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Abstract

Graph Neural Networks (GNNs), a generalization of neural
networks to graph-structured data, are often implemented us-
ing message passes between entities of a graph. While GNNs
are effective for node classification, link prediction and graph
classification, they are vulnerable to adversarial attacks, i.e.,
a small perturbation to the structure can lead to a non-trivial
performance degradation. In this work, we propose Uncer-
tainty Matching GNN (UM-GNN), that is aimed at improving
the robustness of GNN models, particularly against poisoning
attacks to the graph structure, by leveraging epistemic uncer-
tainties from the message passing framework. More specifi-
cally, we propose to build a surrogate predictor that does not
directly access the graph structure, but systematically extracts
reliable knowledge from a standard GNN through a novel
uncertainty-matching strategy. Interestingly, this uncoupling
makes UM-GNN immune to evasion attacks by design, and
achieves significantly improved robustness against poisoning
attacks. Using empirical studies with standard benchmarks
and a suite of global and target attacks, we demonstrate the
effectiveness of UM-GNN, when compared to existing base-
lines including the state-of-the-art robust GCN.

Introduction
Representation learning methods, in particular deep learn-
ing, have produced state-of-the-art results in image analysis,
language modeling and more recently with graph-structured
data (Torng and Altman 2019). In particular, graph neural
networks (GNNs) (Kipf and Welling 2017; Hamilton, Ying,
and Leskovec 2017) have gained prominence due to their
ability to effectively leverage the inherent structure to solve
challenging tasks including node classification, link predic-
tion and graph classification (Wu et al. 2020).

Despite their wide-spread use, GNNs are known to be vul-
nerable to a variety of adversarial attacks, similar to standard
deep models. In other words, a small imperceptible pertur-
bation intentionally designed in the graph structure can lead
to a non-trivial performance degradation as seen in (Zügner,
Akbarnejad, and Günnemann 2018). This limits their appli-
cation to high-risk and safety critical domains. For exam-
ple, the popular graph convolutional networks (GCN), which
rely on aggregating message passes from a node’s neighbor-
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hood, are not immune to poisoning attacks, wherein an at-
tacker adds fictitious edges to the graph before the model is
trained. Though there exists a vast literature on adversarial
attacks on images (Goodfellow, Shlens, and Szegedy 2014;
Szegedy et al. 2013) and their countermeasures (Ren et al.
2020; Chakraborty et al. 2018), designing attack strategies
for graphs is a more recent topic of research. In general, de-
signing graph attacks poses a number of challenges: (i) the
adversarial search space is discrete; (ii) nodes in the graphs
are non-i.i.d., and (iii) lack of effective metrics to measure
structural perturbations. Following the progress in graph ad-
versarial attacks, designing defense mechanisms or building
robust variants of GNNs have become critical (Zhu et al.
2019).

In this paper, we propose a new approach UM-GNN aimed
at improving the robustness of GNN models, particularly
against challenging poisoning attacks to the graph structure.
Our approach jointly trains a standard GNN model (imple-
mented using GCN) and a surrogate predictor, which ac-
cesses only the features, using a novel uncertainty matching
strategy. Through a systematic knowledge transfer from the
GNN model, the surrogate demonstrates significantly im-
proved robustness to challenging attacks. The key contribu-
tions of this work are summarized as follows:

• A novel architecture for semi-supervised learning,
UM-GNN, that can be built upon any existing GNN model
and is immune to evasion attacks by design;

• An uncertainty matching-based knowledge transfer strat-
egy for achieving robustness to structural perturbations;

• Across a suite of global poisoning attacks, UM-GNN con-
sistently outperforms existing methods including the re-
cent Robust GCN (Zhu et al. 2019);

• UM-GNN achieves significantly lower misclassification
rate (> 50% improvement) against targeted attacks.

Problem Setup
In this paper, we are interested in building graph neural net-
works that are robust to adversarial attacks on the graph
structure. We represent an unweighted graph using the tu-
ple G = (V, E), where V = {v1, v2, · · · , vN} denotes
the set of nodes with cardinality |V| = N , E denotes the
set of edges and E ⊆ V × V . The edges in the graph
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may be alternately represented using an adjacency matrix
A ∈ RN×N . In addition, each node vi may be endowed
with a d-dimensional node attribute vector xi ∈ Rd. We use
the matrix X ∈ RN×d to denote the features from all nodes.
We focus on a transductive learning setting, where the goal
is to perform node classification. In particular, we assume
that we have access to labels for a subset of nodes VL ⊂ V
and we need to predict the labels for the remaining nodes
(v ∈ V \ VL) in G. Each node vi is associated with a label
yi ∈ Y = [1, · · · ,K].

While a variety of approaches currently exist to solve this
semi-supervised learning problem, we restrict our study to
the recently successful solutions based on graph neural net-
works (GNNs). A recurring idea in many existing GNN
models is to utilize a message passing mechanism to ag-
gregate and transform features from the neighboring nodes.
Implementing a GNN hence involves designing a message
function P and an update function U, i.e.,

mi =
∑
j∈Ni

P(hi,hj , eij); hi = U(hi,mi), (1)

where Ni denotes the neighborhood of a node vi and hi its
feature representation (in the input layer hi = xi). For ex-
ample, in a standard graph convolutional network (GCN),

hi = ψ

∑
j∈Ni

αijhjW

 . (2)

Here, the message computation is parameterized by αij ,
which can be a symmetric normalization constant (Kipf and
Welling 2017) or a learnable attention weight (Veličković
et al. 2018). The update function U is parameterized using
the learnable weights W and applies a non-linearity ψ.

As discussed earlier, our goal is to defend against ad-
versarial attacks on the graph structure. Formally, we as-
sume that an adversary induces structural perturbations to
the graph, i.e., Ĝ = (Â,X) such that ‖A − Â‖0 ≤ ∆.
Here, ∆ is used to ensure that the adversarial attack is imper-
ceptible. Note that, one can optionally also consider the set-
ting where the features X are also perturbed. While differ-
ent classes of attacks currently exist (see Section ), we focus
on poisoning attacks, wherein the graph is corrupted even
before the predictive model is trained. This is in contrast
to evasion attacks, which assume that the model is trained
on clean data and the perturbations are introduced at a later
stage. We consider different popular poisoning attacks from
the literature (see Section ) and study the robustness of our
newly proposed UM-GNN approach.

Proposed Approach
In this section, we present the proposed approach, Uncer-
tainty Matching-GNN (UM-GNN), and provide details on the
model training process.

While there exist very few GNN formulations for specifi-
cally defending against adversarial attacks, the recent robust
GCN (RGCN) approach (Zhu et al. 2019) has been the most
effective, when compared to standard GCN and GAT mod-
els. At its core, RGCN relies on using the aleatoric uncer-
tainties in the graph structure to weight the neighborhood.

Figure 1: An illustration of the proposed UM-GNN, which
constructs a surrogate model F and through an uncertainty
matching strategy achieves robustness to poisoning attacks.
After the model is trained, we use the surrogate model F to
make predictions for the unlabeled nodes.

Since there exists no a priori knowledge about the struc-
tural uncertainties, in practice, simple priors such as the nor-
mal distribution (zero mean, unit variance) are placed on
the node features and propagated through the network to
estimate uncertainties at the output of each layer. Finally,
a modified message passing is utilized, wherein neighbor-
ing nodes with low feature variance are emphasized during
message computation to produce robust features. Despite its
empirical benefits, this approach suffers from three main
challenges: (i) the choice of the prior is critical to its suc-
cess; (ii) since the estimated uncertainties are not calibrated,
the fidelity of the uncertainty estimates themselves can be
low, thus leading to only marginal improvements over GCN
in practice; (iii) the model (epistemic) uncertainties are not
considered, which can impact the generalization of the in-
ferred parameters to the test nodes. In order to alleviate these
challenges, we propose UM-GNN, a new GNN formulation
that uses an uncertainty matching-based knowledge transfer
strategy for achieving robustness to graph perturbations. In
contrast to RGCN, UM-GNN utilizes epistemic uncertainties
from the GNN, and does not require any modifications to the
message passing module. As we will show in our empirical
studies, our approach provides significant improvements in
defending against well-known poisoning attacks.

Figure 1 provides an illustration of UM-GNN, which
jointly trains a GNN model M(Θ) and a surrogate model
F(Φ) that is trained solely using the features X without
any knowledge of the graph structure. Here Θ and Φ de-
note the learnable model parameters. Since we expect the
graph structure to be potentially corrupted (though sever-
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ity or type of corruption is unknown), the predictions from
the GNN model could be unreliable due to the presence of
noisy edges. We reformulate the problem of making M ro-
bust into systematically transferring the most reliable knowl-
edge to the surrogate F, so that F can make robust predic-
tions. When compared to existing regularization strategies
such as GraphMix (Verma et al. 2019), we neither use the
(solely) feature-based model F to regularize the training of
M nor are the weights shared between the networks. Instead,
we build a surrogate predictor that selectively extracts the
most reliable information from the “non-robust” M with the
hope of being more robust to the noise in the graph struc-
ture. Interestingly, by design, the model F does not rely on
the graph structure and hence is oblivious to evasion attacks.
As showed in the figure, after training, we only use the sur-
rogate F to obtain the predictions for unlabeled nodes.

Bayesian Uncertainty Estimation
Quantifying the prediction uncertainties in the graph neu-
ral network M is at the core of UM-GNN. We propose to
utilize Bayesian Neural Networks (BNNs) (Blundell et al.
2015), in particular its scalable variant based on Monte Carlo
dropout (Srivastava et al. 2014). In general, dropout varia-
tional inference is used to estimate the epistemic uncertain-
ties as follows: A deep network is trained with dropout and
even at test time the dropout is used to generate samples
from the approximate posterior through Monte Carlo sam-
pling. Interestingly, it was showed in (Gal and Ghahramani
2016) that the dropout inference minimizes the KL diver-
gence between the approximated distribution and the pos-
terior of a deep Gaussian process. The final prediction can
then be obtained by marginalizing over the posterior, using
Monte Carlo integration. In our formulation, the node clas-
sification task is transductive in nature and does not require
test-time inferencing. Hence, we propose to leverage the pre-
diction uncertainties in the training loop itself. More specif-
ically, we obtain the prediction for each node vi as

p(yi = k;xi,A) = Softmax

(
1

T

T∑
t=1

M(xi,A; Θ̃)

)
.

Here we make T forward passes for xi with different
masked weights Θ̃ (using dropout inference) and compute
the final prediction using a sample average. Note, we as-
sume that the predictive model produces logits, i.e., no ac-
tivation in the final prediction layer and hence compute the
Softmax of the average predictions. We then use the en-
tropy of the resulting prediction p(yi = k;xi,A) as an esti-
mate of the model uncertainty for node vi.

Unc(vi) = Entropy

(
p(yi = k;xi,A)

)
= −

K∑
k=1

p(yi = k) log p(yi = k) (3)

Algorithm
We now present the algorithm to train an UM-GNN model
given a poisoned graph Ĝ = (Â,X). As described ear-
lier, our architecture is composed of a graph neural network

M(Θ) and a surrogate model F(Φ) that takes only the fea-
tures X as input. While we implement M using graph con-
volution layers as defined in eqn.(2), it can be replaced us-
ing any other message passing strategy, e.g, graph attention
layers (Veličković et al. 2018). Given that all datasets we
consider in our study contain vector-values defined at the
nodes, we implement F as a fully connected network. The
optimization problem used to solve for the parameters Θ and
Φ is given below:

minimize
Θ,Φ

Lce + λmLm + λsLs. (4)

Here, the first term Lce corresponds to the standard cross
entropy loss over the set of labeled nodes computed using
the predictions from the GNN model M.

The second term Lm is used to align the predictions be-
tween the surrogate and GNN models so that the resulting
classifiers are consistent. Directly distilling knowledge from
the GNN model enables F to actually make meaningful pre-
dictions for the nodes, even without accessing the under-
lying graph structure. However, using a poisoned graph to
build M can lead to predictions with high uncertainties. Such
noisy examples may lead to unreliable gradients, thus mak-
ing the knowledge transfer unstable. Hence, we propose to
attenuate the influence of samples with high prediction un-
certainty. We refer to this process as uncertainty matching
and implement it using the KL divergence. However, this
can be readily replaced using any general divergence or the
Wasserstein metric. Mathematically,

Lm =
N∑
i=1

βiKLDiv(M(xi,A; Θ),F(xi; Φ)), (5)

where the weight βis are computed as

βi =
exp(−αi)∑
j exp(−αj)

; where αi = log
1

1 + Unc(vi)
. (6)

When the prediction uncertainty for a sample is low, it is
given higher attention during matching. Note that, this loss
is evaluated using both labeled and unlabeled nodes, since
it does not need access to the true labels. Finally, the third
term Ls corresponds to a label smoothing regularization that
attempts to match the predictions from F to an uniform dis-
tribution (KL divergence). This is included to safeguard the
surrogate model from being misguided by the graph net-
work, when the latter’s confidences are not well-calibrated
due to the poisoned graph. In all our experiments, we set
λm = 0.3 and λs = 0.001. Figure 2 illustrates the behav-
ior of UM-GNN for two different datasets under varying lev-
els of poisoning. As the severity of the corruption increases,
the surrogate model achieves significantly higher test perfor-
mance when compared to the graph-based model M. In cases
where no explicit node attributes are available, F may be im-
plemented as a GNN and the uncertainty matching strategy
will still be applicable and this is part of our future work.

Poisoning Attacks Used for Evaluation
While there exists a broad class of adversarial attacks that
are designed to be applied during the testing phase of the
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(a) Citeseer with random attack (b) Pubmed with DICE attack

Figure 2: Illustration of the behavior of UM-GNN for two datasets under varying types and levels of poisoning attacks. In each
case, we show the test accuracy curves across the training epochs from both the GNN and surrogate models. As the noise
severity increases, the surrogate model F demonstrates improved robustness.

model, we focus on the more challenging poisoning attacks.
Poisoning attacks are intended to disrupt the model train-
ing itself by injecting carefully crafted corruptions to the
training data. In particular, it is well known that they are
highly effective at degrading the performance of GNNs.
More importantly, existing robust modeling variants such as
RGCN provide only marginal improvements over the stan-
dard GNN models, when presented with poisoned graphs.
Hence, we evaluate the proposed UM-GNN using several
widely-adopted poisoning attacks. Here, we briefly describe
those attacks and provide our implementation details.

Random Attack This is a purely black-box attack, where
the attacker has no knowledge of ground truth labels or the
model information. More specifically, in this attack, new
edges are randomly introduced between two nodes that were
not previously connected. Though being simple, this attack
is known to be effective, particularly at higher noise ratios
and sparse graphs. For our experiments, we varied the ratio
of noisy edges between 10% and 100% of the total number
of edges in the original graph.

DICE Attack (Waniek et al. 2018) This is a gray-box
attack where the attacker has information about the node
labels but not the model parameters. This attack uses a
modularity-based heuristic to Disconnect Internally (nodes
from the same community) and Connect Externally (DICE)
(nodes from different communities). For a given budget, an
attacker randomly deletes edges that connect nodes from the
same class; and adds edges between randomly chosen node
pairs of samples from different classes. Similar to the ran-
dom attack, we varied the perturbation ratio between 10%
and 100% of the total number of existing edges.

Meta-Gradient Attack (Mettack) (Zügner and
Günnemann 2019) This is a more challenging gray-
box attack where the attacker utilizes the graph structure
and labels to construct a surrogate model, which is then
utilized to generate the attacks. More specifically, Mettack
formulates a bi-level optimization problem of maximizing
the classification error on the labeled nodes after optimizing
the model parameters on the poisoned graph. In other
words, the graph structure is treated as the hyper-parameter
to optimize, and this is solved using standard meta-learning
strategies. Since the surrogate model is also designed based
on GCNs (similar architectures as our predictive model)

Dataset # Nodes # Edges # Features # Classes
Cora 2708 5278 1433 7

Citeseer 3327 4614 3703 6
Pubmed 19717 44325 500 3

Table 1: Summary of the three benchmark citation datasets
used in our experments.

and trained with the entire graph (transductive setting), this
gray-box attack is very powerful in practice. Hence we used
lower noise ratios for our experiments, i.e., between 1% to
10% of the total existing edges, when compared to Random
and DICE attacks.

Projected-Gradient Attack (PGD) (Xu et al. 2019) PGD
is a first-order topology attack that attempts to determine
the minimum edge perturbations in the global structure of
the graph, such that the generalization can be maximally af-
fected. Since PGD cannot access the true model parameters,
we use a surrogate GNN model to generate the attacks. Sim-
ilar to Mettack, we varied the perturbation ratio between 1%
and 10% in this case as well.

Fast Gradient Attack (FGA) (Chen et al. 2018) FGAs are
created based on gradient information in GNNs and they be-
long to the category of targeted attacks. The goal of a tar-
geted attack is to mislead the model into classifying a target
node incorrectly. In FGA, the attacker adds an edge between
node pairs that are characterized by largest absolute differ-
ence in their gradients. We choose FGA to show the superior
performance of UM-GNN even against targeted attacks.

The implementations for Mettack, PGD and FGA were
based on the publicly available DeepRobust (Jin et al. 2020)
library. Due to the lack of computationally efficient imple-
mentations, we could not generate these attacks on large-
scale graphs such as Pubmed.

Empirical Evaluation
In this section, we evaluate the robustness of UM-GNN
against the graph poisoning methods discussed in the pre-
vious section. As mentioned in Section , non-targeted poi-
soning attacks are far more challenging and pose a more re-
alistic threat to graph-based models.

9527



Figure 3: Random attack: UM-GNN achieves robustness to random attacks, providing over 5 − 10% improvements in the test
accuracy, even when the noise ratio is 1.0.

Figure 4: DICE attack: For all datasets, UM-GNN is consistently more robust in this challenging scenario, where the attacker
both adds and deletes edges. The performance improvement with UM-GNN is as high as ≈ 15% (Citeseer).

Datasets We consider three benchmark citation networks
extensively used in similar studies: Cora, Citeseer, and
Pubmed (Sen et al. 2008). The documents are represented
by nodes, and citations among the documents are encoded
as undirected edges. We follow the typical transductive node
classification setup (Kipf and Welling 2017; Veličković et al.
2018), while using the standard train, test, and validation
splits for our experiments (see Table 1).

Baselines We compare the proposed approach with three
important baseline GNN models, which adopt different mes-
sage passing formalisms and have been successfully used in
semi-supervised node classification tasks. Note that the per-
formance of a feature-only classifier (MLP) which ignores
the graph structure produces trivial performances with the
following accuracies: 55.1% for Cora, 46.5% for Citeseer,
and 71.4% for Pubmed.
GCN: We use the GCN model, proposed by Kipf & Welling,
based on the message passing formulation in eqn. (2).
GAT (Veličković et al. 2018): This model uses a multi-head
attention mechanism to learn the hidden representations for
each node through a weighted aggregation of features in a
closed neighborhood where the weights are trainable.
RGCN (Zhu et al. 2019): This is a recently proposed ap-

proach that explicitly enhances the robustness of GCNs.
RGCN models node features as distributions as opposed to
deterministic vectors in GCN and GAT models. It employs
a variance-based attention mechanism to attenuate the in-
fluence of neighbors with large variance (potentially cor-
rupted). Following (Zhu et al. 2019), we set hidden dimen-
sions at 16 and assume a diagonal covariance for each node.

For all baselines, we set the number of layers (2 layers)
and other hyper-parameter settings as specified in their orig-
inal papers. We set the number of hidden neurons to 16 for
both GCN and GAT baselines. In addition, we set the num-
ber of attention heads to 8 for GAT. We implemented all the
baselines and the proposed approach using the Pytorch Deep
Graph Library (version 0.5.1) (Wang et al. 2019). In our im-
plementation of UM-GNN, the GNN model M was designed
as a 2−layer GCN similar to the baseline and the surrogate
F was a 3−layer FCN with configuration 32−16−K, where
K is the total number of classes.

Results
We evaluated the classification accuracy on the test nodes for
the datasets against each of the attacks, under varying levels
of perturbation. For random and DICE attacks, we varied the
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Figure 5: Mettack - This gray-box attack is known to
be highly effective at causing performance degradation in
GNNs. However, UM-GNN consistently provides 3−5% im-
provements in the test accuracy over the baselines.

ratio of noisy edges to clean edges between 0.1 and 1. Since
Mettack and PGD attacks are more powerful, we used noise
ratios in the range (0.01, 0.1). For all the 4 global attacks,
we repeated the experiment for 20 random trials (different
corruption) for each noise ratio, and report the expected ac-
curacies along with their standard deviations.
(i) Random Attack: The results for random attacks for all
three datasets are shown in Figure 3. As discussed ear-
lier, RGCN provides only a marginal improvement over the
vanilla GCN and GAT. However, UM-GNN consistently out-
performs the baselines by a large margin even when the ratio
of noisy edges to clean edges is high. In addition, UM-GNN
has the least variance in performance compared to the base-
lines. In comparison, GAT appears to be the most sensitive
to random structural perturbations and its low performance
strongly corroborates with the findings in (Zhu et al. 2019).
(ii) DICE Attack: In this challenging attack, where the at-
tacker can both delete and add edges, all baseline meth-
ods suffer from severe performance degradation, when com-
pared to random attacks. Surprisingly, UM-GNN is signifi-
cantly more robust and achieves performance improvements
as high as ≈ 15% (Figure 4, Citeseer, noise ratio = 1.0).
This clearly evidences the ability of UM-GNN to infer the
true modular structure, even when the graph is poisoned.
(iii) Mettack Attack: Since mettack uses a surrogate model
and its parameters to generate attacks, it is one of the more
challenging attacks to defend. Nevertheless, UM-GNN con-
sistently outperforms all the baselines by a good margin, as
illustrated in Figure 5. Interestingly, under this attack, both
GCN and RGCN perform poorly when compared to the GAT
model. However, the large variance makes GAT unreliable in
practice, particularly when the attack is severe.
(iv) PGD Attack: This is comparatively the most severe,
since the GCN model used to generate the attack has the
same architecture as our model M, thus in actuality mak-
ing it a white-box attack. From Figure 6, we observe 1%−
2% improvements in mean performance over the baselines.
More importantly, the lower variance of UM-GNN across tri-
als makes it a suitable choice for practical scenraios.
(v) FGA Attack: For this targeted attack, we selected 100 test
nodes with correct predictions in a baseline GCN as our tar-

Figure 6: PGD Attack - This is comparatively very severe,
since it uses gradients from a GCN model (same architecture
as M). While the accuracy improvements are still non-trivial
(1% − 2%), the more interesting observation is the reduced
variance of UM-GNN across trials.

gets. Out of the 100 target nodes, 25 nodes were those with
the highest margin of classification, 25 nodes were those
with the lowest margin, and the remaining 50 were cho-
sen randomly. Further, we set the number of perturbations
allowed on each target node to be equal to its degree (so
that it is imperceptible). The FGA attack was generated for
each target node independently, and we checked if the tar-
geted attack was defended successfully or not, i.e., whether
the targeted node was classified correctly using the poisoned
graph. The overall misclassification rates for the different
models are shown in Table 2. We find that UM-GNN pro-
vides dramatic improvements in defending against FGA at-
tacks, through its systematic knowledge transfer between the
GNN M and the surrogate F. In Figure 7, we plot the pre-
diction probabilities for the true class (indicates a model’s
confidence) for all target nodes obtained using the original
and poisoned graphs G and Ĝ respectively. As it can be ob-
served, UM-GNN improves the confidences considerably for
all samples, while the baseline methods demonstrate vulner-
ability to FGA.

Related Work
Semi-supervised learning based on graph neural networks
(GNNs) enables representation learning using both the graph
structure and node features (Wu et al. 2020). While GNNs
based on spectral convolutional approaches (Bruna et al.
2013; Defferrard, Bresson, and Vandergheynst 2016; Kipf
and Welling 2017) have been widely adopted, there also
exists models that implement convolutions directly using
spatial neighborhoods (Duvenaud et al. 2015; Atwood and
Towsley 2016; Hamilton, Ying, and Leskovec 2017). The
vulnerability of GNNs to adversarial attacks was first studied
in (Zügner, Akbarnejad, and Günnemann 2018). Since then,
several graph adversarial attacks have been proposed (Jin
et al. 2020; Sun et al. 2018). Adversarial attacks on graphs
can be broadly categorized as follows:
(i) Attacker knowledge: based on the level of access an at-
tacker has to the model internals, namely white-box (Xu
et al. 2019; Wu et al. 2019), gray-box (Zügner, Akbarne-
jad, and Günnemann 2018; Zügner and Günnemann 2019)
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(a) Cora dataset

(b) Citeseer dataset

Figure 7: Results from FGA attacks on two benchmark datasets - On the x-axis, we plot the prediction probabilities for the true
class obtained using GCN on the clean graph G. On the y-axis, we show the prediction probabilities obtained after the targeted
attack. Note, for each method, we show the misclassified nodes in red and the correct predictions in green.

Model Cora Citeseer
GCN 0.78 0.73
GAT 0.71 0.74

RGCN 0.73 0.76
UM-GNN 0.21 0.23

Table 2: Misclassification rates from 100 target nodes with
FGA attack. A lower value implies improved robustness.

and black-box attacks (Bojchevski and Günnemann 2019).
(ii) Attacker capability: based on whether the attacker per-
turbs the graph before (Liu et al. 2019) or after (Dai et al.
2018) the model is trained.
(iii) Attack strategy: based on whether the attacker cor-
rupts the graph structure or node features. While struc-
tural perturbations can be induced by deleting, adding or
re-wiring edges; new nodes could also be injected into the
graph (Shanthamallu, Thiagarajan, and Spanias 2020).
(iv)Attacker’s goal: based on whether the attack is aimed at
degrading the model’s overall performance (Waniek et al.
2018) or targeting specific nodes either directly or indirectly
for their misclassification (Chen et al. 2018).

Graph Adversarial Defense As graph adversarial attacks
continue to be studied, efforts aimed at designing suitable
defense strategies have emerged recently. For example, Feng
et al. adapted the conventional adversarial training approach
to the case of graphs in order to make GNNs more ro-
bust (Goodfellow, Shlens, and Szegedy 2014; Feng et al.

2019). On the other hand, methods that rely on graph pre-
processing have also been proposed – for example, in (Wu
et al. 2019), edges with low Jaccard similarity between the
constituent nodes were removed prior to training a GNN.
Similarly, in (Jin et al. 2019), explicit graph smoothing
was performed by training on a family of graphs to defend
against evasion attacks. Entezari et al. obtained a low rank
approximation of the given graph and showed that it can
defend against specific types of graph attack (Zügner, Ak-
barnejad, and Günnemann 2018). Recently, Zhu et al. (Zhu
et al. 2019) introduced a robust variant of GCN based on a
variance-weighted attention mechanism, and showed it to be
effective against different types of attacks.

Conclusions
In this work, we presented UM-GNN an uncertainty
matching-based architecture to explicitly enhance the ro-
bustness of GNN models. UM-GNN utilizes epistemic uncer-
tainties from a standard GNN M and does not require any
modifications to the message passing module. Consequently,
our architecture is agnostic to the choice of GNN to imple-
ment M. By design, the surrogate model F does not directly
access the graph structure and hence is immune to evasion-
style attacks. Our empirical studies clearly evidenced the ef-
fectiveness of UM-GNN in defending against several graph
poisoning attacks, thereby outperforming existing baselines.
Furthermore, we showed dramatic improvements on defense
against targeted attacks (FGA). Future work includes study-
ing the performance bounds of UM-GNN and developing ex-
tensions for inductive learning settings.
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