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Abstract

The goal of few-shot learning is to learn a classifier that can
recognize unseen classes from limited support data with labels.
A common practice for this task is to train a model on the base
set first and then transfer to novel classes through fine-tuning1

or meta-learning. However, as the base classes have no overlap
to the novel set, simply transferring whole knowledge from
base data is not an optimal solution since some knowledge in
the base model may be biased or even harmful to the novel
class. In this paper, we propose to transfer partial knowledge
by freezing or fine-tuning particular layer(s) in the base model.
Specifically, layers will be imposed different learning rates if
they are chosen to be fine-tuned, to control the extent of pre-
served transferability. To determine which layers to be recast
and what values of learning rates for them, we introduce an
evolutionary search based method that is efficient to simulta-
neously locate the target layers and determine their individual
learning rates. We conduct extensive experiments on CUB and
mini-ImageNet to demonstrate the effectiveness of our pro-
posed method. It achieves the state-of-the-art performance on
both meta-learning and non-meta based frameworks. Further-
more, we extend our method to the conventional pre-training
+ fine-tuning paradigm and obtain consistent improvement.

1. Introduction
Deep neural networks have shown enormous potential on
understanding natural images (Krizhevsky, Sutskever, and
Hinton 2012; Szegedy et al. 2015; Simonyan and Zisser-
man 2014; He et al. 2016; Huang et al. 2017) in the recent
years. The learning ability of deep neural networks increases
significantly with more labeled training data. However, anno-
tating such data is expensive, time-consuming and laborious.
Furthermore, some classes (e.g., in medical images) are nat-
urally rare and hard to collect. The conventional training
approaches for deep neural networks often fail to obtain good
performance when the training data is insufficient. Consid-
ering that humans can easily learn from very few examples
and even generalize to many different new images, it will be
greatly helpful if the network can also learn to generalize to
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1Here fine-tuning procedure is defined as transferring knowledge
from base to novel data, i.e. learning to transfer in few-shot scenario.
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Figure 1: Illustration of the conventional procedure of pre-
training and fine-tuning for few-shot learning. ¬ represents
the standard transfer learning procedure which uses the pre-
trained model as a feature extractor and the parameters are
fixed during fine-tuning.  is our proposed partial transfer
strategy which can fine-tune the model trained on base data
with the few novel class data. Fine-tuning with different learn-
ing rates on different layers can optimize the feature extractor
to better fit the novel class and prevent the model from over-
fitting on it, since the novel data has limited samples.

new classes with only a few labeled samples from unseen
classes. Previous studies in this direction (i.e., few-shot learn-
ing) can be mainly divided into two categories. One is the
meta-learning based methods (Snell, Swersky, and Zemel
2017; Vinyals et al. 2016; Finn, Abbeel, and Levine 2017)
that model the few-shot learning process with samples be-
longing to the base classes, and optimize the model for the
target novel classes. The other is the plain solution (non-
meta and also called baseline method (Chen et al. 2019)) that
trains feature extractor from abundant base class then directly
predicts the weights of the classifier for the novel ones.

As the number of images in the support set of novel classes
are extremely limited, directly training models from scratch
on the support set is unstable and tends to be overfitting.
Even utilizing the pre-trained parameters on base classes and
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fine-tuning all layers on the support set will still lead to poor
performance due to the small proportion of target training
data. A common practice utilized by either meta-based or
simple baseline methods relies heavily on the pre-trained
knowledge with the sufficient base classes, and then trans-
fer the representation by freezing the backbone parameters
and solely fine-tuning the last fully-connected layer or di-
rectly extracting features for distance computation on the
support data, to prevent overfitting and improve generaliza-
tion. However, as the base classes have no overlap with the
novel ones, meaning that the representation and distribution
required to recognize images are quite different between
them, completely freezing the backbone network and simply
transferring the whole knowledge will suffer from this dis-
crepant domain issue, though currently the domain difference
is not huge in the existing few-shot learning datasets.

To fundamentally overcome the aforementioned drawback,
in this work, we propose to utilize a flexible way to trans-
fer knowledge from base to novel classes. We introduce a
partial transfer paradigm for the few-shot classification task,
as shown in Figure 1. In our framework, we first pre-train
a model on the base classes as previous methods did. Then,
instead of transferring the learned representation by freezing
the whole backbone network, we develop an efficient evo-
lutionary search method to automatically determine which
layer/layers need to be frozen and which will be fine-tuned
on the support set (on novel class). During searching, the
validation data will be commandeered as the ground-truth to
monitor the performance of the searched strategy. Intuitively,
our strategy can achieve a better trade-off of using knowledge
from base and support data than previous approaches, mean-
while, our strategy can avoid incorporating biased or harmful
knowledge from base classes into novel classes. Moreover,
our method is orthogonal to meta-learning or non meta-based
solutions, and thus can be seamlessly integrated with them.
We perform extensive experiments on CUB200-2011 and
mini-ImageNet datasets. Our results empirically show that
the proposed method can favorably improve both of these
two types of solutions. We further extend our method to the
traditional pre-training + fine-tuning paradigm from Ima-
geNet to CUB200-2011 and achieve consistent improvement,
demonstrating the effectiveness and excellent expansibility
of our proposed method.

In summary, our contributions are three-fold:
• We present Partial Transfer (P-Transfer) for the few-

shot classification, a framework that enables to search transfer
strategies on backbone for flexible fine-tuning. Intuitively,
the conventional fixed transferring is a special case of our
propose strategy when all layers are frozen. Also, to our best
knowledge, this is the pioneer attempt that can achieve partial
transfer with different learning rates on this challenging task.
•We introduce a layer-wise search space for fine-tuning

from base classes to novel. It helps the searched transfer
strategy obtain inspiring accuracies under limited searching
complexity. For example, using one V100 GPU, our search
algorithm only takes∼6 hours with Conv6 backbone and one
day with ResNet-12 backbone on average.
• Our resulting network, the P-Transfer model, outper-

forms the complete transfer and the hand-crafted transfer

strategies by a remarkable margin. As the two baseline trans-
fer strategies belong to our search space, thus ideally the bet-
ter performance is guaranteed by our searching method. With
the assistance of designing search space, we show the effec-
tiveness of P-Transfer in different few-shot learning methods
on various datasets. The searched strategy has consistently
better performance and meaningful structural patterns.

2. Background
Few-shot learning is defined as given abundant labeled train-
ing examples in the base classes, the trained network can
be generalized to classify the new classes with few labeled
samples. Recently, few-shot learning, enabled by transferring
knowledge from the base to novel data, has been increasingly
important. Existing few-shot learning methods can mainly be
categorized into meta-learning based methods and non-meta
learning methods. Here we also review the searching based
methods for few-shot learning in this section.
Meta-based few-shot learning. To tackle the data deficiency
in few-shot learning, previous studies adopt meta-learning
to learn the model or optimizer that can fast update the
weights for adapting to the unseen tasks (Thrun and Pratt
2012; Andrychowicz et al. 2016; Ye et al. 2020; Tian et al.
2020; Kim, Kim, and Kim 2020). For example, MetaNet-
work (Munkhdalai and Yu 2017) learned a meta-level knowl-
edge for rapid generalization. Ravi and Larochelle (Ravi
and Larochelle 2017) proposed to use the LSTM-based
meta-learner model to learn the optimization algorithm.
MAML (Finn, Abbeel, and Levine 2017; Antoniou, Edwards,
and Storkey 2018) simplified the aforementioned MetaNet-
work by only learning the initial learner parameters to achieve
rapid adaptation w.r.t. those initial parameters and high gen-
eralizability to the new tasks. Furthermore, meta-learning
methods are utilized to learn the similarity between two im-
ages. MatchingNet (Vinyals et al. 2016) proposed to map a
small labeled support set to its label, and determine the class
of an instance in the query set by finding its nearest labeled
example. ProtoNet (Snell, Swersky, and Zemel 2017) further
utilized class-wise mean and the Euclidean distance to gen-
eralize the MatchingNet from one-shot learning to few-shot
learning. RelationNet (Sung et al. 2018) use CNN-based re-
lation modules and Few-shot GNN (Garcia and Bruna 2017)
employed graph neural networks to learn useful metrics.
Non-meta few-shot learning. Besides those meta-learning
based methods, there are non-meta methods which utilize
cosine similarity to predict the novel class classifier with
weight generator (Gidaris and Komodakis 2018), directly set
the weights based on the embedding layer’s activations (Qi,
Brown, and Lowe 2018) or use dense representations from
image regions to calculate the distances (Zhang et al. 2020).
Chen et al. (Chen et al. 2019) proposed to reduce intra-class
variation along with the confine similarity and achieves com-
petitive performance. Both the meta and non-meta methods
used the fixed feature extractor trained from the based classes,
which can hardly take the domain discrepancy between the
base and novel classes into consideration. Instead of learn-
ing more advanced optimizers or classification metrics, we
tackle the few-shot problem by discovering an meta knowl-
edge transfer scheme through evolutionary search, which is
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Figure 2: Our overall framework overview consists of three stages: (a) train a feature extractor from scratch on the base dataset;
(b) apply evolutionary search to explore optimal combination of layers that requires fine-tuning on the validation dataset. Note
that the blocks with dashed lines denote the fine-tuning layers in a specific evolution iteration; (c) use the best fine-tuning scheme
discovered by the evolutionary search to fine-tune the selected layers on the support set of the novel dataset and inferring the
final accuracy on the query set.

compatible with both meta and non-meta methods.
Neural architecture search for few-shot learning. Evolu-
tionary algorithm has been adopted in the neural architecture
search (NAS) to obtain the optimal neural architecture (Mi-
ikkulainen et al. 2019; Real et al. 2017; Xie and Yuille 2017;
Liu et al. 2017; Real et al. 2019). Evolutionary-based NAS
evolves within a given architecture search space and updates
a population of genes (i.e., the operation choices in an ar-
chitecture) to select the top gene for the final model. Recent
study (Elsken et al. 2020) proposed to integrate NAS algo-
rithm with gradient based meta-learning for few-shot learning
task. Different from neural architecture search, our proposed
P-Transfer utilizes evolutionary algorithm to seek the opti-
mal fine-tuning scheme, instead of the network architecture.
Meta-SGD (Li et al. 2017) and MAML++ (Antoniou, Ed-
wards, and Storkey 2018) can also learn diverse learning rates
for each layer in the networks, but they were mainly designed
for MAML-like methods and only suitable for the meta-based
scenarios. In contrast, our proposed method can completely
turnoff the learning rate to zero and fix the weights in a layer,
which is a more general design for the few-shot learning task.

3. Methodology
In this section, we start by introducing the problem definition
of few-shot classification, then we present our whole frame-
work, which consists of three steps: 1) train a base model on
base class samples (left sub-illustration in Figure 2), 2) apply
evolutionary search to explore optimal transfer strategy based
on accuracy metric (middle sub-figure, curve arrow indicates
looping), and 3) transfer base model to novel class with the
searched strategy through partially fine-tuning. Lastly, we
elaborate how to design our search space for transferring and
present our search algorithm in detail.

3.1. Preliminary and Definition
In the few-shot classification task, given abundant labeled im-
ages Xb in base classes Lb and a small proportion of labeled
images Xn in novel classes Ln, Lb ∩ Ln = ∅. Our goal is to
train models for recognizing novel classes with the labeled

large amount of base data and limited novel data. Consid-
ering an N -way K-shot few-shot task, where the support
set on novel class has N classes with K labeled images and
the query set contains the same N classes with Q unlabeled
images in each class, the few-shot classification algorithms
are required to learn classifiers for recognizing the N × Q
images in the query set of N classes.

Our objective of P-Transfer aims to discover the best trans-
fer learning scheme V ∗lr, such that, the network achieves
maximal accuracy when fine-tuning under that scheme:

V ∗lr = argmaxAcc(W,Vlr), (1)

where Vlr = [v1, v2, ..., vL] defines the layer-wise learning
rate for fine-tuning the feature extractor, W is the network’s
parameters and L is the total number of layers.

3.2. Framework
As shown in Figure 2, our method consists of three steps: base
class pre-training, evolutionary search, and partially transfer
based on the searched strategy.
Step 1: Base class pre-training. Base class pre-training is
the fundamental step of our whole pipeline. As shown in
Figure 2 (a), for the simple baseline, we follow the common
practice to train the model from scratch by minimizing a
standard cross-entropy objective with the training samples
in base classes. For the meta-learning pipeline, the meta-
pretraining also follows the conventional strategy that a meta-
learning classifier is conditioned on the base support set.
More specifically, in the meta-pretraining stage, support set
and query set on the base class are first sampled randomly
from N classes, and then train the parameters to minimize
the N -way prediction loss.
Step 2: Evolutionary search. The second step is to perform
evolutionary search with different fine-tuning strategies to
determine which layers will be fixed and others will be fine-
tuned in the representation transfer stage. We also consider
the above two circumstances: simple baseline through pre-
training + fine-tuning, and meta-based methods. In these two
scenarios the evolutionary searching operations are slightly
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Figure 3: In this figure, we show that our three-step search algorithm operates on the feature extractor fθ(x). Our general
framework can easily be incorporated into the baseline method with cosine distance, denoted as baseline++ (Chen et al. 2019), as
well as the meta-learning based methods.

different, as shown in Figure 2 (b) and Figure 3. Gener-
ally, our method searches the optimal strategy for transfer-
ring from base classes to novel classes through fixing or re-
activating some particular layers that can help novel classes.
As this is the core of our framework, we will elaborate in the
following sections individually (Section 3.4 and 3.5).
Step 3: Partially transfer via searched strategy. As shown
in Figure 2 (c), the final step is to apply our searched transfer
strategy to the novel classes. Different from the simple base-
line that fixes backbone and fine-tunes the last linear layer
only, or meta-learning methods that use the base network
as a feature extractor for the meta-testing, we will partially
fine-tune our base network on the novel support set based on
the searched strategies for both types of methods. This is also
the core component to achieve significant improvement.

3.3. Search Space
Our search space is related to the model architecture we uti-
lize for the few-shot classification. Generally, it contains the
layer-level selection (fine-tuning or freezing) and learning
rate assignment for fine-tuning. The search space can be for-
mulated as mK , where m is the number of choices for learn-
ing rate values and K is the number of layers in networks.
For example, if we choose learning rate ∈ {0, 0.01, 0.1, 1.0}
as a learning rate zoo (“learning rate = 0” indicates we freeze
this layer during fine-tuning), i.e., m = 4. For Conv6 struc-
ture, the search space includes 46 possible transfer strategies.
Our searching method can automatically match the optimal
choice for each layer from the learning rate zoo during fine-
tuning. A brief comparison of the search space is described
in Table 1. It increases sharply if we choose deeper networks.

3.4. Search Algorithm
Our searching step is following the evolutionary algorithm.
Evolutionary algorithms, a.k.a genetic algorithms, base on

Network Conv6 ResNet-12 ResNet-K

Complexity m6 m12 mK

Table 1: Search Space of P-Transfer.

the natural evolution of creature species. It contains repro-
duction, crossover, and mutation stages. Here in our scenario,
first a population of strategies is embedded to vectors V and
initialized randomly. Each individual v consists of its strat-
egy for fine-tuning. After initialization, we start to evaluate
each individual strategy v to obtain its accuracy on the val-
idation set. Among these evaluated strategies we select the
top K as parents to produce posterity strategies. The next
generation strategies are made by mutation and crossover
stages. By repeating this process in iterations, we can find a
best fine-tuning strategy with the best validation performance.
The detailed search pipeline is presented in Algorithm 1 and
the hyper-parameters for this algorithm are introduced in
Section 4.

In this work we conduct the evolutionary search in transfer
learning for few-shot classification. We target at fine-tuning
with diverse learning rates to explore suitable transfer patterns
in terms of knowledge with a simple and effective strategy
design. At each layer, the learning rate is selected from a
pre-defined zoo with all possible choices.

3.5. Incorporating into Few-Shot Frameworks
As in Figure 3, we introduce how to incorporate our search al-
gorithm into existing few-shot classification frameworks. We
choose the non-meta baseline++ (Chen et al. 2019) and meta
ProtoNet (Snell, Swersky, and Zemel 2017) as examples.
Upon simple baseline++. Baseline++ aims to explicitly re-
duce intra-class variation among features by applying co-
sine distances between the feature and weight vector in the
training and fine-tuning stages. As shown in Figure 3 (left
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sub-figure), we follow the design of distance-based classifier
in searching but adjust the backbone feature extractor fθ(x)
through exploring different learning rates for different lay-
ers during fine-tuning. Intuitively, the learned backbone and
distance-based classifier from our searching method are more
harmonious and powerful than freezing backbone network
and only fine-tuning weight vectors for few-shot classifica-
tion, since our whole model is tuned end-to-end.

Algorithm 1: Evolutionary algorithm for searching
the best fine-tuning configuration.

Input: Trained feature extractor: N , layer index in a
network: l, the meta-validation loss: L, number of
Random sampling operation: R, number of Mutation:
M , number of Crossover: C, max number of
Iterations: I .

Output: Optimized fine-tuning configuration v∗

define miniEval(v):
Ni = Load(N ) # Inherit the weights from the feature

extractor trained on the base dataset.
Set gradl = 0 if vi[l] = 0 # Set the gradient to 0

according to the scheme vector.
{vi, accuracy} = miniFinetune(Ni) # Fine-tune the

targeting layers.
return {vi, accuracy}

for i = 0 : R do
vi = RandomChoice([0, m], L) # Randomly sample
fine-tuning schemes, i.e., chose lr for each layer.
{vi, accuracy} = miniEval(vi) # Evaluate accuracy on
the validation dataset.

end for
vtopK = TopK({V , accuracy}) # Initialize the
population with TopK vectors. V is the set of {vi}.
for j = 0 : I do

for i = 0 : M do
vi = Mutation(vtopK , L) # Generate the off-spring
fine-tuning vectors based on the top ones.
{vi, accuracy} = miniEval(vi) # Evaluate
off-springs’ accuracy on the validation dataset.

end for
for i = 0 : C do
vi = Crossover({vtopK1 , vtopK2}, L) # Generate the
crossover vectors between two parents.
{vi, accuracy} = miniEval(vi) # Evaluate
off-springs’ accuracy on the validation dataset.

end for
vtopK = TopK({V , accuracy}) # Update the
population by choosing the TopK vectors.

end for
v∗, acc∗= Top1({V , accuracy}) # Select the best
scheme vector with highest validation accuracy.
return v∗;

Upon meta-learning based methods. As shown in Figure 3
(right sub-figure), we describe the formulation of how to
apply our searching method to meta-learning method for few-
shot classification. In the meta-training stage, the algorithm
first randomly chooses N classes, and samples small base
support set xb(s) and a base query set xb(q) from samples

within these classes. The objective is to learn a classification
model M that minimizes N -way prediction loss of the sam-
ples in the query set Qb. Here, the classifier M is conditioned
on the provided support set xb. Similar to baseline++, we
train the classification model M by fine-tuning the backbone
network and classifier simultaneously, to discover the optimal
fine-tuning strategy. As the predictions from a meta-based
classifier are conditioned on the given support set, the meta-
learning method can learn to learn from limited labeled data
through a collection of episodes.

4. Experiments
Dataset. We verify our method for few-shot learning on
both mini-ImageNet dataset and CUB200-2012 dataset. mini-
ImageNet dataset is a commonly used dataset for few-shot
classification. It consists of 100 classes from ImageNet
dataset (Deng et al. 2009), and 600 images for each class.
We follow (Ravi and Larochelle 2017) to split the data into
64 base classes, 16 validation classes and 20 novel classes.
CUB200-2011 contains 200 classes of birds (Wah et al. 2011).
Follow (Hilliard et al. 2018), we split the data into 100 base
classes, 50 validation classes and 50 novel classes. We val-
idate the effectiveness of our method for generic classifica-
tion on mini-ImageNet, and for fine-grained classification
on CUB, as well as for cross-domain adaptation through
transferring knowledge learned from mini-ImageNet to CUB.
Implementation. For meta methods, we sample episodes
with 5 classes from the target dataset. Then for each class,
we sample k instances as the support set and 15 instances as
the query set for a k-shot task. In training, we train 60,000
episodes for 1-shot and 40,000 episodes for 5-shot tasks on
the base dataset. In search, we sample 20 episodes from the
validation dataset. We fine-tune the network on the support
set for 100 iterations and evaluate the network on the query
set. In evaluation, We fine-tune layers following the searched
configuration on the support set and evaluate on the query
set with episodes sampled from novel dataset. We ran 600
episodes and report the average accuracy and the 95% con-
fidence intervals. The non-meta method differs only in the
training stage, where we train the feature extractor for 400
epochs with a batchsize of 16 on the base dataset.

We adopt Adam optimizer with learning rate of 1e-3 for
training. In fine-tuning, we use SGD with 0.01 learning rate
for fully-connected layer and other searched learning rates for
the corresponding layers. We use standard data augmentation
including random crop, horizontal flip and color jitter. For
Algorithm 1, we set population size P = 20, max iterations
I = 20, and number of random sampling (R), mutation (M )
and crossover (C) to 50.

4.1. Ablation Study
Comparison to fixed and manually designed fine-tuning.
We first compare our proposed method with fixed and manu-
ally designed fine-tuning schemes using Conv6 and ResNet-
12 structures on CUB and mini-ImageNet. The reason that
we compare with fine-tuning the last convolutional layer as
generally, the last layer is more domain-specific. Thus, in
manually designed fine-tuning scheme, researchers usually
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CUB mini-ImageNet
1-shot 5-shot 1-shot 5-shot

Fixed 66.75±0.91 79.48±0.63 52.52±0.79 71.16±0.66
Manual 64.27±0.97 79.26±0.61 53.22±0.77 71.43±0.64

Searched 65.82±0.97 80.48±0.60 53.55±0.80 71.45±0.68

Table 2: We validate on the non-meta method with Conv6 structure. We report the mean of 600 randomly generated episodes and
the 95% confidence intervals. We compare the original learning algorithm (i.e., fine-tuning the fully-connected layer only and
referring as “Fixed” in the table) with fine-tuning the human-defined last convolutional layer (i.e., “Manual” in the table) and
fine-tuning the layers based on the evolutionary-searched scheme (i.e., “Searched” in the table).

CUB mini-ImageNet
1-shot 5-shot 1-shot 5-shot

Few-shot learning method: Baseline++
Fixed 70.72±0.88 85.59±0.54 59.35±0.82 77.51±0.59

Searched 73.88±0.87 87.81±0.48 64.21±0.77 80.38±0.59
Few-shot learning method: ProtoNet

Fixed 73.82±0.92 87.28±0.48 53.88±0.81 74.87±0.67
Searched 73.16±0.92 88.32±0.46 54.36±0.81 76.59±0.64

Table 3: Few-shot classification results on mini-ImageNet and CUB datasets with ResNet-12 structure. We apply our proposed
algorithm to Baseline++ (non-meta) few-shot method as well as the meta-learning method (ProtoNet). The results show that in
most cases, the proposed algorithm can discover a better knowledge transferring scheme than the original scheme.

mini-ImageNet

CUB

Cross

Conv 6 ResNet-12
5-shot1-shot 5-shot1-shot

Figure 4: We visualize the fine-tuning scheme discovered by our evolutionary algorithm. The grey boxes denote layers without
fine-tuning, the colored boxes denote layers that require fine-tuning. Different scenarios have different searched scheme. For
example, in the cross-domain transfer-learning, more layers need to be fine-tuned to adapt the knowledge for the target domain.

fine-tune the last convolutional layer as a solution. Our re-
sults are shown in Table 2 (Conv6) and 3 (ResNet-12), where
in general, our evolutionary strategy achieves better accu-
racy than fixing backbone and human-defined strategy. As a
baseline, we obtain 40.84±0.8% (1-shot) and 50.95±0.9%
(5-shot) when fine-tuning all the layers on mini-ImageNet.
Comparison to different normalization layers in cross-
domain setting. As fine-tuning backbone networks will sig-
nificantly be affected by the size of batchsize, while for the
few-shot classification scenario, we do not have enough sam-
ples to increase the batchsize, and also the conventional fixing
backbone solutions do not encounter this problem. Thus, here
we further explore whether a better batch norm technique
can deliver further improvement. Our results are shown in
Table 4, in the cross-domain settings, group norm (Wu and
He 2018) can achieve much better accuracy (about 2∼8%
higher) than batch norm (Ioffe and Szegedy 2015) since it
can overcome the drawback of optimization issue from small
batchsize in traditional batch norm. Nevertheless, for a fair
comparison, we only apply group norm in this ablation study
to verify our conjecture that the limited batchsize may be a
restriction to fully liberate the effectiveness and potential of
our partial transfer method during backbone fine-tuning. As
other state-of-the-art methods used standard batch norm, in
our other results we still use the same batch norm method.

4.2. Searched Schemes and Final Results
To better understand our partial transfer method, we visualize
the searched schemes in Figure 4. We observe two interesting
phenomena which are in line with the intuition: (1) Deeper
networks will always have more layers that require to be fine-
tuned for few-shot learning; (2) When the domain difference
between base and novel data is increased (in the cross-domain
scenario), more layers are required to be fine-tuned.

Our final results are shown in Table 5, we can see that
our partial transfer method can consistently outperform other
state-of-the-art on both 1 and 5 shots settings. Even without
additional training techniques like DropBlock (Ghiasi, Lin,
and Le 2018) and label smoothing (Szegedy et al. 2016), our
method still obtains a significant improvement, as our flexible
transfer/fine-tuning can benefit from few support samples to
adjust the backbone parameters.

4.3. Extension to Traditional Transfer Learning
We further explore the traditional transfer learning from Ima-
geNet (Deng et al. 2009) to CUB200-2012 with the Inception
V3 network (Szegedy et al. 2016). We use SGD optimizer
with initial learning rate being 0.01 and linearly decay to 0.
In transferring, we observe that, the weights learned from our
method i.e., re-initializing and fine-tuning a few layers for
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1-shot 5-shot
BatchNorm GroupNorm BatchNorm GroupNorm

Few-shot learning method: Baseline++

Conv6 Fixed 40.77±0.70 44.80±0.78 58.15±0.72 64.15±0.74
Searched 41.69±0.72 45.34±0.76 61.53±0.70 67.42±0.72

ResNet-12 Fixed 43.14±0.72 43.52±0.71 63.25±0.70 64.02±0.71
Searched 43.77±0.74 45.86±0.72 68.30±0.73 74.22±0.66

Few-shot learning method: ProtoNet

Conv6 Fixed 36.34±0.71 38.74±0.77 55.38±0.71 59.30±0.73
Searched 36.36±0.73 38.36±0.69 54.06±0.73 62.33±0.75

ResNet-12 Fixed 39.14±0.73 44.88±0.78 60.11±0.73 67.18±0.74
Searched 39.38±0.72 45.29±0.77 60.24±0.73 68.42±0.75

Table 4: In this table, we further evaluate our method on the cross-domain few-shot learning tasks, i.e., transferring the knowledge
from mini-ImageNet to CUB. We conduct experiments on both meta and non-meta methods. We find that when there exist
domain difference, fine-tuning more layers are required. Moreover, we further discovered using GroupNorm can also bridge the
distribution difference between training and testing, which outperforms the results of using BatchNorm.

Method Backbone 1-shot 5-shot
MatchingNet (Vinyals et al. 2016) Conv4 43.56±0.84 55.31±0.73
MatchingNet* (Vinyals et al. 2016) ResNet-12 54.76±0.82 70.01±0.70
ProtoNet (Snell, Swersky, and Zemel 2017) Conv4 48.70±1.84 63.11±0.92
ProtoNet* (Snell, Swersky, and Zemel 2017) ResNet-12 53.88± 0.81 74.87± 0.67
Parameters from Activations (Qiao et al. 2018) WRN-28-10 59.60±0.41 73.74±0.19
Closer Look (Chen et al. 2019) ResNet-18 51.87±0.77 75.68±0.63
SNAIL (Mishra et al. 2017) ResNet-12 55.71±0.99 68.88±0.92
AdaResNet (Munkhdalai et al. 2017) ResNet-12 56.88±0.62 71.94±0.57
TADAM (Oreshkin, López, and Lacoste 2018) ResNet-12 58.50±0.30 76.70±0.30
MetaOptNet (Lee et al. 2019) ResNet-12 60.33±0.61 76.61±0.46
MetaOptNet† (Lee et al. 2019) ResNet-12 62.64±0.61 78.63±0.46
Meta-Baseline (Chen et al. 2020) ResNet-12 63.17± 0.23 79.26± 0.17
P-Transfer (ours) ResNet-12 64.21±0.77 80.38±0.59

Table 5: Comparison with the state-of-the-art results on mini-ImageNet dataset. * denotes the results re-implemented by us. †
indicates the results are from more training techniques like DropBlock and label smoothing.

partial transfer achieves higher accuracy than inherit all the
weights and do fine-tuning, as shown in Table 6.

Baseline Partial transfer
Top-1 Accuracy 82.9% 83.8%

Table 6: The comparison between inheriting all weights and
partially reinitializing weights in transfer learning.

Why Is Partial Better Than All in Few-shot? Usually the
base and novel class are in the same domain, so using the
pre-trained feature extractor on base data and then trans-
ferring to novel data can obtain good or moderate perfor-
mance. However, as shown in Figure 4, in the cross-domain
transfer-learning, more layers need to be fine-tuned to adapt
the knowledge for the target domain since the source and
target domains are discrepant in content. In this circumstance,
the conventional transfer learning is no longer applicable. Our
proposed partial transferring with diverse learning rates on

different layers is competent for this intractable situation, and
intuitively, fixed transferring is generally a special case of our
strategy and ours has better potential in few-shot learning.

5. Conclusion
We have introduced a partial transfer (P-Transfer) method for
the few-shot classification. Our method is the first attempt
to thoroughly explore the capability of transferring through
searching strategies in few-shot scenario without any proxy.
Our method boosts both the meta and non-meta based meth-
ods by a large margin under 1-shot or 5-shot circumstances,
as our flexible transfer/fine-tuning can benefit from few sup-
port samples to adjust the backbone parameters. Intuitively,
our partial transfer has larger potential for few-shot classifi-
cation and even for the traditional transfer learning. We hope
our method can inspire more methods along this direction.
In the future, we will perform more analyses about how par-
tial transfer helps the few-shot problems. We will apply our
method on other few-shot tasks like detection, segmentation
to explore the upper limit of our proposed transfer method.
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