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Abstract

Recurrent autoencoder is a popular model for time series
anomaly detection, in which outliers or abnormal segments
are identified by their high reconstruction errors. However,
existing recurrent autoencoders can easily suffer from over-
fitting and error accumulation due to sequential decoding. In
this paper, we propose a simple yet efficient recurrent net-
work ensemble called Recurrent Autoencoder with Multires-
olution Ensemble Decoding (RAMED). By using decoders
with different decoding lengths and a new coarse-to-fine fu-
sion mechanism, lower-resolution information can help long-
range decoding for decoders with higher-resolution outputs.
A multiresolution shape-forcing loss is further introduced to
encourage decoders’ outputs at multiple resolutions to match
the input’s global temporal shape. Finally, the output from
the decoder with the highest resolution is used to obtain an
anomaly score at each time step. Extensive empirical studies
on real-world benchmark data sets demonstrate that the pro-
posed RAMED model outperforms recent strong baselines on
time series anomaly detection.

Introduction
Anomaly detection aims to identify anomalous patterns from
data. In particular, time series anomaly detection has re-
ceived a lot of attention in the past decade (Gupta et al. 2014;
Cook, Misirli, and Fan 2020). Time series data can be eas-
ily found in many real-world applications. One example is
cyber-physical systems such as smart buildings, factories,
and power plants (Chia and Syed 2014; Ding et al. 2016),
in which there are a large number of sensors. Efficient and
robust time series anomaly detection can help monitor sys-
tem behaviors such that potential risks and financial losses
can be avoided. However, detecting outliers from time series
data is challenging. First, finding and labeling of anomalies
are very time-consuming and expensive in practice. More-
over, time series data usually have complex nonlinear and
high-dimensional dynamics that are difficult to model. To
alleviate the first issue, time series anomaly detection is usu-
ally formulated as an one-class classification problem (Ruff
et al. 2018; Zhou et al. 2019), in which the training set con-
tains only normal samples.
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Existing time series anomaly detection techniques can be
roughly categorized as either predictive or reconstruction-
based. Classical predictive models include the autoregres-
sive moving average (ARMA) and autoregressive integrated
moving average (ARIMA) models (Wold 1938). They are
linear regressors and use the prediction error as anomaly
score. More recently, recurrent neural networks (RNNs)
(Zhang et al. 2019) and other deep predictors (Filonov,
Lavrentyev, and Vorontsov 2016) are also used. However,
these methods depend largely on the models’ extrapolation
capacities (Yoo, Kim, and Kim 2019). On the other hand,
reconstruction-based methods learn a compressed represen-
tation for the core statistical structures of normal data, and
then use this to reconstruct the time series. Points or seg-
ments that cannot be well reconstructed are considered as
outliers. Reconstruction methods are popular in applications
such as anomalous rhythm detection (Zhou et al. 2019) and
network traffic monitoring (Kieu, Yang, and Jensen 2018).
In this paper, we focus on reconstruction-based methods.

In deep learning, the recurrent auto-encoder (RAE) (Mal-
hotra et al. 2016) has demonstrated good performance in
time series anomaly detection. Following the well-known
sequence-to-sequence framework (Sutskever, Vinyals, and
Le 2014), the RAE consists of an encoder and a decoder. The
reconstruction error at each time step is used as an anomaly
score. Very recently, other autoencoder variants have also
been proposed. For example, Yoo, Kim, and Kim (2019) de-
veloped the recurrent reconstructive network (RRN), which
uses self-attention and feedback transition to help capture
the temporal dynamics. Kieu et al. (2019) proposed the re-
current autoencoder ensemble based on ensemble learning
(Dietterich 2000). Both the encoders and decoders consist
of several RNNs with sparse skip connections. On inference,
the median reconstruction error from all decoders is used as
the anomaly score. However, the RAE and its variants can
have difficulties in decoding long time series due to error
accumulation from previous time steps.

In this paper, we propose the Recurrent Autoencoder with
Multiresolution Ensemble Decoding (RAMED). Inspired by
(Kieu et al. 2019), RAMED also has an ensemble of de-
coders. However, the difference is that the proposed de-
coders capture the time series’ temporal information at mul-
tiple resolutions. This is achieved by controlling the number
of decoding steps in the decoders. With a short decoding
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length, the decoder has to focus on macro temporal char-
acteristics such as trend patterns and seasonality; whereas
a decoder with long decoding length can capture more de-
tailed local temporal patterns. Furthermore, instead of sim-
ply averaging the decoder outputs as in (Kieu et al. 2019),
the lower-resolution temporal information is used to guide
decoding at a higher resolution. Specifically, we introduce
a multiresolution shape-forcing loss to encourage the de-
coders to match the input’s global temporal shape at mul-
tiple resolutions. This avoids overfitting the nonlinear local
patterns at a higher resolution, and alleviates error accumu-
lation during decoding. Finally, the output from the highest
resolution (whose decoding length equals the length of the
whole time series) is used as the ensemble output.

Our main contributions can be summarized as follows:
• We present the novel recurrent autoencoder RAMED,

with multiple decoders of different decoding lengths. By
introducing a shape-forcing reconstruction loss, decoders
can capture temporal characteristics of the time series at
multiple resolutions.

• We introduce a fusion mechanism to integrate multireso-
lution temporal information from multiple decoders.

• We conduct extensive empirical studies on time series
anomaly detection. Results demonstrate that the proposed
model outperforms recent strong baselines.

Related Work
Autoencoders for Time Series Anomaly Detection
The sequence-to-sequence model (Sutskever, Vinyals, and
Le 2014) is a popular auto-encoding approach for sequential
data. There are two steps in its learning procedure: (i) en-
coding, which compresses the sequential data into a fixed-
length representation; and (ii) decoding, which reconstructs
the original input from the learned compressed representa-
tion. The sequence-to-sequence model has been widely used
in natural language processing (Bahdanau, Cho, and Ben-
gio 2015). Recently, it is also used in time series applica-
tions such as prediction (Le Guen and Thome 2019), clus-
tering (Ma et al. 2019) and anomaly detection (Malhotra
et al. 2016; Yoo, Kim, and Kim 2019; Kieu et al. 2019).
Two recent representative sequence-to-sequence models for
time series anomaly detection are the recurrent auto-encoder
(RAE) (Malhotra et al. 2016) and recurrent reconstructive
network (RRN) (Yoo, Kim, and Kim 2019).

Time Series Encoding The recurrent neural network
(RNN) is often used to encode time series data. Let X =
[x1,x2, . . . ,xT ], where xt ∈ Rd, be a time series of length
T . At time t, the encoder’s hidden state h

(E)
t is updated as:

h
(E)
t = f (E)([xt;h

(E)
t−1]), (1)

where f (E) is a nonlinear function. The h
(E)
T at the last time

step T is then used as X’s compressed representation.
A popular choice for f (E) is the long-short term mem-

ory (LSTM) (Hochreiter and Schmidhuber 1997). Kieu et al.
(2019) added sparse skip connections to the RNN cells so
that additional hidden states in the past can be considered.

Specifically, f (E) uses not only the immediate previous state
h
(E)
t−1, but also h

(E)
t−s for some skip length s > 1:

h
(E)
t = f (E)

([
xt;

w1h
(E)
t−1 + w2h

(E)
t−s

|w1|+ |w2|

])
, (2)

where coefficients w1, w2 are randomly sampled from
{(1, 0), (0, 1), (1, 1)} at each time step. In (Kieu et al. 2019),
the skip length s is randomly sampled from [1, 10] and fixed
before training.

Decoding for Anomaly Detection The encoder’s com-
pressed representation h

(E)
T can be decoded by using a

LSTM. In time series anomaly detection, decoding is usu-
ally easier when performed in time-reverse order (Kieu
et al. 2019; Yoo, Kim, and Kim 2019), i.e., the target
reconstructed output for input X = [x1,x2, . . . ,xT ] is
[yT ,yT−1, . . . ,y1], where yt is the LSTM’s output at time
t (for t = T, T −1, . . . , 1). After initializing hT by h

(E)
T ,

{hT−1, . . . ,h1} are obtained as:

yt = Wht + b,
ht−1 = LSTM([yt;ht]),

(3)

where W,b are learnable parameters. An anomaly score is
computed for each xt based on the error e(t) = yt − xt. As
can be seen from (3), this error can accumulate during the
sequential decoding process.

Encoder-Decoder Ensemble In the recurrent autoencoder
ensemble (RAE-ensemble) (Kieu et al. 2019), multiple re-
current encoders and decoders are used. Let L(E) be the
number of encoders, and h

(Ei)
T be the representation from

the ith encoder. The integrated compressed representation
h(E) is obtained by

h(E)=FMLP

(
concat[h

(E1)
T ;. . .;h

(Ei)
T ;. . .;h

(E
L(E) )

T ]
)
, (4)

where FMLP is a fully-connected layer, and h(E) shares
the same dimension as each h

(Ei)
T . During decoding, L(D)

decoders are used, with each of which following the
same recurrent decoding process. After initializing h

(k)
T to

h(E), the kth decoder D(k) outputs {y(k)
T , . . . ,y

(k)
1 } and

{hT−1, . . . ,h1} as:

y
(k)
t = W(k)h

(k)
t + b(k),

h
(k)
t−1 = LSTM(k)([y

(k)
t ;h

(k)
t ]),

(5)

where W(k), and b(k) are learnable parameters. Note that
this also suffers from error accumulation as in (3). During
inference, outputs from all the decoders are pooled together.

Multiresolution Temporal Modeling
To capture multiresolution temporal information, Hihi and
Bengio (1996) developed a hierarchical RNN that inte-
grates multiple delays and time scales in different recurrent
neurons. Similarly, to model multiscale structures in text.
Hermans and Schrauwen (2013); Chung, Ahn, and Ben-
gio (2017) introduced the hierarchical multiscale RNN. This
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Figure 1: The proposed Recurrent Autoencoder with Multiresolution Ensemble Decoding (RAMED).

stacks multiple recurrent layers, with each layer receiving
hidden states from the previous layer as input. Instead of
simply stacking multiple recurrent layers, Liu et al. (2019)
proposed a coarse-to-fine procedure for time series imputa-
tion. Very recently, the pyramid RNN (Ma et al. 2020) ag-
gregates the multiresolution information from each recurrent
layer in a bottom-up manner.

Proposed Architecture
In this paper, we utilize multiresolution temporal informa-
tion by integrating with a coarse-to-fine decoding process.
Figure 1 shows the proposed model (with L(E) = L(D) =
3), which will be called Recurrent Autoencoder with Mul-
tiresolution Ensemble Decoding (RAMED).

Multiresolution Ensemble Decoding
As in (Kieu et al. 2019), RAMED uses an ensemble of L(E)

RNN encoders with the encoding process in (4). At the low-
est resolution layer, macro temporal characteristics of the
time series are captured. This is then passed to the next layer
(with a higher decoding resolution), and so on.

Subsequently, multiple reconstructions are obtained by
running L(D) recurrent decoders on the compressed repre-
sentation h(E). To encourage different decoders to capture
temporal behaviors of the time series at different resolutions,
we use different numbers of decoding steps for the decoders.
A decoder with short decoding length has to focus on the
macro temporal characteristics; whereas a decoder with long
decoding length can capture more detailed local temporal
patterns. A multiresolution fusion strategy is used to effi-
ciently fuse the decoder outputs in a coarse-to-fine manner.

Moreover, the decoded output is encouraged to be simi-
lar to the input time series by using a differentiable shape-

forcing loss based on dynamic time warping (DTW) (Sakoe
and Chiba 1978).

The following sections describe these various components
in more detail.

Decoder Lengths The kth decoder D(k) reconstructs a
time series of length T (k), where T (k) = αkT and

αk = 1/τk−1 ∈ (0, 1] (6)

for some τ > 1 (τ = 2 in Figure 1). Note that α1 = 1 and
T (1) = T . We require T (L(D)) ≥ 2, so that the decoder at
the top takes at least two decoding steps.

To improve robustness, as in the denoising autoencoder
(Vincent et al. 2008), we add a small amount of noise εδ to
the LSTM’s input, where ε is a small scalar (10−4 in the ex-
periments), and δ is random noise from the standard normal
distribution N (0, 1).

Coarse-to-Fine Fusion Since the outputs from different
decoders have different lengths, they cannot be summarized
to an ensemble output by simply using the average or me-
dian as in (Kieu et al. 2019). In the following, we propose a
simple yet efficient multiresolution coarse-to-fine strategy to
fuse the coarser-grained decoder with the finer-grained de-
coders.

Consider two decoders D(k+1) and D(k). Note from (6)
that T (k) = τT (k+1) > T (k+1), and so information ex-
tracted from D(k+1) is coarser than that from D(k). In
other words, the decoder at the top (k = L(D)), with out-

put {h(L(D))
1 , . . . ,h

(L(D))

T (D) } obtained via (5), is the coarsest
among all decoders.

For the other decoders D(k)s (k = L(D) − 1, . . . , 1),
instead of using (5), it first combines its previous hidden
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state h
(k)
t+1 with the corresponding slightly-coarser informa-

tion h
(k+1)
dt/τe from the sibling decoder D(k+1) as:

ĥ
(k)
t = βh

(k)
t+1+(1−β)F ′MLP

(
concat[h

(k)
t+1;h

(k+1)
dt/τe ]

)
, (7)

where F ′MLP is a two-layer fully-connected network with the
PReLU (Parametric Rectified Linear Unit) (He et al. 2015)
activation, and βh

(k)
t+1 (with β > 0) plays a similar role as

the residual connection (He et al. 2016). Analogous to (5),
this ĥ

(k)
t is then fed into the LSTM cell to generate

h
(k)
t = LSTM(k)([y

(k)
t+1 + ε� δ; ĥ

(k)
t ]),

for t = T (k) − 1, . . . , 1.
Finally, the ensemble’s reconstructed output can be

obtained from the bottom-most decoder as Yrecon =

[y
(1)
1 ,y

(1)
2 , . . . ,y

(1)
T ] (after reversing to the original time

order). To encourage Yrecon to be close to input X =
[x1, . . . ,xT ], we use the square loss as the reconstruction
error:

LMSE(X) =
T∑
t=1

‖y(1)
t − xt‖2. (8)

Multiresolution Shape-Forcing Loss To further encour-
age decoders to learn consistent temporal patterns at differ-
ent resolutions, we force the decoders’ outputs to have sim-
ilar shapes as the original input by introducing a loss based
on dynamic time warping (DTW) (Sakoe and Chiba 1978).

Let the output from decoder D(k) be Y(k) =

[y
(k)
1 ,y

(k)
2 , . . . ,y

(k)

T (k) ]. Since T (k) 6= T for k =

2, . . . , L(D), we define a similarity between time series X
and each Y(k) by DTW. The DTW similarity is based on
distances along the (sub-)optimal DTW alignment path. Let
the alignment be represented by a matrix A ∈ {0, 1}T×T

(k)

,
in which Ai,j = 1 when xi is aligned to y

(k)
j ; and zero

otherwise, and with boundary conditions A1,1 = 1 and
AT,T (k) = 1. All valid alignment paths run from the upper-
left entry (1,1) to the lower-right entry (T, T (k)) using moves
↓, → or ↘. The alignment costs are stored in a matrix C.
For simplicity, we use Ci,j = ‖xi − y

(k)
j ‖, the Euclidean

distance. The DTW distance between X and Y(k) is then:

DTW(X,Y(k)) = min
A∈A
〈A,C〉. (9)

where A is the set of T × T (k) binary alignment matri-
ces, and 〈·, ·〉 is the matrix inner product. The DTW dis-
tance is non-differentiable due to the min operator. To in-
tegrate DTW into end-to-end training, we replace (9) by
the smoothed DTW (sDTW) distance (Cuturi and Blondel
2017):

sDTW(X,Y(k))=−γ log

(∑
A∈A

e−〈A,C〉/γ

)
, (10)

where γ > 0. This is based on the smoothed min operator
minγ{a1, . . . , an} = −γ log

∑n
i=1 e

−ai/γ , which reduces
to the min operator when γ approaches zero.

Algorithm 1 Recurrent Autoencoder with Multiresolution
Ensemble Decoding (RAMED).

Input: a set of time series {Xb}; batch size B; number of
encoders L(E); number of decoders L(D); τ .

1: for each decoder, its decoding length is T (k) = αkT ;
2: repeat
3: sample a batch of B time series;
4: for b = 1, . . . , B do
5: feed time series Xb to encoders and obtain the

last hidden states {h(E)
b,T };

6: obtain joint representations {h(E)} via (4);
7: for k = L(D), L(D)−1 . . . , 1 do
8: run the decoder D(k);
9: if (k 6= L(D)) then

10: perform coarse-to-fine fusion;
11: end if
12: obtain updated hidden states {h(k)

b,t } and out-

puts {y(k)
b,t };

13: end for
14: minimize (12) by SGD or its variants;
15: end for
16: until convergence.

With the sDTW distance, we encourage decoders at dif-
ferent resolutions to output time series with similar tempo-
ral characteristics as the input. Here, decoders whose decod-
ing length is less than the length of the whole time series
are considered. This leads to the following multiresolution
shape-forcing loss:

Lshape(X) =
1

L(D) − 1

L(D)∑
k=2

sDTW(X,Y(k)). (11)

Given a batch of samples {Xb}b=1,2,...,B (where B is the
batch size), the total loss is:

L =
1

B

B∑
b=1

(LMSE(Xb) + λLshape(Xb)) , (12)

where λ is a trade-off parameter. This can be minimized by
stochastic gradient descent or its variants (such as Adam
(Kingma and Ba 2015)). The training procedure is shown
in Algorithm 1.

Anomaly Score and Detection
Given a time series X = [x1,x2, . . . ,xT ] and its reconstruc-
tion Y = [y1,y2, . . . ,yT ], the reconstruction error at time t
is e(t) = yt−xt. We then fit a normal distributionN (µ,Σ)
using the set of {e(t)} from all time steps and all time series
in the validation set.

On inference, the probability that xt from an unseen time
series in the test set is anomalous is defined as:

1− 1√
(2π)d|Σ|

exp

(
−1

2
(e(t)−µ)TΣ−1(e(t)−µ)

)
.
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Dataset T # Training # Validation # Testing % Anomaly

ECG
(A) chfdb chf01 275 64 40 17 59 14.61
(B) chfdb chf13 45590 64 53 22 40 12.35
(C) chfdbchf15 64 237 101 104 4.45
(D) ltstdb 20221 43 64 57 24 35 11.51
(E) ltstdb 20321 240 64 43 18 45 9.61
(F) mitdb 100 180 64 64 27 70 8.38

2D-gesture 64 91 39 47 24.63
Power-demand 512 25 11 29 11.44
Yahoo’s S5 128 659 398 394 3.20

Table 1: Statistics of the time series data sets.

Thus, we can take

s(t) = (e(t)− µ)TΣ−1(e(t)− µ) (13)

as xt’s anomaly score. When this is greater than a predefined
threshold, xt is classified as an anomaly.

Experiments
In this section, experiments are performed on the following
nine commonly-used real-world time series benchmarks1

(Table 1):

1. ECG: This is a collection of 6 data sets on the detection
of anomalous beats from electrocardiograms readings.

2. 2D-gesture: This contains time series of X-Y coordinates
of an actor’s right hand. The data is extracted from an
video in which the actor grabs a gun from his hip-mounted
holster, moves it to the target, and returns it to the holster.
The anomalous region is in the area where the actor fails
to return his gun to the holster.

3. Power-demand: This contains one year of power con-
sumption records measured by a Dutch research facility
in 1997.

4. Yahoo’s S5 Webscope: This contains records from real
production traffic of the Yahoo website. Anomalies are
manually labeled by human experts.

ECG and 2D-gesture are bivariate time series (d = 2), while
Power-demand and Yahoo’s S5 are univariate (d = 1). For
each of ECG, 2D-gesture and Power-demand, the public
data set includes a training set (containing only normal data)
and a test set. We use 30% of the training set for validation,
and the rest for actual training. The model with the lowest
reconstruction loss on the validation set is selected for evalu-
ation. For Yahoo’s S5, the available data set is split into three
parts: with 40% of the samples for training, another 30% for
validation, and the remaining 30% for testing. The training
set contains unknown anomalies, and we use the model with
the highest AUROC value on the validation set for evalua-
tion.

1ECG, 2D-gesture and Power-demand are from http://www.
cs.ucr.edu/∼eamonn/discords/, while Yahoo’s S5 is from https://
webscope.sandbox.yahoo.com/.

The time series are partitioned into length-T sequences
by using a sliding window. The sliding window has a
stride of 32 on the ECG data sets, 512 on Power-demand,
and 64 on 2D-gesture and Yahoo’s S5. Table 1 shows
the sequence length T , number of sequences in the train-
ing/validation/testing set, and percentage of anomalous sam-
ples in the test set.

Baselines The proposed RAMED model is compared with
four recent anomaly detection baselines:2 (i) recurrent au-
toencoder (RAE) (Malhotra et al. 2016); (ii) recurrent re-
constructive network (RRN) (Yoo, Kim, and Kim 2019),
which combines attention, skip transition and a state-forcing
regularizer; (iii) recurrent autoencoder ensemble (RAE-
ensemble) (Kieu et al. 2019), which uses an ensemble of
RNNs with sparse skip connections as encoders and de-
coders; (iv) BeatGAN (Zhou et al. 2019), which is a re-
cent CNN autoencoder-based generative adversarial net-
work (GAN) (Goodfellow et al. 2014) for time series
anomaly detection.

Evaluation Metrics Performance measures such as preci-
sion and recall depend on thresholding the anomaly score.
To avoid setting this threshold, we use the following metrics
which have been widely used in anomaly detection (Wang
et al. 2019; Ren et al. 2019; Li et al. 2020; Su et al. 2019):
(i) area under the ROC curve (AUROC), (ii) area under the
precision-recall curve (AUPRC), and (iii) the highest F1-
score (denoted F1best) (Li et al. 2020; Su et al. 2019), which
is selected from using 1000 thresholds uniformly distributed
from 0 to the maximum anomaly score over all time steps in
the test set (Yoo, Kim, and Kim 2019).

Implementation Details We use 3 encoders and 3 de-
coders. Each encoder and decoder is a single-layer LSTM
with 64 units. We perform grid search on the hyperpa-
rameter β in (7) from {0.1, 0.2, . . . , 0.9}, λ in (12) from
{10−4, 10−3, 10−2, 10−1, 1}, τ in (6) is set to 3 and γ in (10)
is set to 0.1. The Adam optimizer (Kingma and Ba 2015) is
used with an initial learning rate of 10−3.

2RAE and RRN are downloaded from https://github.com/
YongHoYoo/AnomalyDetection, BeatGAN is from https://github.
com/Vniex/BeatGAN, and RAE-ensemble is from https://github.
com/tungk/OED
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metric method
ECG 2D-

gesture
Power-
demand

Yahoo’s
S5

avg
rank

A B C D E F

AUROC

BeatGAN 0.6566 0.7056 0.7329 0.6173 0.8160 0.4223 0.7256 0.5796 0.8728 4.33
RAE 0.6728 0.7502 0.8289 0.5452 0.7970 0.4715 0.7601 0.6122 0.8823 3.78
RRN 0.6393 0.7623 0.7405 0.6318 0.8101 0.4531 0.7530 0.6607 0.8869 3.44

RAE-ensemble 0.6884 0.7788 0.8570 0.6400 0.8035 0.5213 0.7808 0.6587 0.8850 2.44
RAMED 0.7127 0.8551 0.8736 0.6473 0.8828 0.6399 0.7839 0.6787 0.8942 1.00

AUPRC

BeatGAN 0.5197 0.4101 0.2254 0.1613 0.3342 0.0778 0.4952 0.1228 0.4702 4.44
RAE 0.5501 0.4249 0.4996 0.1435 0.2126 0.0894 0.4979 0.1350 0.4782 3.78
RRN 0.5260 0.5653 0.4139 0.1652 0.3206 0.0833 0.4866 0.1446 0.4794 3.22

RAE-ensemble 0.5549 0.4769 0.5256 0.2026 0.2798 0.0948 0.5287 0.1400 0.4783 2.56
RAMED 0.5803 0.7008 0.5486 0.2203 0.3784 0.1253 0.5331 0.1627 0.4809 1.00

F1best

BeatGAN 0.5102 0.4204 0.2931 0.2502 0.4776 0.1562 0.4941 0.2266 0.4484 4.44
RAE 0.5478 0.4736 0.5046 0.2193 0.3886 0.1581 0.5300 0.2798 0.4473 3.78
RRN 0.5440 0.5502 0.4537 0.2621 0.4548 0.1562 0.5240 0.2926 0.4502 3.00

RAE-ensemble 0.5479 0.5016 0.5333 0.2735 0.3910 0.1602 0.5511 0.2678 0.4497 2.67
RAMED 0.5762 0.6871 0.5541 0.3466 0.4855 0.2090 0.5633 0.2934 0.4502 1.00

Table 2: Anomaly detection results (the larger the better). The best results are highlighted. Average rank (the smaller the better)
is recorded in the last column.

method
ECG(A) ECG(B) ECG(C)

AUROC AUPRC F1best AUROC AUPRC F1best AUROC AUPRC F1best

w/o coarse-to-fine fusion 0.6781 0.5305 0.5275 0.8196 0.6144 0.5539 0.7537 0.4700 0.5263
w/o Lshape 0.6916 0.5720 0.5556 0.8542 0.6362 0.6266 0.8450 0.4828 0.5365
full model 0.7127 0.5803 0.5762 0.8551 0.7008 0.6871 0.8736 0.5486 0.5541

method
ECG(D) ECG(E) ECG(F)

AUROC AUPRC F1best AUROC AUPRC F1best AUROC AUPRC F1best

w/o coarse-to-fine fusion 0.5125 0.1326 0.2092 0.8212 0.3058 0.3886 0.5083 0.0875 0.1593
w/o Lshape 0.5609 0.1742 0.2537 0.8455 0.3228 0.4235 0.5598 0.0993 0.1704
full model 0.6473 0.2203 0.3466 0.8828 0.3784 0.4855 0.6399 0.1253 0.2090

method
2D-gesture Power-demand Yahoo’s S5

AUROC AUPRC F1best AUROC AUPRC F1best AUROC AUPRC F1best

w/o coarse-to-fine fusion 0.7656 0.5292 0.5448 0.6357 0.1385 0.2642 0.8846 0.4501 0.4335
w/o Lshape 0.7716 0.5328 0.5525 0.6632 0.1500 0.2805 0.8895 0.4783 0.4497
full model 0.7839 0.5331 0.5633 0.6787 0.1627 0.2934 0.8942 0.4809 0.4502

Table 3: Effectiveness of coarse-to-fine fusion and multiresolution shape-forcing loss in RAMED.

Performance Comparison
Results are shown in Table 2. In terms of the average rank-
ing, RAE-ensemble has better performance among the 4
baselines. This agrees with the general view that ensemble
learning is beneficial. The proposed RAMED consistently
outperforms RAE-ensemble on all three metrics, and the im-
provement on the AUROC is particularly large. This demon-
strates that using multiresolution information in an ensemble
further helps time series reconstruction, such that lower false
positive rates and higher true negative rates can be achieved.

Ablation Study
In this section, we examine the contributions of the coarse-
to-fine fusion strategy and multiresolution shape-forcing
loss in the proposed RAMED model. Sensitivity analysis on
the hyperparameters is also performed.

Effect of Coarse-to-Fine Fusion In this experiment, we
still use 3 encoders as in the full model, but only use one
decoder (with decoding length equal to the input length). As
can be seen from Table 3, when only one decoder is left to
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(a) ECG(A).

(b) Gesture.

Figure 2: Effect of varying β.

ECG(A) T (k)’s AUROC AUPRC F1best

L(D) = 1 64 0.6781 0.5305 0.5275

L(D) = 2 21, 64 0.6976 0.5828 0.5708

L(D) = 3 7, 21, 64 0.7172 0.5803 0.5762

L(D) = 4 2, 7, 21, 64 0.6743 0.5132 0.5196

Gesture T (k)’s AUROC AUPRC F1best

L(D) = 1 64 0.7656 0.5292 0.5448

L(D) = 2 21, 64 0.7693 0.5080 0.5462

L(D) = 3 7, 21, 64 0.7839 0.5331 0.5633

L(D) = 4 2, 7, 21, 64 0.7779 0.5153 0.5545

Table 4: Effect of varying L(D) on ECG(A) and Gesture.
T (k)’s are the decoding lengths of the various decoders.

reconstruct the input time series, performance on all metrics
decrease. This verifies usefulness of the multiresolution fu-
sion strategy.

Effect of Multiresolution Shape-Forcing Loss In this ex-
periment, we remove the multiresolution shape-forcing loss
from (12), and only minimize the reconstruction error. As
can be seen from Table 3, the shape-forcing loss also plays
an important role in multiresolution decoding.

Sensitivity to Hyperparameters We study the following
hyperparameters in the proposed model: (i) coarse-to-fine
fusion weight β in (7), (ii) tradeoff parameter λ on the mul-
tiresolution shape-forcing loss in (12), and (iii) L(D), the
number of decoders. The default hyperparameter settings are

(a) ECG(A).

(b) Gesture.

Figure 3: Effect of varying λ.

β = 0.1, λ = 10−4 and L(D) = 3. Experiments are per-
formed on the ECG(A) and Gesture data sets.

Figure 2 shows the AUROC’s at different β’s. As can
be seen, the performance w.r.t. β is relatively stable. When
β is set to 0.1, the proposed model achieves the best per-
formance. This is because when β is small, more coarse-
grained information can be used to help temporal modeling
at a higher-resolution levels; whereas a larger β may ignore
the coarse-grained information and degrades performance.

Figure 3 shows the AUROC’s at different λ’s. As can be
seen, when λ is small (10−4), but nonzero, better perfor-
mance is achieved.

Table 4 shows the AUROC’s with different numbers of de-
coders. As can be seen, increasingL(D) (from 1 to 3) can im-
prove performance as more abundant multiresolution tempo-
ral patterns are involved. However, when L(D) increases to
4, performance is degraded. This is because when L(D) = 4,
the coarsest decoder has a decoding length of only 2, and
cannot provide useful global temporal information.

Conclusion
In this paper, we introduce a recurrent ensemble network
called Recurrent Autoencoder with Multiresolution Ensem-
ble Decoding (RAMED) for time series anomaly detection.
RAMED is based on a new coarse-to-fine fusion mecha-
nism, which integrates all the decoders into an ensemble,
and a multiresolution shape-forcing loss, which encourages
decoders’ outputs to match the input’s global temporal shape
at multiple resolutions. This avoids overfitting the nonlinear
local patterns at a higher resolution, and alleviates error ac-
cumulation during decoding. Experiments on various time
series benchmark data sets demonstrate that the proposed
model achieves better anomaly detection performance than
competitive baselines.
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