power useful for LP. A key
reason for this weakness is the use of symmetric aggregates
over a node u’s neighbors, driven by the desideratum that the
representation of u should be invariant to a permutation of its
neighbor nodes (Zaheer et al. 2017; Ravanbakhsh, Schnei-
der, and Poczos 2016; Qi et al. 2017). Such networks have
recently been established as low-pass filters (Wu et al. 2019;
NT and Maehara 2019), which attenuate high frequency sig-
nals. This prevents LP methods based on such node repre-
sentations from reaching their full potential. Although re-
cent efforts (Lee et al. 2019; Bloem-Reddy and Teh 2019;
Shi, Oliva, and Niethammer 2020; Stelzner, Kersting, and
Kosiorek 2020; Skianis et al. 2020; Zhang and Chen 2018)
on modeling inter-item dependencies have substantially im-
proved the expressiveness of set representations in applica-
tions like image and text processing, they offer only mod-
est improvement for LP, as we shall see in our experiments.
Among these approaches, SEAL (Zhang and Chen 2018)
improves upon GNN performance but does not readily lend
itself to efficient top-K predictions via LSH.
Limitations of sequence driven embeddings. We could ar-
range the neighbors of u in some arbitrary canonical or-
der, and combine their features sequentially using, say, a
recurrent neural network (RNN). This would capture fea-
ture correlations between neighbors. But now, the represen-
tation of uwill become sensitive to the order in which neigh-
bors are presented to the RNN. In our experiments, we see
loss degradation when neighbors are shuffled. We seek to re-
solve this central dilemma. An obvious attempted fix would
be to present many permutations (as Monte Carlo samples)

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9445

of neighbor nodes but, as we shall see, doing so in a data-
oblivious manner is very inefficient in terms of space and
time.

1.2 Our Proposal: PERMGNN
In response to the above limitations in prior work, we de-
velop PERMGNN: a novel node embedding method specif-
ically designed for LP. To avoid the low-pass nature of
GNNs, we eschew symmetric additive aggregation over
neighbors of a node u, instead using a recurrent network to
which neighbor node representations are provided sequen-
tially, in some order. The representation of u is computed by
an output layer applied on the RNN states.

To neutralize the order-sensitivity of the RNN, we cast LP
as a novel min-max optimization, equivalent to a game be-
tween an adversary that generates worst-case neighbor per-
mutations (to maximize LP loss) and a node representation
learner that refines node representations (to minimize LP
loss) until they become insensitive to neighborhood permu-
tations. To facilitate end-to-end training and thus avoiding
exploration of huge permutation spaces, the adversarial per-
mutation generator is implemented as a Gumbel-Sinkhorn
neural network (Mena et al. 2018).

Next, we design a hashing method for efficient LP, us-
ing the node representation learnt thus far. We propose a
smooth optimization to compress the learned embeddings
into binary representations, subject to certain hash perfor-
mance constraints. Then we leverage locality sensitive hash-
ing (Gionis, Indyk, and Motwani 1999) to assign the bit vec-
tors to buckets, such that nodes likely to become neighbors
share buckets. Thus, we can limit the computation of pair-
wise scores to within buckets. In spite of this additional com-
pression, our hashing mechanism is accurate and fast.

We evaluate PERMGNN on several real-world datasets,
which shows that our embeddings can suitably distill in-
formation from node neighborhoods into compact vectors,
and offers accuracy boosts beyond several state-of-the-art
LP methods1, while achieving large speed gains via LSH.

1.3 Summary of Contributions
(1) Adversarial permutation guided embeddings: We
propose PERMGNN, a novel node embedding method,
which provides high quality node representations for LP.
In a sharp contrast to additive information aggregation in
GNNs, we start with a permutation-sensitive but highly ex-
pressive aggregator of the graph neighbors and then desen-
sitize the permutation-sensitivity by optimizing a min-max
ranking loss function with respect to the smooth surrogates
of adversarial permutations.
(2) Hashing method for scalable predictions: We propose
an optimized binary transformation to the learnt node repre-
sentations, that readily admits the use of a locality-sensitive
hashing method and shows fast and accurate predictions.
(3) Comprehensive evaluation: We provide a rigorous
evaluation to test both the representational power of PERM-
GNN and the proposed hashing method, which show that our
proposal usually outperforms classical and recent methods.

1Code: https://www.cse.iitb.ac.in/∼abir/codes/permgnn.zip.

Further probing the experimental results reveal insightful ex-
planations behind the success of PERMGNN.

2 Preliminaries
In this section, we describe necessary notation and the com-
ponents of a typical LP system.

2.1 Notation
We consider a snapshot of an undirected social network
G = (V,E). Each node u has a feature vector fu. We use
nbr(u) and nbr(u) to indicate the set of neighbors and non-
neighbors of u. Our graphs do not have self edges, but we
include u in nbr(u) by convention. We define nbr(u) =
{u}∪{v | (u, v) ∈ E}, nbr(u) = {v|v 6= u, (u, v) 6∈ E} and
alsoE to be the set of non-edges, i.e.,E = ∪u∈V nbr(u). Fi-
nally, we define Πδ to be the set of permutations of the set
[δ] = {1, 2, ..., δ} and Pδ to be the set of all possible 0/1
permutation matrices of size δ × δ.

2.2 Scoring and Ranking
Given a graph snapshot G = (V,E), the goal of a LP al-
gorithm is to identify node-pairs from the current set of
non-edges E (often called potential edges) that are likely
to become edges in future. In practice, most LP algo-
rithms compute a score s(u, v) for each potential edge
(u, v) ∈ E, which measures their likelihood of becoming
connected in future. Recently invented network embedding
methods (Kipf and Welling 2016a; Grover and Leskovec
2016; Salha et al. 2019) first learn a latent representation
xu of each node u ∈ V and then compute scores s(u, v)
using some similarity or distance measure between the cor-
responding representations xu and xv . In the test fold, some
nodes are designated as query nodes q. Its (current) non-
neighbors v are sorted by decreasing s(q, v). We are primar-
ily interested in LP systems that can retrieve a small number
of K nodes with largest s(q, v) for all q in o(N2) time.

3 Proposed Approach
In this section, we first state the limitations of GNNs. Then,
we present our method for obtaining high quality node em-
beddings, with better representational power than GNNs.

3.1 GNNs and Their Limitations
GNNs start with a graph and per-node features fu to obtain
a neighborhood-sensitive node representation xu for u ∈ V .
To meaningfully compare xu and xv and compute s(u, v),
information from neighbors of u (and v) should be aggre-
gated in such a way that the embeddings become invariant
to permutations of the neighbors of u (and v). GNNs en-
sure permutation invariance by additive aggregation. Given
an integer K, for each node u, a GNN aggregates structural
information k hops away from u to cast it into xu for k ≤ K.
Formally, a GNN first computes intermediate embeddings
{zu(k) | k ∈ [K]} in an iterative manner and then computes

9446

xu, using the following recurrent propagation rule.

zu(k − 1) = AGGR
(
{zv(k − 1) | v ∈ nbr(u)}

)
; (1)

zu(k) = COMB1

(
zu(k − 1), zu(k − 1)

)
; (2)

xu = COMB2(zu(1), . . . , zu(K)) (3)

Here, for each node u with feature vector fu, we initialize
zu(0) = fu; AGGR and COMB1,2 are neural networks. To
ensure permutation invariance of the final embedding xu,
AGGR aggregates the intermediate (k − 1)-hop information
zv(k − 1) with an additive (commutative, associative) func-
tion, guided by set function principles (Zaheer et al. 2017):

AGGR
(
{zv(k − 1) | v ∈ nbr(u)}

)
= σ1

(∑
v∈nbr(u) σ2

(
zv(k − 1)

))
. (4)

Here σ1, σ2 are nonlinear activations. In theory (Zaheer et al.
2017, Theorem 2), if COMB1,2 are given ‘sufficient’ hid-
den units, this set representation is universal. In practice,
however, commutative-associative aggregation suffers from
limited expressiveness (Pabbaraju and Jain 2019; Wagstaff
et al. 2019; Garg, Jegelka, and Jaakkola 2020; Cohen-Karlik,
David, and Globerson 2020), which degrades the quality of
xu and s(·, ·), as described below. Specifically, their expres-
siveness is constrained from two perspectives.
Attenuation of important network signals. GNNs are es-
tablished to be intrinsically low pass filters (NT and Mae-
hara 2019; Wu et al. 2019). Consequently, they can attenuate
high frequency signals which may contain crucial structural
information about the network. To illustrate, assume that the
node u in Eqs. (1)–(3) has two neighbors v andw and zv(k−
1) = [+1,−1] and zw(k − 1) = [−1,+1], which induce
high frequency signals around the neighborhood of u. In
practice, these two representations may carry important sig-
nals about the network structure. However, popular choices
of σ2 often diminish the effect of each of these vectors. In
fact, the widely used linear form of σ2 (Hamilton, Ying, and
Leskovec 2017; Kipf and Welling 2016a) would completely
annul their effects (since σ2(zv(k−1))+σ2(zw(k−1)) = 0)
in the final embedding xu, which would consequently lose
capacity for encapsulating neighborhood information.
Inability to distinguish between correlation structures. In
Eq. (4), the outer nonlinearity σ1 operates over the sum of
all representations of neighbors of u. Therefore, it cannot
explicitly model the variations between the joint dependence
of these neighbors. Suppose the correlation between zv(k−
1) and zw(k − 1) is different from that between zv′(k − 1)
and zw′(k − 1) for {v, v′, w, w′} ⊆ nbr(u). The additive
aggregator in Eq. (4) cannot capture the distinction.

Here, we develop a mitigation approach which exploits
sequential memory, e.g., LSTMs, even though they are
order-sensitive, and then neutralize the order sensitivity by
presenting adversarial neighbor orders. An alternative miti-
gation approach is to increase the capacity of the aggrega-
tor (while keeping it order invariant by design) by explic-
itly modeling dependencies between neighbors, as has been
attempted in image or text applications (Lee et al. 2019;
Bloem-Reddy and Teh 2019; Shi, Oliva, and Niethammer
2020; Stelzner, Kersting, and Kosiorek 2020).

3.2 Our Model: PERMGNN
Responding to the above limitations of popular GNN mod-
els, we design PERMGNN, the proposed adversarial permu-
tation guided node embeddings.

Overview. Given a node u, we first compute an embedding
xu using a sequence encoder, parameterized by θ:

xu = ρθ
(
{fv | v ∈ nbr(u)}

)
, (5)

where nbr(u) is presented in some arbitrary order (to be dis-
cussed). In contrast to the additive aggregator, ρ is modeled
by an LSTM (Hochreiter and Schmidhuber 1997), followed
by a fully-connected feedforward neural network (See Fig-
ure 1). Such a formulation captures the presence of high
frequency signal in the neighborhood of u and the complex
dependencies between the neighbors nbr(u) by combining
their influence via the recurrent states of the LSTM.

However, now the embedding xu is no longer invariant to
the permutation of the neighbors nbr(u). As we shall see,
we counter this by casting the LP objective as an instance of
a min-max optimization problem. Such an adversarial setup
refines xu in an iterative manner, to ensure that the resulting
trained embeddings are permutation invariant (at least as far
as possible in a non-convex optimization setting).

PERMGNN architecture. Let us suppose π =
[π1, ..., π| nbr(u)|] ∈ Π| nbr(u)| is some arbitrary permu-
tation of the neighbors of node u. We take the features
of neighbors of u in the order specified by π, i.e.,(
vπ1

, vπ2
, . . . , vπ| nbr(u)|

)
, and pass them into an LSTM:

yu,1, ...,yu,| nbr(u)| = LSTMθ

(
fvπ1 , ...,fvπ| nbr(u)|

)
. (6)

Here
(
yu,k

)
k∈[| nbr(u)|] is a sequence of intermediate repre-

sentation of node u, which depends on the permutation π.
Such an approach ameliorates the limitations of GNNs in
two ways:
(1) Unlike GNNs, the construction of y• is not limited
to symmetric aggregation, and is therefore able to cap-
ture crucial network signals including those with high fre-
quency (Borovkova and Tsiamas 2019).
(2) An LSTM (indeed, any RNN variant) is designed to cap-
ture the influence of one token of the sequence on the subse-
quent tokens. In the current context, the state variable hk of
the LSTM combines the influence of first k− 1 neighbors in
the input sequence, i.e., vπ1

, . . . vπk−1
on the k-th neighbor

vπk . Therefore, these recurrent states allow y• to capture the
complex dependence between the features f•.
Next, we compute the final embeddings xu by using
an additional nonlinearity on the top of the sequence
(yu,k)k∈[| nbr(u)|] output by the LSTM:

xu;π = σθ
(
yu,1,yu,2, . . . ,yu,| nbr(u)|

)
∈ RD. (7)

Note that the embeddings {xu} computed above depends
on π, the permutation of the neighbors nbr(u) given as the
input sequence to the LSTM in Eq. (6).
Removing the sensitivity to π. One simple way to en-
sure permutation invariance is to compute the average of
xu;π over all permutations π ∈ Π| nbr(u)|, similar to Mur-
phy et al. (2019a). At a time and space complexity of at
leastO(

∑
u∈V |Π| nbr(u)||), this is quite impractical for even

9447

v+ ...

f

f

Fv+ Tφ LSTMθ σθ xv+

u ...

f

f
Fu Tφ LSTMθ σθ xu

v− ...

f

f
Fv− Tφ LSTMθ σθ xv−

edge

non-edge

�

�

sim(u, v+)

sim(u, v−)

ReLU loss∆Cψ bu

Figure 1: PERMGNN min-max loss and hashing schematic.

moderate degree nodes. Replacing the exhaustive average by
a Monte Carlo sample does improve representation quality,
but is still very expensive. Murphy et al. (2019b) proposed a
method called π-SGD, which samples one permutation per
epoch. While it is more efficient than sampling multiple per-
mutations, it shows worse robustness in practice.

Adversarial permutation-driven LP objective. Instead
of brute-force sampling, we setup a two-party game, one be-
ing the network for LP, vulnerable to π, and the other being
an adversary, which tries to make the LP network perform
poorly by choosing a ‘bad’ π at each node.

1: pick initial πu at each node u
2: repeat
3: fix {πu : u ∈ V }; optimize θ for best LP accuracy
4: fix θ; find next πu at all u for worst LP accuracy
5: until LP performance stabilizes

Let πu ∈ Π| nbr(u)| be the permutation used to shuffle the
neighbors of u in Eq. (6). Conditioned on πu,πv , we com-
pute the score for a node-pair (u, v) as

sθ(u, v|πu,πv) = sim(xu;πu ,xv;πv), (8)
where sim(a, b) denotes the cosine similarity between a
and b. To train our LP model to give high quality ranking, we
consider the following AUC loss surrogate (Joachims 2005):

loss(θ; {πw}w∈V)

=
∑

(u,v)∈E
(r,t)∈E

[
∆ + sθ(r, t)|πr,πt − sθ(u, v|πu,πv)

]
+

(9)

where ∆ is a tunable margin and [a]+ = max{0, a}.
As stated above, we aim to train LP model parameters

θ in such a way that the trained embeddings {xu} become
invariant to the permutations of nbr(u) for all nodes u ∈ V .
This requirement suggests the following min-max loss:

min
θ

max
{πw}w∈V

loss(θ; {πw}w∈V). (10)

Neural permutation surrogate. As stated, the complex-
ity of Eq. (10) seems no better than exhaustive enumera-
tion of permutations. To get past this apparent blocker, just
as max is approximated by softmax (a multinomial distri-
bution), a ‘hard’ permutation (1:1 assignment) πw is ap-
proximated by a ‘soft’ permutation matrix Pw — a doubly
stochastic matrix — which allows continuous optimization.

Suppose Fw =
[
fv1 ,fv2 , . . . ,fv| nbr(w)|

]
is a matrix

whose rows are formed by the features of nbr(w) presented
in some canonical order. Then PwFw approximates a per-
muted feature matrix corresponding to some permuted se-

quence of neighbor feature vectors. The RHS of Eq. (6) can
be written as LSTMθ(P

wFw), which eventually lets us ex-
press loss as a function of Pw. We can thus rewrite the min-
max optimization (10) as

min
θ

max
{Pw |w∈V }

loss(θ; {Pw}w∈V), (11)

where the inner maximization is carried out over all ‘soft’
permutation matrices Pw, parameterized as follows.

In deep network design, a trainable multinomial distribu-
tion is readily obtained by applying a softmax to trainable
(unconstrained) logits. Analogously, a trainable soft permu-
tation matrix Pw can be obtained by applying a Gumbel-
Sinkhorn network ‘GS’ (Mena et al. 2018) to a trainable
(unconstrained) ‘seed’ square matrix, say,Aw:
Pw = lim

n→∞
GSn(Aw), where

GS0(Aw) = exp(Aw) and

GSn(Aw) = COLSCALE
(
ROWSCALE

(
GSn−1(Aw)

))
.

Here, COLSCALE and ROWSCALE represent column and
row normalization. GSn(Aw) is the doubly stochastic ma-
trix obtained by consecutive row and column normalizations
ofAw. It can be shown that

lim
n→∞

GSn(Aw) = argmax
P∈P| nbr(w)|

Tr
[
P>Aw

]
. (12)

GSn thus represents a recursive differentiable operator that
permits backpropagation of loss to {Aw}. In practice, n is
a finite hyperparameter, the larger it is, the closer the output
to a ‘hard’ permutation.

Allocating a separate unconstrained seed matrix Aw for
each node w would lead to an impractically large number
of parameters. Therefore, we express Aw using a globally
shared network Tφ with model weights φ, and the per-node
feature matrix Fw already available. I.e., we define

Aw := Tφ(Fw/τ), (13)
where τ > 0 is a temperature hyperparameter that en-
courages GSn(Aw) toward a ‘harder’ soft permutation. The
above steps allow us to rewrite optimization (11) in terms
of θ and φ in the form minθ maxφ loss(θ;φ). After com-
pleting the min-max optimization, the embedding xu of a
node u can be computed using some arbitrary neighbor per-
mutation. By design, the impact on sim(u, v) is small when
different permutations are used. The extended version of our
paper (Roy, De, and Chakrabarti 2021) contains further im-
plementation details.

4 Scalable LP by Hashing Representations
At this point, we have obtained representations xu for each
node u using PERMGNN. Our next goal is to infer some
number of most likely future edges.
Prediction using exhaustive comparisons. Here, we first
enumerate the scores for all possible potential edges (the
current non-edges) and then report top-K neighbors for each
node. Since most real-life social networks are sparse, poten-
tial edges can be Θ(|V |2) in number. Scoring all of them
in large graphs is impractical; we must limit the number of
comparisons between potentially connecting node pairs to
be as small as possible.

9448

4.1 Data-Oblivious LSH with Random
Hyperplanes

When for two nodes u and v, sim(u, v) is defined as
cos(xu,xv) with x• ∈ RD, the classic random hyperplane
LSH can be used to hash the embeddings x•. Specifically,
we first draw H uniformly random hyperplanes passing
through the origin in the form of their unit normal vectors
nh ∈ RD, h ∈ [H] (Charikar 2002). Then we set bu[h] =
sign(nh ·xu) ∈ ±1 as a 1-bit hash and bu ∈ ±1H as theH-
bit hash code of node u. Correspondingly, we set up 2H hash
buckets with each node going into one bucket. If the buckets
are balanced, we expect each to have N/2H nodes. Now we
limit pairwise comparisons to only node pairs within each
bucket, which takes N2/2H pair comparisons. By letting
H grow slowly with N , we can thus achieve sub-quadratic
time. However, such a hashing method is data oblivious—
the hash codes are not learned from the distribution of the
original embeddings x•. It performs best when the embed-
dings are uniformly dispersed in the D-dimensional space,
so that the random hyperplanes can evenly distribute the
nodes among several hash buckets.

4.2 Learning Data-Sensitive Hash Codes
To overcome the above limitation of random hyperplane
based hashing, we devise a data-driven learning of hash
codes as explored in other applications (Weiss, Torralba, and
Fergus 2009). Specifically, we aim to design an additional
transformation of the vectors {xu} into compressed repre-
sentations {bu}, with the aim of better balance across hash
buckets and reduced prediction time.

Hashing/compression network. In what follows, we will
call the compression network Cψ : RD → [−1, 1]H , with
model parameters ψ. We interpret sign

(
Cψ(xu)

)
as the re-

quired binary hash code bu ∈ {−1,+1}H , with the sur-
rogate tanh(Cψ(xu)), to be used in the following smooth
optimization:

min
ψ

α
|V |
∑
u∈V

∣∣1> tanh(Cψ(xu))
∣∣

+ β
|V |
∑
u∈V

∥∥∥∣∣ tanh(Cψ(xu))
∣∣− 1

∥∥∥
1

+ γ

|E|

∑
(u,v)∈E |tanh(Cψ(xu)) · tanh(Cψ(xv))| (14)

Here,E is the set of non-edges and α, β, γ ∈ (0, 1), with α+
β + γ = 1 are tuned hyperparameters. The final binary hash
code bu = sign(Cψ(xu)). The salient terms in the objective
above seek the following goals.
Bit balance: If each bit position has as many −1s
as +1s, that bit evenly splits the nodes. The term∣∣1> tanh(Cψ(xu))

∣∣ tries to bit-balance the hash codes.
No sitting on the fence: The optimizer is prevented from
setting b = 0 (the easiest way to balance it) by including a
term

∑
h

∣∣|b[h]| − 1
∣∣ =

∥∥|b| − 1
∥∥
1
.

Weak supervision: The third term encourages currently un-
connected nodes to be assigned dissimilar bit vectors.

Bucketing and ranking. Note that, we do not expect the
dot product between the learned hash codes bu · bv to be a
good approximation for cos(xu,xv), merely that node pairs

1: Input: Graph G = (V,E); binary hash-codes {bu};
query nodes Q; the number (K) of nodes to be recom-
mended per query node

2: Output: Ranked recommendation list Rq for all q∈Q
3: initialize LSH buckets
4: for u ∈ V do
5: add u to appropriate hash buckets
6: for q ∈ Q do
7: initialize score heap Hq with capacity K

8: for each LSH bucket B do
9: for (u, v) ∈ B do

10: if u ∈ Q then
11: insert 〈v, s(u, v)〉 in Hu; prune if |Hu|>K

12: if v ∈ Q then
13: insert 〈u, s(u, v)〉 in Hv; prune if |Hv|>K

14: for q ∈ Q do
15: sort Hq by decreasing score to get ranked list Rq

16: return {Rq|q ∈ Q}

Algorithm 1: Reporting ranked list of potential edges fast.

with large cos(xu,xv) will be found in the same hash buck-
ets. We form the buckets using the recipe of Gionis, Indyk,
and Motwani (1999). We adopt the high-recall policy that
node-pair u, v should be scored if u and v share at least one
bucket. Algorithm 1 shows how the buckets are traversed to
generate and score node pairs, then placed in a heap for re-
trieving top-K pairs. Details can be found in the extended
version of our paper (Roy, De, and Chakrabarti 2021).

5 Experiments
We report on a comprehensive evaluation of PERMGNN and
its accompanying hashing strategy. Specifically, we address
the following research questions. RQ1: How does the LP
accuracy of PERMGNN compare with classic and recent link
predictors? Where are the gains and losses? RQ2: How does
PERMGNN compare with brute-force sampling of neigh-
bor permutations? RQ3: Exactly where in our adversari-
ally trained network is permutation insensitivity getting pro-
grammed? RQ4: Does the hashing optimization reduce pre-
diction time, compared to exhaustive computation of pair-
wise scores? Further experiments are reported by Roy, De,
and Chakrabarti (2021).

5.1 Experimental Setup
Datasets. We consider five real world datasets: (1) Twit-
ter (Leskovec and Mcauley 2012), (2) Google+ (Leskovec
et al. 2010), (3) Cora (Getoor 2005; Sen et al. 2008),
(4) Citeseer (Getoor 2005; Sen et al. 2008) and (5) PB (Ack-
land et al. 2005).

Baselines. We compare PERMGNN with several hashable
LP algorithms. Adamic Adar (AA) and Common Neighbors
(CN) (Liben-Nowell and Kleinberg 2007) are classic unsu-
pervised methods. Node2Vec (Grover and Leskovec 2016)
and DeepWalk (Perozzi, Al-Rfou, and Skiena 2014) are
node embedding methods based on random walks. Graph
Convolutional Network (GCN) (Kipf and Welling 2016b),

9449

Mean Average Precision (MAP) Mean Reciprocal Rank (MRR)
Twitter Google+ Cora Citeseer PB Twitter Google+ Cora Citeseer PB

AA 0.727 0.321 0.457 0.477 0.252 0.904 0.553 0.535 0.548 0.508
CN 0.707 0.292 0.377 0.401 0.218 0.911 0.553 0.460 0.462 0.516
Node2Vec 0.673 0.330 0.448 0.504 0.182 0.832 0.551 0.484 0.546 0.333
DeepWalk 0.624 0.288 0.432 0.458 0.169 0.757 0.482 0.468 0.492 0.303
GraphSAGE 0.488 0.125 0.393 0.486 0.077 0.638 0.233 0.425 0.523 0.156
GCN 0.615 0.330 0.408 0.464 0.200 0.789 0.482 0.444 0.505 0.345
Gravity 0.735 0.360 0.407 0.462 0.193 0.881 0.540 0.438 0.518 0.330
PERMGNN 0.735 0.385 0.480 0.560 0.220 0.880 0.581 0.524 0.600 0.397

Table 1: MAP and MRR for all LP algorithms (PERMGNN and baselines) on the ranked list of all potential edges (K = ∞)
across all five datasets, with 20% test set. Numbers in bold font indicate the best performer.

GraphSAGE (Hamilton, Ying, and Leskovec 2017) Grav-
ity (Salha et al. 2019) are node embedding methods based
on GNNs. We highlight that SEAL (Zhang and Chen 2018)
does not readily lend itself to a hashable LP mechanism and
therefore, we do not compare it in this paper. We discuss it
in the longer version (Roy, De, and Chakrabarti 2021).

Evaluation protocol. Similar to the evaluation protocol of
Backstrom and Leskovec (2011), we partition the edge (and
non-edge) sets into training, validation and test folds as fol-
lows. For each dataset, we first build the set of query nodes
Q, where each query contains at least one triangle around
it. Then, for each q ∈ Q, in the original graph, we partition
the neighbors nbr(q) and the non-neighbors nbr(q) which
are within 2-hop distance from q into 70% training, 10%
validation and 20% test sets, where the node pairs are sam-
pled uniformly at random. We disclose the resulting sampled
graph induced by the training and validation sets to the LP
model. Then, for each query q ∈ Q, the trained LP model
outputs a top-K list of potential neighbors from the test set.
Using ground truth, we compute the average precision (AP)
and reciprocal rank (RR) of each top-K list. Then we aver-
age over all query nodes to get mean AP (MAP) and mean
RR (MRR).

5.2 Comparative Analysis of LP Accuracy
First, we address the research question RQ1 by comparing
LP accuracy of PERMGNN against baselines, in terms of
MAP and MRR across the datasets.

MAP and MRR summary. Table 1 summarizes LP accu-
racy across all the methods. We make the following obser-
vations. (1) PERMGNN outperforms all the competitors in
terms of MAP, in four datasets, except PB, where it is outper-
formed by AA. Moreover, in terms of MRR, it outperforms
all the baselines for Google+ and Citeseer datasets. (2) The
performance of GNNs are comparable for Cora and Citeseer.
Due to its weakly supervised training procedure, the overall
performance of GraphSAGE is poor among the GNN based
methods. (3) The classic unsupervised predictors, i.e., AA
and CN often beat some recent embedding models. AA is the
best performer in terms of MAP in PB and in terms of MRR
in Twitter. Since AA and CN encourage triad completion,
which is a key factor for growth of several real life networks,
they often serve as good link predictors (Sarkar, Chakrabarti,
and Moore 2011). (4) The random walk based embeddings,

0 250 500 750
q-ID (sorted by gain)→

−1.0

−0.5

0.0

0.5

1.0

G
a
in
→

Gravity

AA

(a) Google+

0 125 250 375 500
q-ID (sorted by gain)→

−1.0

−0.5

0.0

0.5

1.0

G
a
in
→

Gravity

AA

(b) Citeseer
Figure 2: Query-wise wins and losses in terms of
AP(PERMGNN)− AP(baseline), the gain (above x-axis) or
loss (below x-axis) of AP of PERMGNN with respect to com-
petitive baselines. Queries Q are sorted by decreasing gain
of PERMGNN along the x-axis.

0 15 30 45 60 75
Time taken (in mins.)→

0.65

0.70

0.75

0.80

M
A

P
→

Multiperm

PermGNN

(a) Twitter

0 15 30 45 60 75
Time taken (in mins.)→

0.25

0.30

0.35

0.40

0.45

0.50

M
A

P
→

Multiperm

PermGNN

(b) Google+
Figure 3: Validation MAP against training epochs for Twitter
and Google+. PERMGNN converges faster than MultiPerm.

viz. Node2Vec and DeepWalk, show moderate performance.
Notably, Node2Vec is the second best performer in Citeseer.

Drill-down. Next, we compare ranking performance at in-
dividual query nodes. For each query (node) q, we measure
the gain (or loss) of PERMGNN in terms of average preci-
sion, i.e., AP(PERMGNN)−AP(baseline) for three compet-
itive baselines, across Google+ and Citeseer datasets. From
Figure 2, we observe that, for Google+ and Citeseer respec-
tively, PERMGNN matches or exceeds the baselines for 60%
and 70% of the queries.

5.3 PERMGNN vs. Sampling Permutations
Next, we address research question RQ2 by establishing the
utility of PERMGNN against its natural alternative Multi-
Perm, in which a node embedding is computed by averaging
permutation-sensitive representations over several sampled
permutations. Figure 3 shows that PERMGNN is >15× and
>4.5× faster than the permutation averaging based method
for Twitter and Google+ datasets. MultiPerm also occupies
significantly larger RAM than PERMGNN.

9450

−1 −0.5 0 0.5 1

KTau(π, π0)→

0

20

40
T

ra
in

in
g

L
o
ss

S
e
n

si
ti

v
it

y
→ π0

1Perm

MultiPerm

PermGNN

(a) Cora

−1 −0.5 0 0.5 1

KTau(π, π0)→

0.0

0.5

1.0

1.5

T
ra

in
in

g
L

o
ss

S
e
n

si
ti

v
it

y
→

π0

1Perm

MultiPerm

PermGNN

(b) Citeseer
Figure 4: Effect of neighbor order perturbation on train-
ing loss. As we move away from the canonical permutation
π0, training loss increases steeply for 1Perm, but remains
roughly stable for MultiPerm and PERMGNN.

−1 −0.5 0 0.5 1

KTau(π, π0)→
0.2

0.4

0.6

0.8

1.0

In
se

n
si

ti
v
it

y

f

y

x

(a) Cora

−1 −0.5 0 0.5 1

KTau(π, π0)→
0.2

0.4

0.6

0.8

1.0

In
se

n
si

ti
v
it

y

f

y

x

(b) Citeseer
Figure 5: Insensitivity of neighborhood features {fv | v ∈
nbr(u)} LSTM output {y} and the resultant node embed-
dings xu with respect to neighbor order permutations.

5.4 Permutation Invariance of PERMGNN

Here, we answer the research question RQ3. To that end,
we first train PERMGNN along with its two immediate alter-
natives: (i) 1Perm, where a vanilla LSTM is trained with a
single canonical permutation π0 of the nodes; and, (ii) Mul-
tiperm, where an LSTM is trained using several sampled
permutations of the nodes. Then, given a different permuta-
tionπ, we compute the node embedding xu;π by feeding the
corresponding sequence of neighbors π(nbr(u)) (sorted by
node IDs of nbr(u) assigned by π), as an input to the trained
models. Finally, we use these embeddings for LP and mea-
sure the relative change in training loss. Figure 4 shows a
plot of (LOSS(π) − LOSS(π0))/LOSS(π0) against the cor-
relation between π and the canonical order π0, measured in
terms of Kendall’s τ , KTAU(π,π0). It reveals that 1Perm
suffers a significant rise in training loss when the input node
order π substantially differs from the canonical order π0,
i.e., KTAU(π,π0) is low. Both Multiperm and PERMGNN
turns out to be permutation-insensitive across a wide range
of node orderings.

To probe this phenomenon, we instrument the stability
of f ,y,x to different permutations. Specifically, we define
insensitivity(z;π,π0) =

∑
u∈V SIM(zu;π, zu;π0

)/|V | for
any vector or sequence z. We compute insensitivity of the
input sequence {fv : v ∈ nbr(u)}, the intermediate LSTM
output {y} and the final embedding xu with respect to dif-
ferent permutations π. Figure 5 summarizes the results, and
shows that as information flows through PERMGNN stages,
from input feature sequence to the final embeddings, the in-
sensitivity of the underlying signals increases. Thus, our ad-
versarial training smoothly turns permutation-sensitive in-
put sequences into permutation invariant node embeddings,
without any explicit symmetric aggregator.

Twitter G+ Cora Cite PB0.0

0.5

1.0

T
im

e
(i

n
se

c)
→

Our

RH

Exhaustive
Score time

Heap time

(a) Tensorized
Twitter G+ Cora Cite PB0

5

10

T
im

e
(i

n
se

c)
→

Our

RH

Exhaustive

(b) Non-tensorized
Figure 6: Running time for our LSH based scalable pre-
diction, random-hyperplane based LSH method, exhaustive
comparison.

5.5 Performance of Hashing Methods
Finally, we address RQ4 by studying the performance of
our LSH method (Section 4.2). Specifically, we compare the
time spent in similarity computation and heap operations of
our hashing method against random hyperplane based hash-
ing (Section 4.1), compared to exhaustive computation of
pairwise scores (as a slow but “relatively perfect” baseline).
Since vectorized similarity computation inside Torch may be
faster than numpy, we provide results on both implementa-
tions. Figure 6 summarizes results in terms of running time.
It shows that: (1) hashing using Cψ leads to considerable
savings in reporting top-K node-pairs with respect to both
random hyperplane based hashing and exhaustive enumera-
tion, and (2) the gains increase with increasing graph sizes
(from Google+ to PB). Because LSH-based top-K retrieval
may discard relevant nodes after K, it is more appropriate
to study ranking degradation in terms of decrease in NDCG
(rather than MAP). Suppose we insist that NDCG be at least
85, 90, or 95% of exhaustive NDCG. How selective is a
hashing strategy, in terms of the factor of query speedup (be-
cause of buckets pruned in Algorithm 1)? Table 2 shows that
our hashing method provides better pruning than random hy-
perplane for a given level of NDCG degradation.

Minimum NDCG as % of exhaustive NDCG
85% 90% 95%

Twitter Google+ Twitter Google+ Twitter Google+
Our Hashing 6.67 12.5 6.67 10 6.25 5.5

RH 1.78 3.45 1.78 3.45 1.78 3.45
Table 2: Speedup achieved by different hashing methods un-
der various permitted NDCG degradation limits.

6 Conclusion
We presented PERMGNN, a novel LP formulation that com-
bines a recurrent, order-sensitive graph neighbor aggrega-
tor with an adversarial generator of neighbor permutations.
PERMGNN achieves LP accuracy comparable to or better
than sampling a number of permutations by brute force, and
is faster to train. PERMGNN is also superior to a number
of LP baselines. In addition, we formulate an optimization
to map PERMGNN’s node embeddings to a suitable locality-
sensitive hash, which greatly speeds up reporting of the most
likely edges. It would be interesting to extend PERMGNN
to other downstream network analyses, e.g., node classifica-
tion, community detection, or knowledge graph completion.

9451

Acknowledgements
Partly supported by an IBM AI Horizons Grant. Thanks to
Chitrank Gupta and Yash Jain for helping rectify an error in
an earlier evaluation method.

References
Ackland, R.; et al. 2005. Mapping the US political blo-
gosphere: Are conservative bloggers more prominent? In
BlogTalk Downunder 2005 Conference, Sydney. BlogTalk
Downunder 2005 Conference, Sydney.
Adamic, L. A.; and Adar, E. 2003. Friends and neigh-
bors on the Web. Social Networks 25(3): 211 – 230.
ISSN 0378-8733. doi:http://dx.doi.org/10.1016/S0378-
8733(03)00009-1. URL http://pkudlib.org/qmeiCourse/
files/FriendsAndNeighbors.pdf.
Backstrom, L.; and Leskovec, J. 2011. Supervised ran-
dom walks: predicting and recommending links in social
networks. In WSDM Conference, 635–644. URL http:
//cs.stanford.edu/people/jure/pubs/linkpred-wsdm11.pdf.
Bloem-Reddy, B.; and Teh, Y. W. 2019. Probabilistic
symmetry and invariant neural networks. arXiv preprint
arXiv:1901.06082 .
Borovkova, S.; and Tsiamas, I. 2019. An ensemble of LSTM
neural networks for high-frequency stock market classifica-
tion. Journal of Forecasting 38(6): 600–619.
Charikar, M. S. 2002. Similarity estimation techniques from
rounding algorithms. In STOC, 380–388. URL https://dl.
acm.org/doi/pdf/10.1145/509907.509965.
Cohen-Karlik, E.; David, A. B.; and Globerson, A. 2020.
Regularizing Towards Permutation Invariance in Recurrent
Models. In NeurIPS. URL https://arxiv.org/abs/2010.13055.
Cuturi, M. 2013. Sinkhorn distances: Lightspeed com-
putation of optimal transport. In NeurIPS, 2292–2300.
URL https://papers.nips.cc/paper/4927-sinkhorn-distances-
lightspeed-computation-of-optimal-transport.pdf.
Garg, V. K.; Jegelka, S.; and Jaakkola, T. 2020. General-
ization and representational limits of graph neural networks.
arXiv preprint arXiv:2002.06157 .
Getoor, L. 2005. Link-based classification. In Advanced
methods for knowledge discovery from complex data, 189–
207. Springer.
Gionis, A.; Indyk, P.; and Motwani, R. 1999. Sim-
ilarity Search in High Dimensions via Hashing. In
VLDB Conference, 518–529. See http://citeseer.nj.nec.com/
gionis97similarity.html.
Grover, A.; and Leskovec, J. 2016. node2vec: Scalable fea-
ture learning for networks. In SIGKDD.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In Advances in neu-
ral information processing systems, 1024–1034.
Hochreiter, S.; and Schmidhuber, J. 1997. Long
Short-Term Memory. Neural Computation 9(8): 1735–
1780. URL https://www.mitpressjournals.org/doi/pdfplus/
10.1162/neco.1997.9.8.1735.

Joachims, T. 2005. A support vector method for
multivariate performance measures. In ICML, 377–
384. ISBN 1-59593-180-5. doi:http://doi.acm.org/10.1145/
1102351.1102399. URL http://www.machinelearning.org/
proceedings/icml2005/papers/048 ASupport Joachims.pdf.

Katz, B. 1997. From Sentence Processing to Information
Access on the World Wide Web. In AAAI Spring Symposium
on Natural Language Processing for the World Wide Web,
77–94. Stanford CA: Stanford University. See http://www.
ai.mit.edu/people/boris/webaccess/.

Kipf, T. N.; and Welling, M. 2016a. Semi-supervised classi-
fication with graph convolutional networks. arXiv preprint
arXiv:1609.02907 .

Kipf, T. N.; and Welling, M. 2016b. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308 .

Kulis, B.; and Darrell, T. 2009. Learning to hash with
binary reconstructive embeddings. In NeurIPS, 1042–
1050. URL http://papers.nips.cc/paper/3667-learning-to-
hash-with-binary-reconstructive-embeddings.pdf.

Lee, J.; Lee, Y.; Kim, J.; Kosiorek, A.; Choi, S.; and Teh,
Y. W. 2019. Set transformer: A framework for attention-
based permutation-invariant neural networks. In ICML.

Leskovec, J.; Chakrabarti, D.; Kleinberg, J.; Faloutsos, C.;
and Ghahramani, Z. 2010. Kronecker graphs: An approach
to modeling networks. Journal of Machine Learning Re-
search 11(Feb): 985–1042.

Leskovec, J.; and Mcauley, J. J. 2012. Learning to discover
social circles in ego networks. In NeuIPS.

Liben-Nowell, D.; and Kleinberg, J. 2007. The link-
prediction problem for social networks. Journal of the Amer-
ican Society for Information Science and Technology 58(7):
1019–1031. ISSN 1532-2890. doi:10.1002/asi.20591. URL
https://onlinelibrary.wiley.com/doi/full/10.1002/asi.20591.

Lichtenwalter, R. N.; Lussier, J. T.; and Chawla, N. V.
2010. New perspectives and methods in link prediction.
In SIGKDD Conference, 243–252. Washington, DC, USA:
ACM. ISBN 978-1-4503-0055-1. doi:10.1145/1835804.
1835837. URL http://users.cs.fiu.edu/∼lzhen001/activities/
KDD USB key 2010/docs/p243.pdf.

Liu, W.; Wang, J.; Ji, R.; Jiang, Y.-G.; and Chang, S.-F.
2012. Supervised hashing with kernels. In IEEE CVPR,
2074–2081. URL https://ieeexplore.ieee.org/stamp/stamp.
jsp?arnumber=6247912.

Mena, G.; Belanger, D.; Linderman, S.; and Snoek, J. 2018.
Learning latent permutations with gumbel-sinkhorn net-
works. arXiv preprint arXiv:1802.08665 URL https://arxiv.
org/pdf/1802.08665.pdf.

Murphy, R. L.; Srinivasan, B.; Rao, V.; and Ribeiro, B.
2019a. Janossy pooling: Learning deep permutation-
invariant functions for variable-size inputs. ICLR URL
https://arxiv.org/pdf/1811.01900.

Murphy, R. L.; Srinivasan, B.; Rao, V.; and Ribeiro, B.
2019b. Relational pooling for graph representations. arXiv
preprint arXiv:1903.02541 .

9452

NT, H.; and Maehara, T. 2019. Revisiting graph neural
networks: All we have is low-pass filters. arXiv preprint
arXiv:1905.09550 .
Pabbaraju, C.; and Jain, P. 2019. Learning Functions over
Sets via Permutation Adversarial Networks. arXiv preprint
arXiv:1907.05638 URL https://arxiv.org/pdf/1907.05638.
Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In KDD, 701–710.
Qi, C. R.; Su, H.; Mo, K.; and Guibas, L. J. 2017. Pointnet:
Deep learning on point sets for 3d classification and segmen-
tation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 652–660.
Ravanbakhsh, S.; Schneider, J.; and Poczos, B. 2016.
Deep learning with sets and point clouds. arXiv preprint
arXiv:1611.04500 .
Roy, I.; De, A.; and Chakrabarti, S. 2021. Adversarial Per-
mutation Guided Node representations for Link Prediction.
In arXiv:2012.08974.
Salha, G.; Limnios, S.; Hennequin, R.; Tran, V.-A.; and
Vazirgiannis, M. 2019. Gravity-Inspired Graph Autoen-
coders for Directed Link Prediction. In CIKM, 589–598.
URL https://doi.org/10.1145/3357384.3358023.
Sarkar, P.; Chakrabarti, D.; and Moore, A. W. 2011. Theo-
retical justification of popular link prediction heuristics. In
COLT.
Schlichtkrull, M.; Kipf, T. N.; Bloem, P.; Van Den Berg, R.;
Titov, I.; and Welling, M. 2018. Modeling relational data
with graph convolutional networks. In European Semantic
Web Conference, 593–607. URL https://arxiv.org/pdf/1703.
06103.
Sen, P.; Namata, G.; Bilgic, M.; Getoor, L.; Galligher, B.;
and Eliassi-Rad, T. 2008. Collective classification in net-
work data. AI magazine 29(3): 93–93.
Shi, Y.; Oliva, J.; and Niethammer, M. 2020. Deep Message
Passing on Sets. In AAAI, 5750–5757.
Sinkhorn, R. 1967. Diagonal equivalence to matrices with
prescribed row and column sums. The American Mathemat-
ical Monthly 74(4): 402–405. URL https://www.jstor.org/
stable/pdf/2314570.pdf.
Skianis, K.; Nikolentzos, G.; Limnios, S.; and Vazirgiannis,
M. 2020. Rep the set: Neural networks for learning set rep-
resentations. In International Conference on Artificial Intel-
ligence and Statistics, 1410–1420. PMLR.
Stelzner, K.; Kersting, K.; and Kosiorek, A. R.
2020. Generative Adversarial Set Transform-
ers. In Workshop on Object-Oriented Learning at
ICML 2020. URL https://www.ml.informatik.tu-
darmstadt.de/papers/stelzner2020ood gast.pdf.
Tang, J.; Qu, M.; Wang, M.; Zhang, M.; Yan, J.; and Mei, Q.
2015. LINE: Large-scale information network embedding.
In WWW Conference, 1067–1077.
Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio,
P.; and Bengio, Y. 2017. Graph attention networks. arXiv
preprint arXiv:1710.10903 .

Wagstaff, E.; Fuchs, F. B.; Engelcke, M.; Posner, I.; and Os-
borne, M. 2019. On the limitations of representing functions
on sets. arXiv preprint arXiv:1901.09006 .
Wang, Z.; Ren, Z.; He, C.; Zhang, P.; and Hu, Y. 2019. Ro-
bust Embedding with Multi-Level Structures for Link Pre-
diction. In IJCAI, 5240–5246. URL https://www.ijcai.org/
Proceedings/2019/0728.pdf.
Weiss, Y.; Torralba, A.; and Fergus, R. 2009. Spectral hash-
ing. In NeurIPS, 1753–1760. URL https://papers.nips.cc/
paper/3383-spectral-hashing.pdf.
Wu, F.; Zhang, T.; Souza Jr, A. H. d.; Fifty, C.; Yu, T.; and
Weinberger, K. Q. 2019. Simplifying graph convolutional
networks. arXiv preprint arXiv:1902.07153 .
Xu, K.; Hu, W.; Leskovec, J.; and Jegelka, S. 2018a.
How powerful are graph neural networks? arXiv preprint
arXiv:1810.00826 .
Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-
i.; and Jegelka, S. 2018b. Representation learning on
graphs with jumping knowledge networks. arXiv preprint
arXiv:1806.03536 .
Yadati, N.; Nitin, V.; Nimishakavi, M.; Yadav, P.; Louis, A.;
and Talukdar, P. 2018. Link prediction in hypergraphs using
graph convolutional networks. Manuscript. URL https://
openreview.net/forum?id=ryeaZhRqFm.
You, J.; Ying, R.; and Leskovec, J. 2019. Position-aware
graph neural networks. arXiv preprint arXiv:1906.04817 .
Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.;
Salakhutdinov, R. R.; and Smola, A. J. 2017. Deep sets. In
Advances in neural information processing systems, 3391–
3401.
Zhang, M.; and Chen, Y. 2018. Link prediction based on
graph neural networks. In NeurIPS.

9453

