
Active Feature Selection for the Mutual Information Criterion

Shachar Schnapp and Sivan Sabato
Department of Computer Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel

schnapp@post.bgu.ac.il, sabatos@cs.bgu.ac.il

Abstract

We study active feature selection, a novel feature selection
setting in which unlabeled data is available, but the budget
for labels is limited, and the examples to label can be actively
selected by the algorithm. We focus on feature selection us-
ing the classical mutual information criterion, which selects
the k features with the largest mutual information with the
label. In the active feature selection setting, the goal is to use
significantly fewer labels than the data set size and still find
k features whose mutual information with the label based on
the entire data set is large. We explain and experimentally
study the choices that we make in the algorithm, and show
that they lead to a successful algorithm, compared to other
more naive approaches. Our design draws on insights which
relate the problem of active feature selection to the study of
pure-exploration multi-armed bandits settings. While we fo-
cus here on mutual information, our general methodology can
be adapted to other feature-quality measures as well. The ex-
tended version of this paper, reporting all experiment results,
is available at Schnapp and Sabato (2020). The code is avail-
able at the following url:
https://github.com/ShacharSchnapp/ActiveFeatureSelection

1 Introduction
Feature selection is the task of selecting a small number of
features which are the most predictive with respect to the
label. Filter methods for feature selection (see, e.g., Guyon
et al. 2008) attempt to select the best features without com-
mitting to a specific model or task. We focus here on the
classical mutual-information filter method, which selects the
features with the largest mutual information with the label.

In the standard feature selection setting, the mutual infor-
mation of each feature with the label is estimated based on a
fully-labeled data set. In this work, we study a novel active
setting, in which only the unlabeled data is readily avail-
able, and there is a limited budget for labels, which may be
obtained upon request. In this setting, the feature selection
algorithm can iteratively select an example from the data set
and request its label, while taking into account in its deci-
sion all the labels obtained so far. The goal is to use sig-
nificantly fewer labels than the data set size and still find k
features whose mutual information with the label based on

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the entire data set is large. This is the analog, for the feature-
selection task, of the active learning setting, first proposed
in Cohn, Atlas, and Ladner (1994); McCallum and Nigam
(1998), which addresses classification tasks.

Feature selection in such an active setting is useful in ap-
plications characterized by a preliminary stage of feature se-
lection with expensive labels but readily available features,
followed by a deployment stage in which only a few features
can be collected for each example. For instance, consider
developing a medical protocol which can only use a small
number of features, so that patient intake is resource effi-
cient. The goal during protocol design is to select the most
informative patient attributes with respect to a target label,
such as the existence of a life-threatening condition. In the
preliminary study, it is possible to collect a large number of
features about a cohort of patients, but identifying the con-
dition of the patient (the label) with a high accuracy may
require paying trained specialists. By using an active feature
selection algorithm which requires only a small number of
labels, the labeling cost at the design stage can be controlled.

As a second example, consider a design/deploy scenario
of a computer system which trains classifiers online. The on-
line system handles large volumes, and thus cannot measure
all possible features. Therefore, at the design stage, a small
number of features must be selected, which will be the only
ones collected later by the deployed system. The feature se-
lection process is performed on an offline system, and there-
fore does not have easy access to labels, but it does allow
collecting all the features for the unlabeled feature selection
data set, since it handles smaller volumes of data. As a con-
crete example, consider a web-server which needs to quickly
decide where to route client requests, by predicting the re-
source type that this client session will later use. In the live
system, it is easy to collect the true labels downstream and
feed them to the training algorithm. However, the server is
limited in the number of features it can retrieve for each re-
quest, due to bounded communication with the client. On the
other hand, in the design stage, there is no limit to communi-
cating with the client, due to the smaller processing volumes.
However, simulating the live process in order to identify the
label is expensive, since the databases are not local.

Our goal is then to interactively select examples to label
from the feature selection data set, and to then use these la-
beled examples to select k features which have a high mu-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9497

tual information with the label. If the budget for labels is
limited, a naive approach is to label a random subset of the
unlabeled data set, and to then select the top-ranking fea-
tures according to this sub-sample. Our main contribution is
a practical algorithm that selects the examples to label us-
ing a smart interactive procedure. This results in selecting
features of a higher quality, that is, features with a larger
(true) mutual information with the label. Our design draws
on insights relating the problem of active feature selection to
the study of pure-exploration of multi-armed bandits (Antos,
Grover, and Szepesvári 2008; Carpentier et al. 2011; Chen
et al. 2014; Garivier and Kaufmann 2016), which we elabo-
rate on below. While we focus here on mutual information,
our general methodology can be adapted to other feature-
quality measures, an extension that we leave for future work.

Paper structure. Related work is discussed in Section 2.
Section 3 presents the formal setting and notation. In Sec-
tion 4, we discuss estimating the quality of a single feature
is discussed; the solution is an important ingredient in the ac-
tive feature selection algorithm, which is then presented in
Section 5. Experiments are reported in Section 6. We con-
clude in Section 7. Full experiment results can be found in
the full version of the paper (Schnapp and Sabato 2020).

2 Related Work
Feature selection for classification based on a fully labeled
sample is a widely studied task. Classical filter methods (see,
e.g., Guyon et al. 2008) select features based on a qual-
ity measure assigned to each feature. This approach does
not take into account possible correlations between features,
which is in general a computationally hard problem (Amaldi
and Kann 1998). Nonetheless, such filter methods are prac-
tical and popular due to their computational tractability. The
most popular quality measures estimate the predictive power
of the feature with respect to the label, based on the labeled
sample. Two popular such measures are mutual information
and the Gini index (see, e.g., Hastie, Tibshirani, and Fried-
man 2001; Guyon et al. 2008; Sabato and Shalev-Shwartz
2008). A different approach is that of the Relief algorithm
(Kira and Rendell 1992), which selects features that distin-
guish similar instances with different labels.

We are not aware of works on feature selection in the ac-
tive setting studied here. Previous works (Liu et al. 2003;
Liu, Motoda, and Yu 2004) propose to use selective sam-
pling to improve the accuracy of the Relief feature selection
algorithm within a limited run time. However, they use the
labels of the entire data set, and so they do not reduce the
labeling cost. Alternatively, one might consider using ac-
tive learning algorithms which output sparse models to ac-
tively select features. The theory of such algorithms has been
studied for learning half-spaces under specific distributional
assumptions (Zhang 2018). However, we are not aware of
practical active learning algorithms for a given sparsity level,
which would allow performing joint active learning and fea-
ture selection using a limited label budget.

In this work, we show a connection between the ac-
tive feature selection problem and exploration-only multi-
armed bandit settings. A problem of uniformly estimating
the means of several random arms with a small number of

arm pulls is studied in Antos, Grover, and Szepesvári (2008)
and in Carpentier et al. (2011). In Garivier and Kaufmann
(2016), a proportion-tracking approach for optimal best-arm
identification is proposed. In Chen et al. (2014), the setting
of combinatorial pure exploration is studied, in which the
goal is to find a subset of arms with a large total quality, us-
ing a small number of arm pulls. We discuss these works in
more detail in the relevant contexts throughout the paper.

3 Setting and Notations
For an integer i, denote [i] = {1, . . . , i}. We first for-
mally define the problem of selecting the top-k features
based on mutual information. Let D be a distribution over
X × Y , where X is the example domain and Y is the set
of labels. Each example x ∈ X is a vector of d features
(x(1), . . . , x(d)). We assume for simplicity that each fea-
ture j accepts one of a finite set of values Vj , and that the
label Y is binary: Y = {0, 1}.1 Denote a random labeled ex-
ample by (X, Y) ∼ D, where X = (X(1), . . . , X(d)). The
quality of feature j is measured by its mutual information
with the label, defined as Ij := I(X(j);Y), equal to∑

y∈{0,1}
v∈Vj

P(X(j)=v, Y=y) log(
P(X(j)=v, Y =y)

P(Y=y)P(X(j)=v)
). (1)

Given an integer k, The goal of the feature selection pro-
cedure is to select k features with the largest mutual in-
formation with the label. In standard (non-active) feature
selection, the mutual information of each feature is esti-
mated using a labeled sample of examples. In contrast, in
active feature selection, the input is an i.i.d. unlabeled sam-
ple S := (x1, x2, ..., xm) drawn according to the marginal
distribution of D over X . At time step t, the algorithm se-
lects an example xit from S and requests its label, yit , which
is drawn according to D conditioned on X = xit . If the la-
bel of the same example is requested twice, the same label
is provided again. The selection of it at time step t may de-
pend on the labels obtained in previous time steps. When the
budget of labels is exhausted, the algorithm outputs a set of
k features, with the same goal as the standard feature selec-
tion algorithm: selecting the features with the largest mutual
information with the label.

If the unlabeled sample S is sufficiently large, then the
sample distribution of each feature X(j) is sufficiently sim-
ilar to the true distribution. Moreover, if all the labels for
S were known, as in the classical non-active setting, then
the plug-in estimator for mutual information, obtained by
replacing each probability value in Eq. (1) with its empiri-
cal counterpart on the full labeled sample, would be a highly
accurate estimator of the true mutual information (see, e.g.,
Paninski 2003). Therefore, for simplicity of presentation, we
assume below that the empirical distribution of each fea-
ture on the unlabeled sample is the same as the true distri-
bution, and that the best possible choice of features would
be achieved by getting the labels for the entire sample S,

1Generalization to multiclass labels is straight-forward; Real-
valued features may be quantized into bins.

9498

and then selecting the top-k features according to their mu-
tual information plug-in estimate on the labeled sample. The
challenge in active feature selection is to approach this opti-
mal selection as much as possible, while observing consid-
erably fewer labels.

4 Active Estimation for a Single Feature
A core problem for the goal of actively selecting k features
based on their quality, is to actively estimate the quality of a
single feature. We discuss this problem and its solution, as a
stepping stone to the full active feature selection algorithm,
which will incorporate this solution. The quality of a single
feature j is Ij = H(Y) − H(Y | X(j)), where H is the
entropy function. For v ∈ Vj , denote pv := P[Xj = v],
qv := P[Y = 1 | X(j) = v]. Since we are interested in
estimating Ij only for the purpose of ranking the features, it
is sufficient to estimate the conditional entropy:

H(Y |X(j)) ≡
∑
v∈Vj

pv ·H(Y |X(j) = v)=
∑
v∈Vj

pv ·Hb(qv),

where Hb(q) := q log(1/q) + (1− q) log(1/(1− q)) is the
binary entropy. This leads to the single-feature estimation
problem, described as follows. We observe m i.i.d. draws
(z1, . . . , zm) from the marginal distribution ofD overX(j).
At each time step t, the algorithm selects an index it and re-
quests the label yit ∼ Y |X(j) = zit . The goal is to obtain
a good plug-in estimate for Hj := H(Y |X(j)) using the
available label budget. Since the examples z1, . . . , zm are
values from Vj , selecting an index it is equivalent to select-
ing a value in Vj , and we have yit ∼ Y |X(j) = v. As dis-
cussed in Section 3, we assume for simplicity of presentation
that the data set is sufficiently large, so that pv for v ∈ Vj
can be obtained by calculating the empirical probabilities of
the sample. Thus, the single-feature estimation problem can
be reformulated as follows: {pv}v∈Vj are provided as input;
at each time step, the algorithm selects a value v ∈ Vj and
obtains one random draw of Y | X(j) = v. Note that this
is possible if the data set is large enough, as we assume.
When the label budget is exhausted, Hj is estimated based
on the obtained samples. Since {pv} are known, the goal of
the active algorithm is to estimate {qv} to a sufficient accu-
racy. Let q̂v be the empirical plug-in estimate of qv , based
on the labels obtained for the value v. Then the entropy esti-
mate is Ĥj :=

∑
v∈Vj

pvHb(q̂v). We have thus reduced the
single-feature estimation problem to the problem of estimat-
ing {qv}v∈Vj

.
Previous works (Antos, Grover, and Szepesvári 2008;

Carpentier et al. 2011) study uniform active estimation of
the expectations of several bounded random variables, by
iteratively selecting from which random variable to draw
a sample. In our problem, each value v ∈ Vj defines the
random variable Y | X(j) = v, with expected value qv . In
our notation, these works attempt to minimize the `∞ er-
ror measure maxv∈Vj

|qv − q̂v|. Given the true qv , (Antos,
Grover, and Szepesvári 2008) defines the optimal normal-
ized static allocation, a vector w = (w(v))v∈Vj

which sums
to 1, such that w(v) is the fraction of draws that should be

devoted to value v ∈ Vj to minimize the expected `∞ er-
ror. However, w depends on the unknown qv values. The
static-allocation strategy of Antos, Grover, and Szepesvári
(2008) tries to approach the frequencies dictated by w by
calculating an estimate ŵ at each time step, using the plug-
in estimate of qv from the labeled data obtained so far.2 Let
n(t)(v) be the number of labels requested for v ∈ Vj un-
til time step t. At time step t, the algorithm requests a la-
bel for the value vt which most deviates from the desired
fraction of draws as estimated by ŵ. Formally, it selects
vt ∈ argmaxv∈Vj

ŵ(v)/n(t)(v).
In Carpentier et al. (2011), an improvement to the esti-

mate of w is proposed, and shown to generate an empiri-
cally superior strategy with improved convergence bounds.
This strategy replaces each plug-in estimate of qv in the cal-
culation of ŵ by its upper confidence bound (UCB). The
UCB of qv is a value q̂uv such that with a high probability
over the random samples, q̂uv ≥ qv . Intuitively, this is more
robust, especially when the static allocation strategy which
uses the plug-in estimates may stop querying a random vari-
able because of a wrong estimate, and thus never recover.

The approach of Carpentier et al. (2011) can be gener-
alized to minimizing any error measure that depends on qv
and q̂v . We study three approaches for active single-feature
estimation of the mutual information, based on three error
measures. In Section 6, we report an extensive experimental
comparison.

The `∞ approach. Here, we use the algorithms of Car-
pentier et al. (2011) for the `∞ error measure as is, thus at-
tempting to make all estimates accurate. However, this mea-
sure ignores the importance of each value, thus many labels
could be spent on values v with very small pv .

The variance approach. Here, we take the weights pv
into account, by replacing the `∞ error with the variance of
the weighted estimate for a budget of B samples:

Var(
∑
v

pv q̂v) =
∑
v

p2vVar(q̂v) =
∑
v

p2v
qv(1− qv)

B · w(v)
.

Minimizing this objective subject to
∑

v w(v) = 1 leads
to the following static allocation:

wvar(v) ∝ pv
√
qv(1− qv).

Here and below, the notation w(v) ∝ α(v) for some func-
tion α indicates that w(v) = α(v)/

∑
u∈Vj

α(u). As in
the `∞ approach, we calculate ŵvar(v), the estimate of
wvar(v), using UCBs. However, the property of interest here
is qv(1− qv), and plugging in q̂uv instead of qv does not lead
to a UCB on this quantity. Analogously to q̂uv , let q̂lv be a
lower bound on the value of qv , which holds with a high
probability. Denote the upper confidence bound of a func-
tion f of qv based on these bounds by 3

UCB(f, q̂lv, q̂
u
v) := max

x∈[q̂lv,q̂uv]
f(x).

2(Antos, Grover, and Szepesvári 2008) add a small correction
term to the plug-in estimate.

3If no samples are available for the value v, we set by conven-
tion q̂lv = 0, q̂uv = 1.

9499

Then, if qv ∈ [q̂lv, q̂
u
v], we have f(qv) ≤ UCB(f, q̂lv, q̂

u
v). If

f is monotonic increasing in [0, 12] and monotonic decreas-
ing in [12 , 1], then

UCB(f, q̂lv, q̂
u
v) :=


f(1

2) q̂lv ≤ 1
2 ≤ q̂

u
v ,

f(q̂lv) q̂lv >
1
2 ,

f(q̂uv) otherwise (q̂uv <
1
2).

(2)

This holds for f = fvar, where fvar(x) := x(1 − x). Plug-
ging this into the formula for wvar given above, we get
ŵvar(v) ∝ pv

√
UCB(fvar, q̂lv, q̂

u
v). This approach has the

advantage of simplicity. However, it is not optimized for our
goal, which is to estimate the conditional entropy.

The conditional entropy approach. Here, we set the
error to the variance of the conditional entropy estimate:
Var(Ĥj) ≡

∑
v p

2
v · Var(Hb(q̂v)). Since Hb is a smooth

function of the random variable q̂v , its variance can be ap-
proximated based on its Taylor expansion (Benaroya, Han,
and Nagurka 2005). Letting H ′b be the derivative of Hb, and
g(x) :=

√
x(1− x)| log(x

1−x)|, we have

Var(Hb(q̂v)) ≈ Var(q̂v)H ′b
2
(qv) = g2(qv)/(Bw(v)).

Therefore, Var(Ĥj) ≈
∑

v p
2
vg

2(qv)/(Bw(v)). Minimizing
the RHS subject to

∑
v w(v) = 1 gives the static allocation

wI(v) ∝ pvg(qv). Here too, we estimate ŵI using upper
confidence bounds. By differentiating g, one can see there
is a value φ ≈ 0.083 such that g is increasing in [0, φ] and
in [12 , 1 − φ] and decreasing in [φ, 12] and in [1 − φ, 1] (see
illustration in Schnapp and Sabato 2020). This implies the
following upper confidence bound for g:

UCB(g, q̂lv, q̂
u
v) =

{
g(φ), φ ∈ [q̂lv, q̂

u
v] ∪ [1− q̂uv , 1− q̂lv]

max{g(q̂lv), g(q̂uv)}, otherwise.

Replacing g(qv) in the definition of wI(v) with its upper
confidence bound, we get

ŵI(v) :=
α(v)∑

u∈Vj
α(u)

, α(v) := pv ·UCB(g, q̂lv, q̂
u
v). (3)

The two new error measures we suggested require cal-
culating q̂lv and q̂uv for each v ∈ Vj . This can be done
using standard closed-form concentration inequalities such
as Hoeffding’s inequality (Hoeffding 1963) or Bernstein’s
inequality (Bernstein 1924), as done in Carpentier et al.
(2011). However, these bounds can be very loose for small
sample sizes. Since q̂v is Binomially distributed, the tight-
est concentration bounds are given by the Clopper-Pearson
formulas (Clopper and Pearson 1934), which can be numer-
ically calculated. Overall, we consider the following options
for the single-feature estimation problem, with their abbre-
viations given in parenthesis: The two algorithms of Car-
pentier et al. (2011) for the `∞ measure, one based on Ho-
effding’s inequality (MAX-H) and the other on Bernstein’s
inequality (MAX-B); Static allocation strategy with ŵvar,
with each of the concentration inequalities (VAR-H, VAR-
B, VAR-CP); Static allocation strategy with ŵI , with each
of the concentration inequalities (I-H, I-B, I-CP). In addi-
tion, we consider a naive baseline which allocates the labels

proportionally to pv (PROP). Our experiments, reported in
Section 6, show that I-CP is distinctly the most successful
alternative. Indeed, it is the most tailored for the estimation
task at hand. In the next section, we describe the full active
feature selection algorithm, which incorporate the single-
feature allocation strategy as a component.

5 The Active Feature Selection Algorithm
The active feature selection algorithm attempts to select k
features with the largest mutual information with the label.
Naively, one could estimate Hj separately for each of the
features using the best single-feature estimation strategy, as
described in Section 4. However, this would cause several is-
sues. First, using each label for estimating only a single fea-
ture is extremely wasteful. Indeed, the label budget might
even be smaller than the number of features. On the other
hand, selecting the example to label based on several fea-
tures may induce a sampling bias. In addition, not all fea-
tures are as likely to be a part of the output top-k list. This
should be taken into account when selecting examples. Our
approach mitigates these issues, and indeed performs well in
practice, as demonstrated in Section 6.

The general framework is as follows. We define a score
score(x, F) for each example x ∈ S and feature subset
F ⊆ [d]. The score estimates the utility of labeling the
example x in improving the entropy estimates of the fea-
tures in F . In each iteration t, we calculate a feature subset
F (t) ⊆ [d] based on the information gathered so far, and se-
lect an example x, out of those not labeled yet, which max-
imizes score(x, F (t)). We first discuss the calculation of the
subset F (t); thereafter, we present our proposed score. To
set F (t), we take inspiration from the problem of Combina-
torial Pure Exploration (CPE) of multi-armed bandits Chen
et al. (2014). In this problem, the goal is to select a set of re-
ward distributions (arms) that maximizes the total expected
reward, by interactively selecting which distribution to sam-
ple at each step. A special case of this problem is the top-k
arm-selection problem Kalyanakrishnan and Stone (2010),
where the selected set of arms must be of size k. The CPE
problem does not directly map to the active feature-selection
problem, since in CPE, each step provides information about
a single arm, while in active feature-selection, each label
provides information about all the features. Nonetheless, a
shared challenge is to decide which arms/features to con-
sider in each sampling round; That is, how to set F (t).

Our algorithm sets F (t) by adapting the approach of Chen
et al. (2014) to active feature selection, as follows: Given
an estimator Ĥj for Hj , and high-probability lower and up-
per bounds Ĥ l

j and Ĥu
j for Hj , define two sets of k fea-

tures. The first set, F (t)
k , holds the top-k features according

to the estimates {Ĥj} (that is, the k features with the small-
est Ĥj). The second set, F̃ (t)

k , holds an alternative choice of
top-k features: those with the smallest estimates, when the
estimates for j ∈ F

(t)
k are set to Ĥ l

j , and the estimates for

j /∈ F (t)
k are set to Ĥu

j . F (t) is set to the symmetric differ-

ence of F (t)
k and F̃ (t)

k . Similarly to Chen et al. (2014), im-

9500

Algorithm 1 AFS: Active Feature Selection for the Mutual
Information Criterion
Input: Unlabeled sample S = (x1, . . . , xm), number of

features to select k, confidence δ ∈ (0, 1), label budget
B, number of iterations for testing change Λ.

1: For all j ∈ [d], v ∈ Vj , pv(j)← PX∼S [X(j) = v].
2: S1 ← (); ∀j ∈ [d], v ∈ Vj , n(1)(j, v)← 0, q̂v(j)← 0.
3: for t ∈ [B] do
4: For all j ∈ [d], Ĥj ←

∑
v∈Vj

pv(j)Hb(q̂v(j)),

5: Ĥ l
j ←

∑
v pv(j) · LCB(Hb, q̂

l
v(j), q̂uv (j)),

6: Ĥu
j ←

∑
v pv(j) ·UCB(Hb, q̂

l
v(j), q̂uv (j)).

7: F
(t)
k ← Top-k features according to Ĥ1, . . . , Ĥd

8: ∀j ∈ F (t)
k , H̃j ← Ĥ l

j . ∀j /∈ F (t)
k , H̃j ← Ĥu

j .

9: F̃
(t)
k ← Top-k features according to H̃1, . . . , H̃d.

10: F (t) ← F
(t)
k 4F̃

(t)
k # The symmetric difference

11: if F is empty, then break from the loop.
12: Calculate ŵ

(t)
I according to Eq. (3).

13: it ← argmaxxi∈S\St
score(t)(xi, F

(t)). # Eq. (4)
14: Request the label yit .
15: St+1 ← St ◦ (xit , yit)
16: for j ∈ [d] set v := xit(j) and do
17: n(t+1)(j, v)← n(t)(j, v) + 1
18: q̂v(j)←|{i |xi∈St,xi(j)=v,yi =1}|/n(t)(j, v).
19: Update q̂lv(j), q̂uv (j) according to Clopper and

Pearson (1934) with confidence parameter δ.
20: end for
21: if

∑
i∈F (t)

k

Ĥi has not changed in the last Λ itera-
tions, break from the loop and select the remaining ex-
amples to label at random.

22: end for
23: Calculate Ĥj for all j based on the labeled examples
24: Return the top-k features according to Ĥ1, . . . , Ĥd.

proving the estimates of these features is expected to have
the most impact on the selected top-k set. To calculate the
required Ĥj , Ĥ

l
j , Ĥ

u
j , denote pv(j) := P[X(j) = v]. Since

Hj =
∑

v pv(j)Hb(qv(j)), we calculate Ĥj by replac-
ing Hb(qv(j)) with Hb(q̂v(j)). For Ĥu

j , replace Hb(qv(j))

with UCB(Hb, q̂
l
v(j), q̂uv (j)), calculated via Eq. (2). For

Ĥ l
j , replace Hb(qv(j)) with: LCB(Hb, q̂

l
v(j), q̂uv (j)) :=

minx∈[q̂lv,q̂uv]Hb(x) = min{Hb(q̂
l
v(j)), Hb(q̂

u
v (j))}.

We now discuss the scoring function score(x, F). First,
we define a score for an example x and a single feature
j. score(x, F) will aggregate these scores over j ∈ F .
Denote the set of examples labeled before time step t
by St, and let n(t)(j, v) := |{x ∈ St | x(j) = v}| be
the number of examples requested so far with value v
in feature j. Based on the single-feature static allocation
strategy, a naive approach would be to set the score of
x for feature j to ŵ

(t)
I (j)/n(t)(j, x(j)). However, this

may cause significant sampling bias which could skew
the entropy estimates, since the aggregate score may

encourage labeling specific combinations of feature values,
thereby biasing the estimate of {qv} for some features.
While complete bias avoidance cannot be guaranteed in
the general case, we propose a computationally feasible
heuristic for reducing this bias. We add a correction term
to the single-feature score, which rewards feature pairs that
have been observed considerably less than their proportion
in the data set. We do not consider larger subsets, to
keep the heuristic tractable. Denote the sample proportion
of examples with values v1, v2 for features j1, j2 by
p̂(j1, j2, v1, v2) := PX∼S [X(j1) = v1, X(j2) = v2], and
the proportion of these pairs in St by p̂(t)(j1, j2, v1, v2) :=
PX∼St

[X(j1) = v1, X(j2) = v2]. If the ratio between these
proportions is large, this indicates a strong sampling bias
for this feature pair. Denote ρ(t) := p̂/max(p̂(t), 1/|S|).4

We aggregate the ratios ρ(t) for the relevant pairs of features
using an aggregation function denoted ψ, to create a correc-
tion term which multiplies the naive single-feature score,
thus encouraging labeling examples with under-represented
pairs. ψ maps a real-valued vector to a single value that
aggregates its coordinate values. A reasonable function
should be symmetric and monotonic; Thus, a natural choice
is a vector norm, e.g., `1. Our experiments in Section 6
show that other reasonable choices work similarly well. We
define the score for a given function ψ as follows: At time
t, the single-feature score of an example x for feature j is:5

score(t)(x, j, F (t)) :=

ŵ(t)(j)

n(t)(j, x(j)) + 1
· ψ((ρ(t)(j, r, x(j), x(r))r∈F (t)\{j}).

At time step t, the example with the largest overall score
score(t) is selected, where the score is defined as:

score(t)(x, F (t))=ψ((score(t)(x, j, F (t)))j∈F (t)). (4)
The full active feature selection algorithm, AFS, is given

in Alg. 1. AFS gets as input an unlabeled sample of size m,
the number of features to select k, a label budget B, and a
confidence parameter δ, which is used to set the lower and
upper bounds q̂lv, q̂

u
v . An additional parameter Λ is used for

a safeguard described below. AFS outputs k features which
are estimated to have the largest mutual information with
the label. The computational complexity of the algorithm is
O(B(d+mk + k log(d))).

AFS includes an additional safeguard, aimed at prevent-
ing cases in which the selection strategy of AFS leads to a
strongly biased estimate of the mutual information, and the
selection strategy itself is too biased to allow collecting la-
bels that correct this estimate. AFS checks if

∑
i∈F (t)

k

Ĥi

for the current top-k features has changed in the last Λ itera-
tions. If it has not changed, AFS selects the remaining exam-
ples at random. This guarantees that a wrong estimate will
eventually be corrected, while a correct estimate will not be
harmed. This safeguard only takes effect in rare cases, but it
is important for preventing catastrophic failures.

4The maximization circumvents infinity if ρ̂(t) = 0.
5We add 1 to the denominator to avoid an infinite score; Note

that it is impractical in this setting to guarantee one sample of each
feature-value pair, since this could exhaust the labeling budget.

9501

6 Experiments
We first report experiments for the single-feature estima-
tion problem, comparing the approaches suggested in Sec-
tion 4. These clearly show that the I-CP approach is prefer-
able. Then, we report experiments on several benchmark
data sets for the AFS algorithm, comparing it to three nat-
ural baselines. We further report ablation studies, demon-
strating the necessity of each of the mechanisms of the al-
gorithm. Lastly, we compare different choices of ψ. Python
3.6 code for all experiments is available at: https://github.
com/ShacharSchnapp/ActiveFeatureSelection. The full ex-
periment results are reported in Schnapp and Sabato (2020).
All experiments can be run on a standard personal computer.

Single-feature estimation. We tested the algorithms
listed in Section 4 in synthetic and real-data experiments.
For the synthetic experiments, we created features with the
same pv for all feature values. This is a favorable setting for
MAX-H and MAX-B, which do not take pv into account.
We generated two sets of synthetic experiments, with fea-
tures of cardinality in {2, 4, 6, 8, 10}. In the first set, qv was
drawn uniformly at random from [0, 12]; This was repeated
5 times for each set size, resulting in 25 experiments. In the
second set, we tested cases with extreme qv values. For each
set size, we set n values to have qv = 1/2 and the rest to
qv = α, for all combinations of α ∈ {0.1, 0.01, 0.001}
and n ∈ {0, 1, . . . , |Vj |}. This resulted in 95 synthetic
experiments. For the real-data experiments, we tested the
14 features of the Adult data set (Dua and Graff 2019)
with their true pv values. We ran each test scenario 10,000
times and calculated the average estimation error, defined
as err := |Ĥj − Hj |. We further calculated 95% student-
t confidence intervals. For algorithm i, denote its confi-
dence interval [errli, errui]. We say that i has a “clear win”
if errui ≤ minj 6=i errlj , and a “win” if errli ≤ minj 6=i erruj . I-
CP was the most successful of all algorithms. Table 2 reports
numbers of clear wins and wins for the more successful al-
gorithms. The full set of results is available at (Schnapp and
Sabato 2020).

Active feature selection. Our active feature selection ex-
periments were performed on all the large data sets with
binary labels and discrete features in the feature-selection
repository of Li et al. (2018). In addition, we tested on the
MUSK data set (Dua and Graff 2019), and on the MNIST
data set (LeCun and Cortes 2010) for three pairs of digits.
Data set properties are listed in Table 1. We tested feature
numbers k ∈ {1, 5, 10, 20}.

We compared our algorithm to three natural baselines,
which differ in how they select the examples to label. In
all baselines, the selected k features were the ones with the
largest mutual information estimate, calculated based on the
selected labels. The tested baselines were: (1) RANDOM:
Select the examples to label at random from the data set;
This is the passive baseline, since it is equivalent to running
passive feature selection based on the mutual information
criterion on a random labeled sample of size B. (2) CORE-
SET: Use a coreset algorithm to select the B most repre-
sentative examples from the data set. We used the classical
Farthest-First Traversal algorithm (see, e.g., Ros and Guil-

Data set Instances Features Classes

BASEHOCK 1993 4862 2

PCMAC 1943 3289 2

RELATHE 1427 4322 2

MUSK 6598 167 2

MNIST: 0 vs 1 14,780 784 2

MNIST: 3 vs 5 13,454 784 2

MNIST: 4 vs 6 13,700 784 2

Table 1: Data set properties

Budget PROP MAX-B VAR-H I-CP
50 (0, 12) (0, 3) (0, 12) (10,23)

100 (0, 4) (0, 4) (0, 4) (21,25)
300 (0, 4) (0, 4) (0, 4) (15,25)
500 (0, 3) (0, 3) (0, 3) (9,25)

50 (0, 21) (0, 6) (0, 21) (40,68)
100 (0, 13) (0, 8) (0, 13) (48,69)
300 (0, 17) (0, 5) (0, 17) (39,71)
500 (0, 15) (0, 6) (0, 15) (43,78)

50 (0, 11) (0, 1) (0, 11) (2,13)
100 (0, 5) (0, 0) (0, 5) (6,14)
300 (0, 3) (0, 1) (0, 3) (6,14)
500 (0, 5) (0, 1) (0, 5) (5,13)

Table 2: Single-feature experiments, reporting numbers of
(clear wins, wins) for each algorithm. Top to bottom: syn-
thetic, uniform qv; synthetic, fixed qv; The Adult data set.

laume 2017, 2020) with the Hamming distance, which is the
most appropriate for categorical values. (3) DWUS: Label
the examples selected by the active learning algorithm Den-
sity Weighted Uncertanty Sampling (Nguyen and Smeulders
2004), implemented in the python package libact (Yang
et al. 2017).

To compare the algorithms, we calculated for each algo-
rithm the mutual information gap between the true top-k fea-
tures and the selected features, calculated via

∑
j∈F∗ Hj −∑

j∈F Hj , where F are the top-k features based on the col-
lected labels, and F ∗ are the top-k features according to the
true Hj , which was calculated from the full labeled sample.

We ran each experiment 30 times. All graphs plot the aver-
age score with 95% confidence intervals. We provide in Fig-
ure 1 the graphs for three of the experiments, demonstrating
the advantage of AFS over the baselines. In all experiments,
AFS performs better or comparably to the best baseline; its
improvement is larger for larger values of k.

Ablation tests. We studied the necessity of the mecha-
nisms used by AFS, by testing the following variations:

1. Select the example to label by the score of a single
randomly-selected feature (SINGLE);

2. Select the example with the largest average score over all
features, without a bias correction term (AVG-ALL);

9502

 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

 100 200 300 400 500

M
ut

ua
l i

nf
or

m
at

io
n

ga
p

Budget

AFS
RANDOM

CORESET
DWUS

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0 50 100 150 200

M
ut

ua
l i

nf
or

m
at

io
n

ga
p

Budget

AFS
RANDOM

CORESET
DWUS

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0 100 200 300 400 500

M
ut

ua
l i

nf
or

m
at

io
n

ga
p

Budget

AFS
RANDOM

CORESET
DWUS

Figure 1: Some of the experiments comparing to baselines.
Top: MUSK, k = 20. Middle: MNIST, 3 vs 5, k = 20.
Bottom: RELATHE, k = 10. See full experiment results in
(Schnapp and Sabato 2020).

3. Select the example with the largest average score over
F (t), without a bias correction term (AVG-SEL);

4. The full AFS, with ψ = `1, δ = 0.05, but without the
safeguard (that is, Λ =∞) (AFS-NOSG);

5. The full AFS, with ψ = `1, δ = 0.05,Λ = 30 (AFS).

The value of Λ for AFS was selected after testing the val-
ues 10, 20, 30, 40. The five variations above were tested on
all the data sets in Table 1 for k ∈ {5, 10, 20}. We provide
in Figure 2 the graphs for three of the ablation tests, which
show that AFS is the only algorithm that performs consis-
tently well. We further compared our choice of ψ := `1
to other natural options: ψ := `∞ and ψ := `2. We ob-
served (see Schnapp and Sabato 2020) that in most cases,
the results are similar for `1 and `2, while `∞ is sometimes
slightly worse. Thus, while we chose `1, setting ψ := `2 is
also a valid choice.

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500

M
ut

ua
l i

nf
or

m
at

io
n

ga
p

Budget

AFS
RANDOM

SINGLE
AVG-ALL
AVG-SEL

AFS-NOSG

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 100 200

M
ut

ua
l i

nf
or

m
at

io
n

ga
p

Budget

AFS
RANDOM

SINGLE
AVG-ALL
AVG-SEL

AFS-NOSG

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 100 200 300 400 500

M
ut

ua
l i

nf
or

m
at

io
n

ga
p

Budget

AFS
RANDOM

SINGLE
AVG-ALL
AVG-SEL

AFS-NOSG

Figure 2: Some of the ablation tests. Top: MUSK, k = 20.
Middle: MNIST, 3 vs 5. Bottom: RELATHE, k = 10. See
full experiment results in (Schnapp and Sabato 2020).

7 Conclusion
We showed that actively selecting examples to label can im-
prove the performance of feature selection for the mutual in-
formation criterion under a limited label budget. We studied
the challenges involved in designing such an algorithm, and
provided AFS, which improves the quality of the selected
features over baselines. In future work, we will study adap-
tations of the suggested approach for other quality measures,
such as the Gini index, and variants of the mutual informa-
tion criterion that take feature correlations into account.

References
Amaldi, E.; and Kann, V. 1998. On the approximability of
minimizing nonzero variables or unsatisfied relations in lin-
ear systems. Theoretical Computer Science 209(1-2): 237–
260.
Antos, A.; Grover, V.; and Szepesvári, C. 2008. Active learn-
ing in multi-armed bandits. In International Conference on
Algorithmic Learning Theory, 287–302. Springer.

9503

Benaroya, H.; Han, S. M.; and Nagurka, M. 2005. Probabil-
ity models in engineering and science. CRC press.

Bernstein, S. N. 1924. On a modification of Chebyshev’s in-
equality and of the error formula of Laplace. Annals Science
Institute Sav. Ukraine Sect. Math. 1.

Carpentier, A.; Lazaric, A.; Ghavamzadeh, M.; Munos, R.;
and Auer, P. 2011. Upper-confidence-bound algorithms
for active learning in multi-armed bandits. In Interna-
tional Conference on Algorithmic Learning Theory, 189–
203. Springer.

Chen, S.; Lin, T.; King, I.; Lyu, M. R.; and Chen, W. 2014.
Combinatorial pure exploration of multi-armed bandits. In
Advances in Neural Information Processing Systems, 379–
387.

Clopper, C. J.; and Pearson, E. S. 1934. The use of confi-
dence or fiducial limits illustrated in the case of the binomial.
Biometrika 26(4): 404–413.

Cohn, D.; Atlas, L.; and Ladner, R. 1994. Improving gener-
alization with active learning. Machine Learning 15: 201–
221.

Dua, D.; and Graff, C. 2019. UCI Machine Learning Repos-
itory. URL http://archive.ics.uci.edu/ml. Date accessed:
2020-09-20.

Garivier, A.; and Kaufmann, E. 2016. Optimal best arm
identification with fixed confidence. In Conference on
Learning Theory, 998–1027.

Guyon, I.; Gunn, S.; Nikravesh, M.; and Zadeh, L. A. 2008.
Feature extraction: foundations and applications, volume
207. Springer.

Hastie, T.; Tibshirani, R.; and Friedman, J. 2001. The Ele-
ments of Statistical Learning. Springer.

Hoeffding, W. 1963. Probability inequalities for sums of
bounded random variables. Journal of the American Statis-
tical Association 58(301): 13–30.

Kalyanakrishnan, S.; and Stone, P. 2010. Efficient Selection
of Multiple Bandit Arms: Theory and Practice. In ICML,
volume 10, 511–518.

Kira, K.; and Rendell, L. A. 1992. The feature selection
problem: Traditional methods and a new algorithm. In Aaai,
volume 2, 129–134.

LeCun, Y.; and Cortes, C. 2010. MNIST handwritten digit
database. http://yann.lecun.com/exdb/mnist/. URL http://
yann.lecun.com/exdb/mnist/. Date accessed: 2020-09-20.

Li, J.; Cheng, K.; Wang, S.; Morstatter, F.; Trevino, R. P.;
Tang, J.; and Liu, H. 2018. Feature selection: A data per-
spective. ACM Computing Surveys (CSUR) 50(6): 94. URL
{http://featureselection.asu.edu}.
Liu, H.; Motoda, H.; and Yu, L. 2004. A selective sampling
approach to active feature selection. Artificial Intelligence
159(1-2): 49–74.

Liu, H.; Yu, L.; Dash, M.; and Motoda, H. 2003. Active fea-
ture selection using classes. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, 474–485. Springer.

McCallum, A. K.; and Nigam, K. 1998. Employing EM and
pool-based active learning for text classification. In Proc. In-
ternational Conference on Machine Learning (ICML), 359–
367. Citeseer.
Nguyen, H. T.; and Smeulders, A. 2004. Active learning
using pre-clustering. In Proceedings of the twenty-first in-
ternational conference on Machine learning, 79.
Paninski, L. 2003. Estimation of entropy and mutual infor-
mation. Neural computation 15: 1191–1253.
Ros, F.; and Guillaume, S. 2017. DIDES: a fast and effective
sampling for clustering algorithm. Knowledge and informa-
tion systems 50(2): 543–568.
Ros, F.; and Guillaume, S. 2020. Sampling Techniques for
Supervised Or Unsupervised Tasks. Springer.
Sabato, S.; and Shalev-Shwartz, S. 2008. Ranking Categor-
ical Features Using Generalization Properties. Journal of
Machine Learning Research 9: 1083–1114.
Schnapp, S.; and Sabato, S. 2020. Active Feature Selection
for the Mutual Information Criterion. Available as arXiv
preprint https://arxiv.org/abs/2012.06979.
Yang, Y.-Y.; Lee, S.-C.; Chung, Y.-A.; Wu, T.-E.; Chen, S.-
A.; and Lin, H.-T. 2017. libact: Pool-based Active Learn-
ing in Python. Technical report, National Taiwan University.
URL https://github.com/ntucllab/libact. Available as arXiv
preprint https://arxiv.org/abs/1710.00379.
Zhang, C. 2018. Efficient active learning of sparse halfs-
paces. arXiv preprint arXiv:1805.02350 .

9504

