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Abstract

Recently, deep reinforcement learning (RL) has achieved re-
markable empirical success by integrating deep neural net-
works into RL frameworks. However, these algorithms often
require a large number of training samples and admit little
theoretical understanding. To mitigate these issues, we pro-
pose a theoretically principled nearest neighbor (NN) func-
tion approximator that can improve the value networks in
deep RL methods. Inspired by human similarity judgments,
the NN approximator estimates the action values using roll-
outs on past observations and can provably obtain a small
regret bound that depends only on the intrinsic complex-
ity of the environment. We present (1) Nearest Neighbor
Actor-Critic (NNAC), an online policy gradient algorithm
that demonstrates the practicality of combining function ap-
proximation with deep RL, and (2) a plug-and-play NN up-
date module that aids the training of existing deep RL meth-
ods. Experiments on classical control and MuJoCo locomo-
tion tasks show that the NN-accelerated agents achieve higher
sample efficiency and stability than the baseline agents.
Based on its theoretical benefits, we believe that the NN ap-
proximator can be further applied to other complex domains
to speed-up learning.

Introduction
People learn a variety of relationships in life, e.g., we as-
sociate the force of pressing the gas pedal with the amount
of acceleration gained while driving. In the context of rein-
forcement learning (RL), where an agent interacts with the
environment to maximize the cumulative rewards, the learn-
ing objective is the relationship between state-action pairs
and future gains. Theories on associative learning suggest
that people learn from similarity measures (Carroll 1963;
Busemeyer et al. 1997): if x can predict y, they presume that
observations similar to x have similar y values. It is thus
natural to consider integrating similarity-based models into
active learning. A suitable choice for the RL setting is the
nearest neighbor function approximator (Emigh et al. 2016;
Shah and Xie 2018; Yang, Ni, and Wang 2019).

We study online episodic RL with unknown reward and
transition functions. Existing deep RL algorithms achieve
impressive results in robot control (e.g., Lillicrap et al. 2016;
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Levine et al. 2016; Gu et al. 2017), Go (Silver et al. 2016)
and Atari playing (Mnih et al. 2013). However, several chal-
lenges still exist. First, the theoretical foundation of deep
RL has not been fully established (Arulkumaran et al. 2017;
Lake et al. 2018). It is often mysterious why an algorithm
works or fails in certain cases (Kansky et al. 2017). Sec-
ond, empirical results suggest that model-free deep RL often
requires considerable samples to learn (Deisenroth and Ras-
mussen 2011). Nonetheless, data can be expensive to acquire
in practical domains like healthcare (Kober, Bagnell, and
Peters 2013). High-dimensional input, such as pixel data,
demands a larger sample size even if the problem itself is
simple (Lillicrap et al. 2016). Third, online learning coupled
with neural networks is generally regarded as unstable (van
Hasselt, Guez, and Silver 2016). Hyperparameter tuning can
also affect the learning outcome. In sum, improving deep RL
with theory-based approaches is of critical importance.

On the other hand, great theoretical progress has been
made in tabular RL, where the state-action spaces are small
and finite. The sample complexity of tabular methods are
properly studied (e.g., Jaksch, Ortner, and Auer 2008; Azar,
Osband, and Munos 2017; Jin et al. 2018; Zanette and Brun-
skill 2019). Yet the best obtainable complexity depends lin-
early on the number of states, which can be huge in reality,
e.g., the game of Go has about 319×19 states. Thus, real-
world application of tabular theories remains a challenge.

In this paper, we bridge the gap between RL theory and
practice by a theoretically principled deep RL acceleration
technique. Specifically, we exploit the structural properties
of the state-action space by using the nearest neighbor (NN)1

approximator for value estimation. Such a function approxi-
mator not only attains a theoretical guarantee in sample com-
plexity but also possesses good generalization ability when
plugged into deep RL frameworks. In fact, we show that
the NN approximator with an upper-confidence construction
obtains a near-optimal regret O[H(DLK)d/(d+1)] for both
low- and high-dimensional inputs in deterministic systems,
where K is the number of episodes, H is the episode length,
L is a Lipschitz constant related to the distance metric mea-
suring state similarities, D and d are respectively the diam-
eter and dimension of the intrinsic state-action space.

1Throughout the paper, the abbreviation “NN” is used to refer
to “nearest neighbor,” not “neural network.”
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We demonstrate the empirical efficacy of the NN approx-
imator by fitting it into the actor-critic framework. We use
the non-parametric NN critic to bootstrap state values and
train the policy network with temporal-difference methods
(Sutton 1988). Given a state-action pair, the NN critic finds
within history the closest sample to this observation under
the distance metric. The corresponding reward plus a Lips-
chitz confidence term and the next state are used to approx-
imate the reward and transition functions, respectively. The
algorithm displays impressive learning speed in the cart-pole
balancing problem. Beyond this, we also encapsulate the NN
approximator into a plug-and-play module that boosts the
training of existing deep RL algorithms without changing
their original structures. The plug-in NN critic encourages
action exploration and stabilizes value learning. We evalu-
ate the module with state-of-the-art deep RL agents on a set
of 3D locomotion tasks. Results show that the NN-aided gra-
dient update improves both training speed and stability.

Roadmap: The paper is organized as follows: we first dis-
cuss related works in theoretical and deep RL. Next, we
introduce notations and concepts in RL and metric dimen-
sions. We then give the formulation of the NN approximator
and analyze its theoretical guarantee. In the later sections,
we present two algorithms that combine the NN approxima-
tor with deep RL and evaluate their empirical performance.

Related Work
RL with neural networks: There is a long line of research
that applies deep RL to games and control problems (e.g.,
Mnih et al. 2013; Schulman et al. 2015; Levine et al. 2016;
van Hasselt, Guez, and Silver 2016; Lillicrap et al. 2016).
These results employ several heuristics to accelerate explo-
ration. For example, Mnih et al. (2013, 2015); van Hasselt,
Guez, and Silver (2016) randomly sample actions and store
them in a replay buffer before policy learning. Gaussian
noise (Lillicrap et al. 2016) or Ornstein-Uhlenbeck noise
(Fujimoto et al. 2018) are added to the actions or the network
parameters (Plappert et al. 2018) to encourage exploration.
Several works also combine model-based value estimation
and model-free policy learning to reduce sample complexity
(Deisenroth and Rasmussen 2011; Buckman et al. 2018).

Although there is limited theoretical understanding of the
aforementioned methods, we emphasize that our aim is not
to improve them but rather introduce a new theory-based
function approximator to the literature of deep RL. By com-
bining NN value estimation and existing frameworks, we be-
lieve that the efficiency of model-free RL algorithms can be
improved in a provable manner (at least in some settings).

RL with theoretical guarantees: To facilitate theoretical
analysis, many works study RL in the tabular setting, where
the state and action spaces are discrete (e.g., Jaksch, Ortner,
and Auer 2008; Azar, Osband, and Munos 2017; Jin et al.
2018; Zanette and Brunskill 2019). The sample complexity
of the algorithms depends at least linearly on the number of
states |S|. Since this number tends to be large in practice, it
is difficult to extend these algorithms to real-world settings.
Recently, several works have emphasized understanding in

RL with general function approximation (e.g., Osband and
Roy 2014; Jiang et al. 2017; Sun et al. 2019; Wang et al.
2020). However, the function classes are either simple, e.g.,
linear functions (e.g., Yang and Wang 2019; Jin et al. 2020),
or have strong structural assumptions, which prevent them
from being applied to more practical problems.

RL with nearest neighbor search: Combining nearest
neighbor search with active learning has been studied in
episodic RL. Model-free episodic control (Blundell et al.
2016) builds on a tabular memory and applies regression us-
ing the mean of k-nearest neighbors for Q-value estimation.
Neural episodic control (Pritzel et al. 2017) and episodic
memory deep Q-networks (Lin et al. 2018) improve the al-
gorithm’s generalization ability by absorbing state features
into networks. These algorithms take the NN search as a
pure classification technique. They do not exploit the fact
that the distance between state-action pairs can indicate their
relative values. In addition, the value estimation for these
methods exists at the trajectory level: the Q-values are up-
dated at the end of an episode by the total reward of a trajec-
tory. In contrast, the NN value estimation in this paper takes
the form of on-policy Monte Carlo rollouts using samples
from independent environment steps. Thus, we leverage not
only intra-episode but also inter-episode information.

The prototype of our NN function approximator is pre-
sented in Yang, Ni, and Wang (2019), where an upper-
confidence algorithm with general function approximation is
proposed for tabular RL. The algorithm can apply to contin-
uous cases but requires a discretization of the action space.
We improve it to account for non-tabular cases without dis-
cretizing the action space. Meanwhile, though Yang, Ni, and
Wang (2019) derive a regret based on the ambient dimen-
sion of the state space, they do not justify the regret of high-
dimensional inputs with small intrinsic dimensions.

Preliminaries
In this section, we introduce the key definitions and nota-
tions in RL. For the clarity of the proofs, we assume that the
Markov decision process (MDP) is finite-horizon and deter-
ministic. This assumption is not restrictive, as many real-
world control systems do not involve randomness.

Formally, we consider an MDP (S,A, f, r,H) with state
space S , action space A, deterministic transition model f :
S ×A → S , and reward function r : S ×A → R. An agent
interacts with the environment episodically, where each
episode lastsH steps. In an episode, the agent starts from an
initial state s1 independent of the history. At step h ∈ [H]2,
it observes state sh and performs action ah := π(sh, h) ac-
cording to the policy π : S × [H] → A. It then receives
reward rh = r(sh, ah) and next state sh+1 = f(sh, ah). We
define the cumulative reward from h as Rh =

∑H−h
t=0 rh+t.

The goal of learning is to find a policy that maximizes the
total reward in one episode when f and r are unknown.

Given a policy π, the value function V π : S× [H]→ R is
defined as the cumulative reward from state s at step h and

2[H] denotes the set of integers {1, ..., H}.
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following π therefrom. It satisfies the Bellman equation:

V πh (s) = r(s, π(s)) + V πh+1[f(s, π(s))], (1)

with V πH(s) = r(s, π(s)). The optimal policy π∗ is the one
such that V π

∗

h := V ∗h = maxπ V
π
h . The temporal-difference

(TD) error at step h is δh = rh + V πh+1(sh+1)− V πh (sh).
We further denote the action value (or Q-function) as

Qπh(s, a) := r(s, a) + V πh+1

(
f(s, a)

)
. The optimal Q∗h :=

maxπ Q
π
h gives the maximum values for a (s, a) pair achiev-

able by any policy. By the Bellman optimality equation, we
have V ∗h (s) = maxa∈AQ

∗
h(s, a).

We measure the sample complexity of an algorithm by its
regret, which is the difference between the total rewards of
the unknown optimal policy and that gathered in learning:

Regret(K) =
K∑
k=1

[V ∗1 (sk1)−
H∑
h=1

r(skh, a
k
h)],

where K is the number of episodes played.

Theoretical Guarantee of Nearest Neighbor
Function Approximation

In this section, we first introduce concepts relevant to the
structure of an MDP. We then formalize the nearest neighbor
function approximator and show its theoretical guarantee in
terms of sample complexity.

Metric Space and Intrinsic Dimension
In practice, the state-action spaceX = S×A is usually con-
tinuous. We assume that X is a metric space with a distance
function dX that satisfies the triangular inequality. This as-
sumption is easily achievable, e.g., the Euclidean distance
can be applied to a space of pixel data. We also assume that
X is bounded and has diameter D := supx,x′∈X dX (x, x′).

An intuitive way to measure the complexity of X is
through the ambient dimension p, which can be roughly un-
derstood as the number of variables used to describe a point
inX . In real-world MDPs, the states are often represented by
real-valued vectors, which form a Euclidean ambient space.
Thus, in our context, we simply take p as the Euclidean
dimension of the natural embedding of X . For instance, a
20× 20 image has p = 400 regardless of its content.

However, most meaningful, high-dimensional data do
not uniformly fill in the space where they are represented.
Rather, they concentrate on smooth manifolds with low in-
trinsic dimension. The intrinsic dimension d measures the
inherent complexity of a metric space. Informally, it is the
number of variables needed to describe X . Suppose the
aforementioned image depicts a car with 5 physical prop-
erties, then d can be 5 rather than 400. Studies on intrinsic
dimension estimation (e.g., Kégl 2002; Levina and Bickel
2004) employ more formal definitions. Yet the technical de-
tails are out of our scope. We only require d ≤ p in general.

For the clarity of later proofs, we outline two concepts
that can bound the intrinsic dimension of a metric space.

Definition 1 (Covering and packing). An ε-cover of a metric
space X is a subset X̂ ⊆ X such that for each x ∈ X , there

exists x′ ∈ X̂ with dX (x, x′) ≤ ε. The ε-covering number is
N(ε) = min{|X̂ | : X̂ is an ε-cover of X}. An ε-packing is
X̂ ⊆ X such that ∀x, x′ ∈ X̂ , dX (x, x′) > ε. The ε-packing
number is M(ε) = max{|X̂ | : X̂ is an ε-packing of X}.

Nearest Neighbor Function Approximator
In the RL setting, the learning algorithm collects a set of
observations B := {xi}i∈[N ] and corresponding value la-
bels {Q(xi)}i∈[N ] ⊆ R. The unknown Q : X → R mea-
sures the quality of a state-action pair. As in supervised ma-
chine learning, the task is to find a function approximator
f : X → R that approximates the known labels with small
errors and also generalizes to unseen data points. That is,
f(xi) ≈ Q(xi) for all i ∈ [N ] and f(x) ≈ Q(x) for
x ∈ X\B. With the distance metric dX , we can now define
the NN approximator which satisfies the above property.
Definition 2 (Nearest neighbor function approximator).
Given a sample buffer B = {

(
xi, Q(xi)

)
}i∈[N ] ⊆ X × R,

the nearest neighbor approximator is the function Q̂ : X →
R such that ∀x ∈ X ,

Q̂(x) := min
i∈[N ]
{Q(xi) + L · dX (x, xi)}.

L > 0 is a parameter that adjusts the approximation error.

Note that Q̂(x) matches existing samples exactly and the
approximation error for a new x is characterized by an upper
bound obtained from the closest known data. This contrasts
with other function approximators that lack theoretical un-
derstanding, e.g., neural networks. Now, we proceed to show
more practical guarantees of the NN function approximator.

MDP with Lipschitz Continuity
To ensure the problem is tractable, we impose the following
regularity condition on the optimal Q-function of the MDP.
Assumption 3 (MDP with Lipschitz continuity). In the met-
ric space X , let the optimal Q-function be Q∗h : X → R,
then ∃L1, L2 > 0 such that ∀x, x′ ∈ X , ∀h ∈ [H],

|Q∗h(x)−Q∗h(x′)| ≤ L1 · dX (x, x′), (2)

max
a′′

dX
[(
f(x), a′′

)
,
(
f(x′), a′′

)]
≤ L2 · dX (x, x′). (3)

Assumption 3 implies that there is a proper notion of dis-
tance in X such that two points close to each other have
similar Q-values. It also ensures a stable system. Let L =

L1(L2 +1) be the parameter defining Q̂(x), then Q̂(x) is L-
Lipschitz continuous (Yang, Ni, and Wang 2019, Lemma 2).

Yang, Ni, and Wang (2019) proposed an upper-confidence
algorithm with NN approximation (UCRL-FA) for discrete
deterministic MDPs. Basically, the approximate Qh is up-
dated recursively from h = H to h = 1 at the end of
each episode. The agent acts according to the greedy policy
arg maxa∈AQh. For completeness, we present UCRL-FA
in Appendix A. It achieves the following regret bound.
Theorem 4 (Regret till ε-optimality by Yang et al). Suppose
X admits an ε-cover with size N(ε) for any ε > 0. After K
episodes, UCRL-FA with the nearest neighbor construction
obtains a regret bound Regret(K) ≤ HN(ε) + 2εLKH. If
X is compact, then Regret(K) = O(DLK)

p
p+1 ·H .
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For a metric space with ambient dimension p, Theo-
rem 4 states that UCRL-FA learns the system with ε−p sam-
ples, where ε is the learning accuracy. The algorithm is ef-
ficient for low-dimensional observations. Indeed, in real-
world MDPs governed by laws of physics, the intrinsic di-
mensions are usually small. However, the internal states are
not always available. If there are only pixel data, p can be
hundreds if not thousands even for a simple system like a
moving car. The natural question is: can the NN function ap-
proximator achieve a regret that depends only on the intrin-
sic dimension d? In the next section, we answer the question
affirmatively with some mild assumptions.

Efficient Value Learning in Metric Spaces
To characterize the true complexity of the NN approximator,
we additionally distinguish the state-action spaces. Suppose
the learner observes a p-dimensional state space Ŝ , e.g., im-
age space, which admits an embedding to a d-dimensional
space S , e.g., the parameter space of a physical system, for
some d � p. We emphasize that the learner does not have
any information about S . Let Y = Ŝ ×A and dY be the dis-
tance metric satisfying the triangular inequality. Since the
action space remains the same, we simply denote the ambi-
ent dimension of Y as p and the intrinsic dimension as d.

The relationship between any true state s and its external
representation ŝ can be described by a function that maps
S to Ŝ . In our proofs, we only assume the existence of the
mapping, but do not require knowing its explicit form.
Assumption 5 (Bi-Lipschitz mapping between metric
spaces). There exists a map g : X → Y from the intrin-
sic state space to the external metric space. We assume that
g is Bi-Lipschitz, i.e., ∀x, x′ ∈ X , ∃C > 0 such that

C−1dX (x, x′) ≤ dY(g(x), g(x′)) ≤ CdX (x, x′). (4)

dX and dY are distance metrics for X and Y , respectively.
Assumption 5 models most real-world RL systems: if two

points are close in the observation space, they are close in-
ternally. Now, by Assumption 3, we obtain the following
lemma on the continuity of the observation space.
Lemma 6 (High-dimensional MDP with Lipschitz continu-
ity). If X satisfies Assumption 3 and g : X → Y satisfies
Assumption 5, then the MDP with state-action space Y is
L̂-Lipschitz continuous, where L̂ = (L2C

2 + 1) · L1C.
The formal proof can be found in Appendix B. Now, we

can treat Y as an independent MDP without knowing its in-
trinsic properties and directly apply Theorem 4. Lemma 7
characterizes the regret of the NN approximator in Y .
Lemma 7 (Regret in Y w.r.t. the local dimension). Suppose
that Y admits an ε̂-cover N(ε̂) for some ε̂ > 0, after K
episodes, the NN function approximator obtains a regret

Regret(K) ≤ H ·N(Y , ε̂) + 2ε̂L̂KH (5)

where L̂ = (L2C
2 + 1) · L1C.

To bound the regret of the NN approximator in the ob-
servation space, it remains to bound the covering size of Y .
Recall the covering and packing of a metric space in Defini-
tion 1, we now present the main theorem.

Theorem 8 (Regret till ε̂-optimality in Y w.r.t. the intrin-
sic dimension). Suppose X admits an ε-cover N(X , ε) and
g : X → Y satisfies Lemma 6, then the following holds:

1. Y admits an ε̂-cover with ε̂ = 2Cε, N(Y , ε̂) ≤ N(X , ε)
2. In K episodes, UCRL-FA with NN function approximator

obtains a regret bound O(DL̂′K)
d
d+1 ·H with L̂′ := CL̂.

Proof. We make use of the facts that
∀ε > 0,M(2ε) ≤ N(ε) ≤M(ε) (6)

and for a metric space with diameter D and intrinsic dimen-
sion d, there exists a ε-cover with size

N(ε) = Θ (D/ε)
d
. (7)

We want to show that the covering number of Y cannot be
greater than the covering number of X when ε̂ is set to 2Cε.
Then, the regret bound in (5) can be replaced by an upper
bound which depends on the inherent properties of Y .

Note that finding M(ε) for a dataset Bn = {x1, ..., xn}
is equivalent to finding the cardinality of a maximum inde-
pendent set MI(Gε) in the graph Gε(V,E) with vertex set
V = Bn and edge set E = {(xi, xj)|d(xi, xj) < ε}.

Now, consider the graph GX2ε constructed by the above
rule. Any two connected points x, x′ in the graph satisfy
dX (x, x′) < 2ε. Denote the image of a maximum indepen-
dent set MIX (GX2ε) in Y as MIY(GX2ε). MIY(GX2ε) is still
a maximum independent set w.r.t. the graph with vertex set
V = Bn and edge set EX = {(g(xi), g(xj))|dX (xi, xj) <
2ε} in the new metric space.

To find the packing number of Y , we require the cutoff
condition for EY to be dY [g(xi), g(xj)] < 2Cε. By (5),
dY [g(x), g(x′)] < 2Cε for all elements in EX . Therefore,
EX ⊆ EY . In other words, g(GX2ε) is a subgraph of GY2Cε
with the same vertices. Thus, MIY(GY2Cε) ≤ MIX (GX2ε).
This is because adding edges can only reduce (or remain)
the size of the maximum independent sets in a graph.

Thus, M(Y , 2Cε) ≤ M(X , 2ε). Using (6), we conclude
that N(Y , 2Cε) ≤ M(Y , 2Cε) ≤ M(X , 2ε) ≤ N(X , ε),
where the first inequality holds in space Y , the second in-
equality comes from the proofs above, and the last inequal-
ity holds in space X . Preserving only the first and the last
terms, we have N(Y , ε̂) ≤ N(X , ε).

Consequently, the regret upper bound in (5) becomes
Regret(K) ≤ H ·N(Y , ε̂) + 2ε̂L̂KH

≤ H ·N(X, ε) + 4CL̂εKH.

In X , equation (7) indicates that N(Y , ε̂) ≤ Θ(D/ε)d,
where d and D are the intrinsic properties of the state-action
space. As a result,Regret(K) ≤ H ·Θ(D/ε)d+4CL̂εKH .

Denote L̂′ := CL̂ as the smoothing constant for the high-
dimensional metric space, when ε = D

d
d+1 · (CLK)−

1
d+1 ,

the upper bound becomes O(DL̂′K)
d
d+1 ·H as desired.

The main takeaway is that the regret in the complex space
is also sub-linear inK and linear inH . Moreover, it depends
on the intrinsic dimension rather than the ambient dimen-
sion. In practice, the NN approximator makes learning from
images as efficient as from the actual state descriptors by
emphasizing the internal differences between observations.
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Algorithm 1 Nearest Neighbor Actor-Critic

Initialize experience buffer B1 = ∅, policy parameter θπ1

for k = 1, ...,Kmax do
Receive initial state sk1
for h = 1, ..., H do

Take action akh according to policy πk(akh|skh, θπk )
Receive rkh ← r(skh, a

k
h) and skh+1 ← f(skh, a

k
h)

V̂ (skh)← NNFUNCAPPROX(skh, h, π
k, Bk, H)

V̂ (skh+1)← NNFUNCAPPROX(skh+1, h+1, πk, Bk, H)
δkh = r(skh, a

k
h) + γ · V̂ (skh+1)− V̂ (skh)

Bk ← Bk ∪ {
(
skh, a

k
h, f(s

k
h, a

k
h), r(s

k
h, a

k
h), δ

k
h

)
}

Sample a random mini-batch of N transitions from B
Update policy with TD error policy gradient by Eq. (8)

end for
Bk+1 ← Bk

end for
procedure NNFUNCAPPROX(s, h, π(·|θπ), B, H)

if h == H then
return 0

V = ∅
a← π(s|θπ)
for i = 1, ...,M do

(si, ai)← i-th neighbor of (s, a) in B under metric d
ri ← r(si, ai), s′i ← f(si, ai) . stored in B
V̂ ′
i ← NNFUNCAPPROX(s′i, h+ 1, π(·|θπ), B,H)
V̂i ← ri + γ · V̂ ′

i + L · d[(s, a), (si, ai)]
V ← V ∪ {V̂i}

end for
return minV

Nearest Neighbor Actor-Critic
In this section, we integrate the NN approximator into the
actor-critic framework and evaluate its practicality. This
Nearest Neighbor Actor-Critic (NNAC) combines a policy
network and an NN critic to solve RL problems. Upon re-
ceiving a new observation, the NN critic finds a sequence
of past (s, a) pairs as a simulated trajectory and sums up
the upper-bounded rewards as the value estimate. The 1-step
TD error is obtained from consecutive state values. Then, the
policy is updated based on the log action probability scaled
by the TD error. The pseudocode is given in Algorithm 1.

Neural-Network-Based Actor
Unlike the aforementioned tabular methods which employ
the greedy policy π(s) = arg maxa Q̂(s, a), we use a sepa-
rate network parameterized by θπ to guide the actor’s move-
ment. Let the actor loss be J(θπ). The network is updated
through the standard TD error policy gradient (Sutton 1988)
with mini-batch size N :

∇θπJ = N−1
∑

δi∇θπ log π(ai|si, θπ). (8)

At step h, the action distribution at sh is pushed towards ah
if the TD error δh > 0. We use temporal difference learning
instead of directly maximizing the values to reduce variance.

Nearest-Neighbor-Based Critic
The NN critic in Algorithm 1 maintains an experience buffer
B to construct the nearest neighbor tree. As in (Schulman

et al. 2016), we use a parameter γ ∈ (0, 1] to down-weight
future rewards due to delayed effects. This parameter corre-
sponds to the discount factor in infinite-horizon discounted
problems, but we take it as a variance reduction technique.

Following previous notation, let xh denote a state-action
pair at step h. Let M be the number of neighbors considered
in value approximation. The exact estimation procedure ex-
ploits Monte Carlo tree search. Given xh, find M samples
in history with the minimum distances dX (xh, xi), i ∈ [M ].
Consider their next states and the actions that would be taken
under πh. Expand these new state-action pairs until the tree
depth reaches H − h. The total reward is back-propagated
from the terminal states and the minimum value is the esti-
mate for V π(xh). When M = 1, the recursive formula is:

V̂ π(x) = r(x) + γ · V̂ π(x′) + L · dX (x, x′). (9)

x′ = arg minx′∈B dX (x, x′) is the nearest neighbor and
V̂ π(x′) = Q̂π

(
x′, π(x′)

)
. In long-horizon problems, we can

replace the varying H−h with a fixed planning horizon H ′.
Equation (9) prioritizes exploring (s, a)’s that are farther

away from the seen ones. By Assumption 3, the Lipschitz
bonus L · dX (x, x′) ensures that the real value of V π(x)

is upper-bounded by V̂ π(x). As new observations accumu-
late, dX (x, x′) becomes smaller and the upper bound is im-
proved. Since exploration is based on the value upper bound,
NNAC encourages exploring new actions. In training, dX is
problem-specific and L can be tuned as a hyperparameter.

The distance-based bonus is less sensitive to the dimen-
sion ofX . Deep RL has poor sample efficiency for pixel data
as it makes implicit use of feature encoding to find a low-
dimensional embedding. In contrast, the NN approximator
does not need any parametric model to capture the intrinsic
states. With a proper metric defined in the high-dimensional
space, the neighbors preserve their similarities and the dis-
tances can still be good indicators of their relative values.

Evaluation of NNAC
We test NNAC on the cart-pole balancing problem. Due to
the discrete nature of the action space, we compare with
dueling double deep Q-networks (DDDQN) (Wang et al.
2016), trust region policy optimization (TRPO) (Schulman
et al. 2015), proximal policy optimization (PPO) (Schulman
et al. 2017), soft actor-critic (SAC) (Haarnoja et al. 2018),
and neural episodic control (NEC) (Pritzel et al. 2017). Our
goal is to show that the NN critic enables efficient learning
with high-dimensional data, which is generally not easy to
achieve. Therefore, we select a task with relatively simple
dynamics and do not compare with all state-of-the-art deep
RL methods that typically use more samples.

Cart-pole environment: We use the OpenAI Gym imple-
mentation (Brockman et al. 2016). The state of the cart is
described by a 4-tuple (θ, θ̇, x, v), where θ and θ̇ are the an-
gle and angular velocity of the pole, x is the horizontal po-
sition of the cart, and v is the velocity. The horizon and the
maximum achievable reward in one episode are both 500.

State space dimension: We prepare three types of inputs.

• dim(S) = 4. The 4-tuple descriptors are used directly.
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(a) NNAC vs baselines with internal state descriptors
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(b) NNAC with different input dimensions

Figure 1: Learning curves for CartPole-v1. The shaded areas
denote one standard deviation of evaluations over 5 trails.
Curves are smoothed by taking a 500-step moving average.

• dim(Ŝ) = 10 and 100. We use random projection matri-
ces to map the 4-tuples into high-dimensional spaces. The
matrix columns are orthonormal to preserve the distances
and the neighbor relations in the new metric spaces.

• dim(Ŝ) = 4 × 20 × 20. We crop the cart-pole from the
160×240 gray scale images and down-sample it to 20×20
pixels. Four consecutive frames are stacked together to
derive the velocity and acceleration of the moving object.

In all cases, L2 distance is used for the nearest neighbor
search. As the L2 distance may not be a good measurement
for image similarity, we also learn a distance oracle with the
Siamese network for comparison (details in Appendix C.2).

Network structure and hyperparameters: We use the
Stable Baselines implementation of the deep RL agents (Hill
et al. 2018). For low-dimensional NNAC, we use a one-layer
policy network with 32 hidden units and a ReLU activation.
When learning from pixels, we add a convolutional layer
with 16 units before the policy network. The discount fac-
tor γ is 0.99. The Lipschitz L is determined by a grid search
and set to 7. All agents are trained with 5 random seeds.
Evaluation is done every 1000 steps without exploration.

Results and discussion: Figure 1a shows the learning
curves for all agents when the internal states are given.
NNAC learns better policies with fewer samples than the
other baselines. Also, compared with network critics that
need extensive hyperparameter tuning, the NN approxima-
tor only requires experimenting with L.

Figure 1b illustrates the performance of NNAC with dif-
ferent input dimensions. It converges in similar steps for the
intrinsic and projected states. This agrees with our proposi-
tion since the distances are preserved by the matrix trans-
formation. For the pixel data coupled with a learned metric,

Algorithm 2 Soft Nearest Neighbor Update
// Assume a small constant ε > 0
Initialize policy network θπ , value network θQ,B = ∅, α← α0

for each episode do
for each environment step do

Take action a according to π(s) and exploration strategy
Receive reward r and next state s′

if α > ε then
V̂ (s)← NNFUNCAPPROX(s, h, π,B,H)
V̂ (s′)← NNFUNCAPPROX(s′, h+ 1, π, B,H)
δ = r + γ · V̂ (s′)− V̂ (s)

end if
B ← B ∪ {(s, a, s′, r, δ)}

end for
for each gradient step do

Update the actor by Equation (11)
Update the critic by Equation (10)

end for
α← (1− β) · α

end for

NNAC achieves the same performance with slightly more
samples, which might be related to learning the convolu-
tional filters. When L2 distance is used to measure image
similarities, the algorithm is less stable and does not solve
the environment within limited time steps. However, the fi-
nal average return is already comparable to the deep RL
agents with internal state input. Indeed, deep RL typically
uses a linear output layer after several nonlinear layers. It
can be interpreted as a feature encoding process followed by
linear value approximation. Rather than learning the encod-
ing, NNAC treats the distance metric as known information,
thereby reducing the amount of unnecessary work.

Empirically, we find the L2 distance to be a good choice
for low-dimensional, physical state spaces, but other sophis-
ticated metrics might be needed to capture the differences
between images. For generic high-dimensional tasks, our al-
gorithm is efficient as long as a distance oracle is provided.

The major concern of NNAC is the computational cost
of finding the neighbors. We use Kd-tree (Friedman et al.
1977) in our implementation. For more complicated MDPs,
the training data size can be too large to build a Kd-tree effi-
ciently. Thus, in the next section, we introduce a new method
which preserves the original neural networks of deep RL
agents to reduce the computational burden.

Nearest Neighbor Update Module
In this section, we show that the NN approximator can boost
the efficiency of existing deep RL algorithms. As illustrated
in previous sections, our method explores the action space
efficiently both in theory and in practice. However, as sam-
ples accumulate, a neural network with sufficient training
data can outperform other function approximators due to its
generalization ability. Hence, we propose a nearest neighbor
plug-and-play module (Algorithm 2) that acts as a “starter”
to accelerate deep RL agents and can be removed later.

We focus on actor-critic methods. Without changing the
algorithm’s structure, a plug-in NN critic supplies value es-
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Figure 2: Learning curves for OpenAI Gym MuJoCo continuous control tasks. The shaded areas denote one standard deviation
of evaluations over 5 trails. For visual clarity, the curves are smoothed by taking a moving average of 104 environment steps.

timates to the rest of the framework. While the actor benefits
from TD error policy gradient, the value network in the orig-
inal algorithm is penalized for large deviations from the NN
estimates. We adopt an adaptive weighting scheme and de-
crease the weight for the NN module to avoid computational
bottleneck. Let α be the weight of the NN approximator.
There are three major components in the update module.

Modification 1: NN Value Estimation
An NN critic is incorporated to guide the training of both the
actor and critic networks. In addition to the value network,
NNFUNCAPPROX in Algorithm 1 is used to estimate the
current state values. Assume that the original critic loss is
L(θQ). We penalize large differences between the TD errors
estimated by the value network and the NN critic. Using the
mean squared error, the critic objective is reformulated as:

L′(θQ) = (1− α) · L(θQ) + α ·
∥∥δθQ − δNN∥∥2 , (10)

where δθQ = r+γV ′θQ−VθQ is obtained from the value net,
and δNN is the TD error supplied by the NN approximator.

Modification 2: TD-Regularized Policy Learning
Similar to NNAC, we also include a TD error policy gradient
term in the actor loss. Let the original actor loss be J(θπ).
The modified gradient∇θπJ ′(θπ) is:

(1− α) · ∇θπJ(θπ) + α · δNN∇θπ log π(a|s; θπ). (11)

The auxiliary TD term increases the weights for rewarding
actions and decreases the weights for less preferable actions.

Modification 3: Continual TD Supervision
When the MDP has a large intrinsic dimension, it is im-
practical to compute the nearest neighbors at each recur-
sion step for every mini-batch samples. Therefore, we use an
exponentially decaying weight parameter for the NN critic:
α = α0 · (1 − β)k, where α0 ∈ (0, 1] is the initial weight,
β ∈ (0, 1) is the decrease rate, k is the episode number. MC
simulation terminates when α is close to 0. However, past
TD estimates can still supervise the learning and reduce the
chance of network forgetting. This is achieved by storing
δNN along with the stepwise observation in the experience
buffer. For mini-batches sampled at each gradient step, (10)
and (11) are used to update the networks if δNN is available.
Otherwise, the original gradients are used.

Environment NNTD3 TD3 NNDDPG DDPG

Ant 4727.44 3425.07 1115.00 1025.82
Hopper 3704.40 2708.25 3202.64 2029.65

Walker2d 5170.20 4260.23 2917.25 2633.86
HalfCheetah 8341.74 7045.53 7001.52 6385.43

Table 1: Average return over 5 trials. Top values are bolded.

Evaluation of Soft Nearest Neighbor Update
Setup: We implement the NN critic on DDPG (Lillicrap
et al. 2016) and TD3 (Fujimoto et al. 2018) and test with four
MuJoCo locomotion tasks (Todorov et al. 2012). For fair-
ness, we use the same hyperparameters for each method be-
fore and after adding the NN module. The network structure
is selected from the benchmark work (Duan et al. 2016) and
identical for all agents. L2 distance is used to find the neigh-
bors. More experiment details are given in Appendix E.

Results and discussion: Figure 2 shows the experiment
results. The auxiliary NN-critic improves the sample effi-
ciency of DDPG and TD3 in most settings, though we do
not see a major performance gain for DDPG in Ant-v2. If
DDPG cannot solve an environment, the soft update mod-
ule is of less help given that the original value networks still
play a crucial role in learning. We summarize two principal
benefits of the NN update framework.

1. NN-guided training encourages exploration and helps the
agents to overcome local optima. Table 1 shows that NN
algorithms obtain larger maximum returns. The Lipschitz
bonus highlights exploring unvisited states. This direc-
tional exploration is more efficient than random noise.

2. The upper-bounded value estimation stabilizes training by
preventing overestimation of Q(s, a). This technique has
a similar effect to the twin Q-networks in TD3.

Conclusion
In this paper, we provide a nearest neighbor function ap-
proximator for efficient value learning and justify its sample
complexity for high-dimensional input in deterministic sys-
tems. The NN value estimator can be incorporated in model-
free deep RL to encourage exploration and stabilize train-
ing. Our work suggests that there is great potential to im-
prove deep RL with non-parametric methods. Future works
can explore the benefits of nearest neighbor search in active
learning or extend the theories to stochastic environments.
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