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Abstract

Hyperparameter optimization (HO) is an important problem
in machine learning which is normally formulated as a bilevel
optimization problem. Gradient-based methods are dominant
in bilevel optimization due to their high scalability to the
number of hyperparameters, especially in a deep learning
problem. However, traditional gradient-based bilevel opti-
mization methods need intermediate steps to obtain the ex-
act or approximate gradient of hyperparameters, namely hy-
pergradient, for the upper-level objective, whose complexity
is high especially for high dimensional datasets. Recently,
a penalty method has been proposed to avoid the computa-
tion of the hypergradient, which speeds up the gradient-based
BHO methods. However, the penalty method may result in a
very large number of constraints, which greatly limits the ef-
ficiency of this method, especially for high dimensional data
problems. To address this limitation, in this paper, we propose
a doubly stochastic gradient descent algorithm (DSGPHO) to
improve the efficiency of the penalty method. Importantly,
we not only prove the proposed method can converge to the
KKT condition of the original problem in a convex setting,
but also provide the convergence rate of DSGPHO which is
the first result in the references of gradient-based bilevel op-
timization as far as we know. We compare our method with
three state-of-the-art gradient-based methods in three tasks,
i.e., data denoising, few-shot learning, and training data poi-
soning, using several large-scale benchmark datasets. All the
results demonstrate that our method outperforms or is com-
parable to the existing methods in terms of accuracy and effi-
ciency.

Introduction
Hyperparameter optimization problems (HO) are at the cen-
ter of several important machine learning problems, which
are usually formulated as bilevel optimization problems
(Feurer and Hutter 2019). Any machine learning algorithms
crucially depend on the choice of their hyperparameters.
However, manually tunning hyperparameters is often time-
consuming, and depends heavily on human’s prior knowl-
edge, which makes it difficult to find the optimal hyperpa-
rameters. Therefore, to choose the set hyperparameters au-
tomatically has attracted great attention, and large amounts
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of HO methods have emerged, such as grid search, random
search (Bergstra et al. 2011; Bergstra and Bengio 2012), so-
lution path (Gu and Sheng 2017; Gu, Liu, and Huang 2017;
Bao, Gu, and Huang 2019; Gu and Ling 2015), and sev-
eral Bayesian methods (Thornton et al. 2013; Brochu, Cora,
and De Freitas 2010; Swersky, Snoek, and Adams 2014; Wu
et al. 2019).

In real-world applications, the number of hyperparame-
ters increases shapely, especially in a deep learning problem.
In these problems, gradient-based methods are dominant in
bilevel problems with continuous hyperparameter set due
to their high scalability to the amount of hyperparameters.
The main idea of the gradient-based methods is to first ap-
proximate the solution on the training set and then compute
the gradient descent direction for hyperparameters, namely
hypergradient. However, calculating the exact hypergradient
needs the computation of the inverse Hessian of the lower-
level problem, which makes it impractical for high dimen-
sional data problem. To solve this problem, many methods
have been proposed to approximate the hypergradient by us-
ing some intermediate steps, such as solving a linear system
(the approximate methods (Domke 2012; Pedregosa 2016;
Rajeswaran et al. 2019)) or using reverse/forward mode dif-
ferentiation (e.g. (Maclaurin, Duvenaud, and Adams 2015;
Domke 2012; Franceschi et al. 2017; Swersky, Snoek, and
Adams 2014)). Although these methods can avoid the com-
putation of inverse Hessian, the intermediate steps usually
need extra loops which will affect the efficiency of these
gradient-based methods.

Recently, (Mehra and Hamm 2019) pointed out that the
intermediate steps are not necessary. They formulate the
bilevel problem as a single level constrained problem, by
replacing the lower-level objective with its first-order opti-
mal necessary condition. Then the penalty framework can
be used to solve this constrained problem. With updating
the model parameters and hyperparameters alternately, the
penalty method can finally obtain the exact hypergradient. It
speeds up the gradient-based methods but brings a new prob-
lem in the meanwhile. Since the constraints are calculated
from the first order necessary condition of the lower-level
objective, it may lead to the optimization problem with a
large number of constraints, especially for high dimensional
datasets or deep learning methods. Calculating the gradient
of the penalty term in such a heavily constrained problem
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Method Problem Update v Intermediate steps Time Space Convergence Rate
FMD Bilevel v ← v − η∇vg P = P (I− η∇2

vvg)− η∇2
uvg O(dmT ) O(dm) −

RMD Bilevel v ← v − η∇vg
p = p− η∇2

uvg · q O(dT ) O(dT +m) −
q = (I− η∇2

vvg)q
Approx Bilevel v ← v − η∇vg Solve minq ‖∇2

vvg · q −∇vf‖22 O(dT ) O(d+m) −
Penalty Single level v ← v − η(∇vf + µ∇2

vvg · ∇vg) Not reqired O(dT ) O(d+m) −
DSGPHO Single level v ← v − η∇̃vL Not reqired O(T ) O(d+m) O(1/

√
K)

Table 1: The complexity of various gradient methods for update the hyperparameters one time. Here d is the size of model
parameters, m denotes the size of hyperparameters and T is the number of model parameters update per hypergradient compu-
tation. ∇̃vL = ∇̃vf + [µcj + zj ]∇vcj where zj is the jth element of dual parameter, µ > 0 is the penalty parameter and cj is
jth element of∇vg. K denotes the total number of hyperparameter updates.

will greatly limits its efficiency.
To address this limitation, in this paper, we propose a dou-

bly stochastic gradient descent method to improve the ef-
ficiency of the penalty method (Mehra and Hamm 2019).
Similar to (Mehra and Hamm 2019), we first transform the
bilevel problem to a single level constrained problem and
give its corresponding augmented Lagrangian function. We
first randomly sample a validation data instance to calculate
the stochastic gradient of the upper-level objective. Then, we
randomly sample a constraint and calculate its correspond-
ing gradient. By combining these terms together, we obtain
the stochastic gradient of the augmented Lagrangian func-
tion, and update the model parameters and hyperparameters,
alternately, by using this stochastic gradient. Since in our
method, we have two sources of randomness, i.e., the valida-
tion set and the constraints set, we can denote our method as
a doubly stochastic gradient descent method for the penalty
hyperparameter optimization (DSGPHO). We prove that our
method can achieve the unbiased estimation of the exact hy-
pergradient asymptotically and it finally converges to the
KKT point of the original problem. Importantly, we also pro-
vide the convergence rate of DSGPHO which is the first re-
sult in the references of gradient-based bilevel optimization
as far as we know. We compare our method with three state-
of-the-art gradient-based methods in three tasks, i.e., data
denoising, few-shot learning and training data poisoning, us-
ing several large scale benchmark datasets. All the results
demonstrate that our method outperforms or is comparable
to the existing methods in terms of accuracy and efficiency.
Contributions We summarized the contributions as follows,

1. In this paper, we propose a doubly stochastic gradient
descent method to improve the efficiency of the penalty
method. Within each iteration, we randomly sample a val-
idation instance and a constraint to calculate the stochastic
gradient to update model parameters and hyperparameters
alternately.

2. We prove that DSGPHO has a rate of O(1/
√
K) to con-

verge to the KKT point of the original problem. In addi-
tion, we also prove that our method can obtain an unbi-
ased estimation of the hypergradient asymptotically.

3. We apply our method to solve various problems. The ex-
perimental results outperform other methods in terms of
accuracy and training-time which demonstrate the superi-

ority of our method.

Related Works
In this section, we give a brief review of the gradient-based
hyperparameter optimization methods.

As we mentioned in the previous section, many gradient
method use some intermediate steps to approximate the hy-
pergradient. Specifically, (Franceschi et al. 2017; Maclaurin,
Duvenaud, and Adams 2015; Shaban et al. 2019) use the
forward/reverse mode differentiation (RMD/FMD) to ap-
proximate the hypergradient. Both of them view the train-
ing procedure as dynamical system with a state vt+1 =
Φ(vt, u) := vt − η∇vg(u, vt), for t = 1, · · · , T , where v
denote the model parameters, u denotes the hyperparame-
ters, η is the learning rate and g is the training objective on
training set. According to (Feurer and Hutter 2019), RMD
needs another T iterations to calculate p = p − η∇2

uvg · q
and q = (I − η∇2

vvg)q and then outputs the hypergradient
p, where I is the identity matrix. In each p update step we
need O(d) time and space to calculate the Jacobian vector
product, where d is the size of model parameters. Totally, it
needsO(dT ) time andO(m+Td) space to get the hypergra-
dient, where m is the size of hyperparameters. FMD needs
to calculate P = P (I − η∇2

vvg) − η∇2
uvg and update v at

the same time. Then the hypergradient can be computed by
using P . (Feurer and Hutter 2019) pointed out that it needs
O(dm) time to get each P . Hence the time complexity for
calculate one hypergradient is O(dmT ), and the space com-
plexity is O(dm) for P is a d×m matrix. (Pedregosa 2016)
solve a linear problem minq ‖∇2

vvg · q−∇vf‖22 and use the
solution to approximate the hypergradient. When using gra-
dient method to solve this problem, we require O(d) time to
obtain the Hessian-vector product in each iteration accord-
ing to (Pearlmutter 1994). Assume the total gradient iter-
ation number is T , then we need O(dT ) time to calculate
the hypergradient one time. Obviously, the space complex-
ity isO(d+m). (Mehra and Hamm 2019) propose a penalty
method which do not need the intermediate steps to com-
pute the hypergradient. Thus the computational complexity
for per hyperparameter update is mainly from the steps of
updating v by using v ← v − η(∇vf + µ∇2

vvg · ∇vg).
Since the Hessian-vector product complexity is O(d), we
need O(dT ) time and O(d + m) space to update v for T
iterations. We summarized all these complexity in Table 1.
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According to this table, we have that if d is very large, these
methods become impractical.

Preliminaries
In this section, we give a brief introduction to bilevel hyper-
parameter optimization.

Bilevel Hyperparamter Optimization
The hyperparameter optimization problems are at the center
of several important machine learning problems, where once
the first party (hyperparameters) makes its choice affecting
the optimal choice for the second party (model parameters).
The hyperparameter optimization problems are commonly
formulated as the following bilevel optimization problems,

min
u∈U

f(u, v), s.t. v = arg min
v∈V

g(u, v), (1)

where u denotes the hyperparameters, v denotes the model
parameters, and U and V are the convex set in Rm and Rd.
In this paper, we assume that the upper- and lower-level ob-
jectives f and g are twice continuously differentiable in both
u and v. In addition, we assume that the lower-level cost g
is convex in v for each given u.

Obviously, in the bilevel optimization problem, the upper-
level problem minu f(u, v) is a usual minimization prob-
lem (minimizing the loss on the validation set) where v is
constrained to be the solution to the lower-level problem
minv g(u, v) depended on u (usually minimizing the loss on
training set). Thus, we can replace the lower-level problem
by its first-order necessary condition for optimality, resulting
in the following constrained optimization problem.

min
u,v

f(u, v), s.t. c(u, v) = ∇vg(u, v) = 0 (2)

where each element of the equality constraint c(u, v) is
cj(u, v), j = 1, · · · , d. According to (Mehra and Hamm
2019), we known that solving the single level problem (2) is
equivalent to the bilevel optimization problem (1).

Penalty Method
In this subsection, we give an introduction to the penalty
method. The penalty method is one of the most common
methods to solve the constrained problems. The main idea
of the penalty methods is to optimize the original cost func-
tion pulsing a penalty term of the constraints multiplied a
positive parameter. By making the penalty parameter larger,
we can penalize constraint violation more severely, thereby
forcing the minimizer of the penalty function closer to the
feasible region of the constrained problem.

Thus, based on the penalty method, the constrained prob-
lem (2) can be reformulated as L(u, v;µ) = f(u, v) +
µ

2d

∑d
j=1 c

2
j (u, v) where µ > 0 is the penalty parameter. It

makes good intuitive sense to consider a sequence of values
{µk} with µk ↑ ∞ as k → ∞, and to seek the approximate
minimizer uk and vk of (uk, vk) = arg minu,v f(u, v) +
µk

2d

∑d
j=1 c

2
j (u, v) for each given µk. According to (Bard

2013), we have that for each given µk, the sequence {uk, vk}

has limit points any one of which is a solution of the original
problem (1).

Recently, (Mehra and Hamm 2019) proposed a gradient
method based on the penalty framework. For each given µk,
they update the model parameters and hyperparameters al-
ternately by using the full gradient of the penalty function
until the norm of the gradient converges to a small toler-
ance. However, in real-world applications, the number of
constraints d is usually very large. Specifically, when us-
ing the linear model for high dimension data (e.g. more than
10, 000), the size of constraints is the same as the data di-
mension. What’s worse, when using deep model, the size
of constraints becomes further larger, usually more than
100, 000. It would be computationally expensive, if at ev-
ery update, we inquire about the value and gradient of all
constraints. In addition, if the size of validation set is big, it
also takes a lot of time to calculate the gradient of the upper-
level objective. Meanwhile, to solve the quadratic penalty
function, the penalty parameter µk needs to be large enough,
which makes it impossible to get the solution in a limited
time.

Proposed Method
In this section, to address the above limitations, we propose
our stochastic method based on the penalty framework.

To get the solution in a limited time, instead of using
the quadratic penalty function, we add Lagrangian multipli-
ers and obtain the following augment Lagrangian function
(Bertsekas 1976),

L(u, v, z;µ) = f(u, v) + Ψµ(u, v, z) (3)

where z denotes the Lagrangian multiplier and µ > 0 is the

penalty parameter, Ψµ(u, v, z) =
1

d

∑d
j=1 ψµ(cj(u, v), zj)

and ψµ(cj(u, v), zj) = zjcj(u, v) +
µ

2
c2j (u, v).

Then, we use the stochastic manner to solve the augment
Lagrangian function. First, we give the update rule of model
parameters. In t-th v update iteration, we randomly sample
a constraint cj(u, v) and calculate its gradient ∇vcj(u, v)
w.r.t. v. Let htv =

[
µkcj(u, v

t) + ztj
]
∇vcj(u, vt). If d is

large enough, hk is an unbiased estimation of the gradient
of Ψµ and ∇vΨµ = E[htv]. In addition, since the upper-
level cost f is usually formulated as the expectation on the
validation set, we can also obtain the stochastic gradient
∇̃vf(u, vt) of f(u, vt) at vt by randomly sample a vali-
dation instance and we have ∇vf(u, vt) = E[∇̃vf(u, vt)].
Combining the above two terms, we can obtain the stochas-
tic gradient of augmented Lagrangian function (3) ∇̃vL =

htv + ∇̃vf(u, vt) and E
[
E[∇̃vL]

]
= ∇vL, where ∇vL de-

notes the full gradient of L w.r.t v. Then we can apply the
projected stochastic gradient to update the model parameters
vt+1 = ProjV (vt − ηtv∇̃vL), where ProjV (·) denotes the
projection on to the set V . Since V is the original set of v,
the projection operation can be omitted.

By using the same approach, we can obtain the stochastic
gradient of function (3) with respect to u as ∇̃uL = hku +
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Figure 1: Illustration of a single step to update hyperparameters in Algorithm 1

∇̃uf(uk, v) where hku =
[
µkcj(u

k, v) + zkj
]
∇ucj(uk, v)

and we have E
[
E[∇̃uL]

]
= ∇uL. Similarly, we can per-

form the projected stochastic gradient to the hyperparame-
ters uk+1 = ProjU (uk − ηku∇̃uL) and the projection opera-
tion can also be omitted.

The overall algorithm is shown in Algorithm 1. We also
illustrate a single step of updating the hyperparameter of our
method in Figure 1. Note instead of updating u and v si-
multaneously, we first use the stochastic gradient ∇̃vL to
update v for T iterations and then use the stochastic gra-
dient ∇̃uL to update u for a single time. Since it contains
two sources of randomness, i.e., the random validation in-
stance and random constraint, we denote our method as dou-
bly stochastic gradient method for penalty hyperparameter
optimization, namely DSGPHO. For each given µk, we find
the εk-optimal solution (uk, vk) of problem (3). Once the
tolerance εk is satisfied, we update the Lagrangian multipli-
ers by using zk+1 = zk + µkc(uk, vtk) and then enlarge the
penalty parameter µk and reduce the tolerance εk. We show
that it can finally converge to a KKT point in Theorem 1.

Theorem 1. Suppose the tolerance εk is a positive and
convergent (εk → 0) sequence and µk is a positive non-
decreasing sequence. Let {uk, vk, zk} be the sequence of
approximate solutions to the augmented Lagrangian func-
tion with penalty parameter µk and tolerance ‖∇vL‖22 +
‖∇uL‖22 < ε2k for all k = 1, 2, · · · . Then any limit point of
{uk, vk, zk} satisfies the KKT conditions of the constraint
problem (2).

In our method, we do not need any intermediate steps to
approximate the hypergradient. This is because that if we
find the minimum v∗ of the augmented Lagrangian function,
our method can get the unbiased estimation of the hypergra-
dient asymptotically when Algorithm 1converges. We give
this result in Lemma 1.

Lemma 1. Give u, let v∗ be the optimal solu-
tion v∗ := arg minv L(u, v, z;µ). Then we have

E
[
E[∇̃uL(u, v, z;µ)]

]
=
∂f

∂u
(u, v∗), where

∂f

∂u
(u, v∗) de-

notes the hypergradient.

Furthermore, instead of sampling one constraint function
every time, we can sample a small set of b of constraint func-
tion. Then, the stochastic gradient of Ψµ can be calculated

by h =
1

b

∑b
j=1 [µkcj(u, v) + zj ]∇vcj(u, v). In addition,

we can also sample a small batch of validation instances to
calculate the stochastic gradient of the upper-level objective.

Obviously, in our method, the main computational com-
plexity is from updating the model parameters. Assume that
we only sample one data instance and one constraint. Then
in each inner iteration, we only need O(1) computational
complexity to calculate stochastic gradient ∇̃vL. Thus the
total complexity of a single step to update the hyperparame-
ters is O(T ). In addition, we only need to save the model
parameters and hyperparameters with the space complex-
ity O(d + m). Compare with the complexity summarized
in Table 1, our method obviously has lower computational
complexity and do not need intermediate steps to obtain the
hypergradient.

Convergence Analysis
In this section, we give the convergence analysis of our pro-
posed method in convex case. Our analysis follows the anal-
ysis in (Xu 2020). Let w := (u, v) refer to the pair. Then,
in our analysis, we consider the following update rules to
update u and v, simultaneously, instead of the exact rules in
Algorithm 1 aswk+1 = ProjW (wk−D−1k ∇wL(wk, zk;µ))

where W denotes the feasible region of w, D−1k � 0
is the diagonal mtrix for each iteration and we have

∇wL(wk, zk;µ) =
1

b

∑b
j=1

[
µcj(w

k) + zkj
]
∇wcj(wk) +

∇̃wf(wk) where ∇̃wf(wk) denotes the stochastic gradient
of f(w) w.r.t. w. Note the update rule can be viewed as an
approximation of the rules in Algorithm 1 if T = 1. In ad-
dition, we assume that µ is large enough such that we can
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Algorithm 1 DSGPHO

Input: K, T , ηv , ηu, µ0, λ0, ε0, cµ > 1, 0 < cε < 1.
Output: uk, vk.

1: for k = 1, ...,K do
2: for t = 0, · · · , T do
3: Randomly sample a validation training data in-

stance .
4: Randomly sample a constraint.
5: Calculate the doubly stochastic gradient ∇̃vL.
6: Update model parameters vt+1 = ProjV (vt −

ηtv∇̃vL).
7: end for
8: Randomly sample a validation training data instance

.
9: Randomly sample a constraint.

10: Calculate the doubly stochastic gradient ∇̃uL.
11: Update hyperparameters uk+1 = ProjU (uk −

ηku∇̃uL).
12: if ‖∇uL‖22 + ‖∇vL‖22 ≤ ε2k then
13: µk+1 = cµµ

k.
14: εk+1 = cεεk.
15: zk+1 = zk + µkc(uk, vtk)
16: end if
17: end for

reduce the complexity without considering the increasing of
µ.

Then, we give the following assumptions which are
widely used in theoretical analysis.

Assumption 1. The stochastic gradient ∇̃wf(w) is unbi-
ased and bounded, i.e., there is a constant σ such that we
have E[∇̃wf(w)] = ∇wf(w) and E

[
‖∇̃wf‖

]
≤ σ2 In

addtion, there exist constants F and G such that we have
|c(w)| ≤ F ,‖∇wcj(w)‖2 ≤ G.

Assumption 2. All the constraints cj(w) and the upper-
level objective f(w) are convex functions.

The following lemma is used to build the inequality in our
analysis for running one iteration of hyperparameter update.

Lemma 2. For any deterministic or stochastic z, it holds
that

−Ψ(wk, zk) +
1

d

d∑
j=1

zjfj(w
k) +

1

2
E[‖zk+1 − z‖22]

=E[〈zk − z, dejk �∇zΨ(wk, zk)−∇zΨ(wk, zk)〉]
+ 1/2‖zk − z‖22 − 1/2(µ− 1)E[‖zk+1 − z‖22]

By the previous lemma, we establish the important result
for running one iteration update w and then use it to show
the convergence rate.

Theorem 2. Under the Assumptions 1 and 2, and as-

sume that Dk �
I
αk

, ∀k, for a positive number sequence

{αk}k≥1, where I is the identity matrix. Let (w, z) be any

deterministic or stochastic vector. Then

E[f(w) +
1

d

d∑
j=1

zj∇vgj(w)] +
1

2
E‖wk+1 − w‖2Dk

+
1

2
E‖zk+1 − z‖22

≤E[f(w) + Ψ(w, zk)] +
1

2
E[‖wk − w‖2Dk

]

+
1

2
E[‖zk − z‖22]

+ αk(σ2 + 2µ2F 2G2 +
2G2

d
E[‖zk‖22])

− 1

2
(µ− 1)E[‖zk+1 − zk‖22]

− E[〈wk − w, ∇̃wfk −∇wfk〉]
− E[〈wk − w, hk −∇wΨ(wk, zk)〉]
+ E[〈zk − z, dejk �∇zΨ(wk, zk)−∇z(wk, zk)〉]

Then, based on the above results, here we directly give the
convergence result with constant step size Dk. We give the
detailed proof in our appendix.
Theorem 3. Under the Assumption 1 and 2, let {(wk, zk)}
be the sequence generated from our Algorithm. For to-

tal iteration number K, let w̄ =
1

K

∑K
j=1 w

k and

w̄ =
1

K

∑K
j=1 z

k, and define φ1(w) =
3

2α
‖x1 −

x‖22 + α

3

2
σ2 + 3µ2F 2G2 +

3G2

d

C1

1− 8αG2

d

+
F 2

2

 .

Then we have

E[f(w̄)− f(w∗)] ≤ 1√
K

(
2φ1(w∗) +

9(α+ 1)

2α
‖z∗‖22

)
E[‖c(w)‖22] ≤ 1√

K

(
φ1(w∗) +

α+ 1

2α
‖1 + z∗‖22

)
where C1 =

2

α
‖w1 −w∗‖22 + 4‖z∗‖+ 4α(σ2 + 2µ2F 2G2)

Remark 1. Theorem 3 shows that our method has an ap-
proximate convergence rate of O(1/

√
K), where K is the

total iteration number of hyperparameter updating.

Experiments
In this section, we compare our method with several state-
of-the-art gradient-based methods to show the superiority of
our method in terms of accuracy and efficiency.

Baselines
We summarized the methods used in our experiments as fol-
lows

1. Penalty. The method proposed in (Mehra and Hamm
2019). It formulates the bilevel optimization problem as a
one-level problem with equality constraints, and then the
gradient method can be used to solve the new problem.
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Figure 2: The training time of Penalty, Approx, RMD and our proposed method used in denoisy task

Dataset Noise Approx Penalty RMD Ours
CIFAR10 25% 68.7± 0.6 74.4± 1.2 68.9± 1.4 75.6± 1.7
MNIST 25% 96.7± 0.2 97.2± 1.4 98.4± 0.1 98.4± 0.1
SVHN 25% 77.4± 1.5 86.3± 0.2 50.9± 1.2 88.9± 0.1

Table 2: Test accuracy (%) for data denoising task with 25%
noisy.(Mean±std).The best value is shown in bold type.

2. Approx. The method proposed in (Pedregosa 2016). It
solves an additional linear problem to approximate the hy-
pergradient to update the hyperparameters.

3. RMD. The method proposed in (Franceschi et al. 2017).
An additional loop is used to calculate the hypergradient.

Applications
We evaluate the performance of the proposed method in the
following machine learning tasks.

Data denoising by importance learning In many real-
world applications, we need to learn models from the
datasets with corrupted labels. In such case, we need to re-
weight the importance of each training instance to reduce
the impact of noise (Liu and Tao 2015; Yu et al. 2017; Ren
et al. 2018). To find the correct weight of training instance
can be formulated as the following bilevel hyperparameter
optimization problem,

min
u

EDvl
l(h(xi; v

∗, u), yi),

s.t. v∗ = arg min
v

EDtr
uil(h(xi; v, u), yi)

where h denotes the classifier parameterized by v, l denotes
the loss, ui denotes the weight of each data instance, and
Dval and Dtr denote the validation set and training set, re-
spectively.

In this task, we conduct the experiments on the dataset
MNIST, SVHN, CIFAR10. For each dataset, we split it into
three subsets, i.e., training set, test set, and validation set and
we introduce 25% noise into the training set. The validation
set of each dataset contains 1000, 10000, and 1000 points,
respectively. For each hyperparameters update step, we up-
date the model parameters for 50 times. For our method, we
use 500 validation instances and 2048 constraints to calcu-
late the doubly stochastic gradient. We fix the step size of
hyperparameters at 0.01 and tune the step size of model

parameters in 0.001, 0.0001, 0.00001 for all methods. In
addition, for the architectures of convolutional neural net-
works, we follow the setting in (Mehra and Hamm 2019).
We show the test accuracy in Table 2 for 5 runs and the time-
accuracy curve in Figure 2. Obviously, as shown in Table 2,
our method has the best test accuracy in this task. Figure
2 demonstrates that our method converges faster than other
state-of-the-art methods. In addition, our method uses the
least time to train the model when we fix the u update times
at 5000. This is because that compared with Approx and
RMD, our method does not need additional steps to approx-
imate or calculate the hypergradient. With the continuous
training, DSGPHO can finally obtain the unbiased estima-
tion of hypergradient. Although Penalty has the same char-
acteristic, it may lead to a large amount of constraints. This
means that in each model parameters update step, Penalty
needs to evaluate the value and gradient of all constraints
which greatly limits the efficiency. However, our method
only needs the information of a subset constraints and a sub-
set of validation instances which can greatly reduce the time
complexity.

Few-shot learning Then, we compare the performance of
these methods in the Few-shot learning task (Snell, Swersky,
and Zemel 2017; Sung et al. 2018; Santoro et al. 2016). Few-
shot learning trains a model on several related tasks and then
generalizes to unseen tasks with just a few examples. We can
learn a common representation for various tasks and then
train the task specific layers. The few-shot learning can be
formulated as following bilevel optimization problem,

min
u

EDval
l(hi(M(xi, u), v∗i ), yi),

s.t. v∗i = arg min
vi

EDtr
l(hi(M(xi, u), vi), yi)

where M(·, u) are the maps for all tasks parameterized by
u, hi denotes ith task’s classifier parameterized by wi.

In this task, we use the Mini-ImageNet (Vinyals et al.
2016) and Omniglot (Lake, Salakhutdinov, and Tenenbaum
2015) datasets. We generate meta-training set and meta-
testing set using images from disjoint classes. For Omniglot,
we use the first 1200 classes to build meta-training set and
the rest to build meta-testing set (Santoro et al. 2016). For
Mini-Imagenet, we split 64 classes in meta-training and 16
classes in meta-validation and 20 classes in meta-testing.
We fix the step size of u at 0.1 and search v step size
from {0.01, 0.001, 0.0001}. We randomly sample 2048 con-
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Figure 3: The training time of Penalty, Approx and DSG-
PHO used in few-shot learning task

Dataset Problem Approx Penalty Ours
MiniImageNet 5-way 5-shot 68.3± 1.8 67.2± 0.5 67.3± 0.5
Omiglot 5-way 5-shot 99.3± 0.1 99.4± 0.1 99.3± 0.1

Table 3: Accuracy (%) for few-shot task.(Mean±std). The
best value is shown in bold type.

straints in each iteration. We show the results in Table 3 and
Figure 3. From Table 3, we can find that our method has the
comparable result to Penalty and Approx. From Figure 3, we
can find that our method can converge to the solution faster
than Penalty and Approx. This is because that, in each v up-
date step, our method only samples a batch of constraints
and does not need to approximate the hypergradient. This
leads to a lower computational complexity in our method.

Training data poisoning Finally, we compare these meth-
ods on the training-data poisoning task (Muñoz-González
et al. 2017; Shafahi et al. 2018; Mei and Zhu 2015; Koh and
Liang 2017). In this task, we modify the training data such
that we make the model learned from these data performs
poorly than that learned from the original data. The prob-
lem of finding the poisoned data, of which the labels are not
correct, can be formulated as follows,

min
u
− 1

Nvl

∑
Dvl

l(h(xi, u, v
∗), yi)

s.t. v∗ = arg min
v

1

N

∑
Dor∪P

l(h(xi, u, w), yi)

where Dor denotes the original dataset and P denotes the
set of poisoned instances.

In our experiments, we follow the setting in (Muñoz-
González et al. 2017) and test the untargeted MNIST us-
ing data augmentation technique. We use logistic regres-
sion to train the classifiers. Our goal is to make the perfor-
mance lower on the test set. We split 1000 instances into
training set, 1000 into validation set and 8000 into test-
ing set. We randomly sample 10 and 30 instances from the
training set and give them random incorrect labels. For our
method, we randomly sample 2048 constraints. We fix the
learning rate of u at 0.1 and choose learning rate of v form
{0.01, 0.001, 0.0001}. We set the total number of update u
at 5000. From Table 4, we can find that results are compara-
ble to other methods when we have 10 poisoned points and

Poisoned Approx Penalty RMD Ours
10 81.5± 0.5 82.9± 0.7 86.1± 0.7 82.7± 0.7
30 76.4± 0.3 74.9± 0.1 84.5± 0.1 74.7± 0.6

Table 4: Test accuracy (%) for untargeted poisoned at-
tack.(The lower accuracy is better) .
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Figure 4: The validation loss vs. time of Penalty, Approx,
RMD and DSGPHO in untargeted poisoned task

we have the best result when we use 30 poisoned points. We
show the validation loss and train time in Figure 4. From
this figure, we can find that our method can obtain the lower
validation loss in a less time. It is reasonable that the per-
formance in terms of training-time are not as good as that in
the previous tasks. This is because that in this task, we use
a linear model, which makes the constraints are not as much
as those in the previous tasks.

Based on all above results, we can conclude that our
method is superior to the state-of-the-art gradient-based
methods in terms of efficiency and accuracy.

Conclusion

In this paper, we proposed a doubly stochastic gradient
method to improve the performance of penalty method for
bilevel hyperparameter optimization. Within each update
step, we randomly sample a validation point and a single
constraint to calculate the stochastic gradient. We also prove
that our method can obtain the hypergradient and converge
to saddle point at the rate of O(1/

√
K). The experimental

results also demonstrate the superiority our method in terms
of training time and accuracy. Our method needs f and g to
be twice continuously differentiable in both u and v, which
limits the usage of our method. In the feature, we will ex-
plore the bilevel problem with the nonsmooth lower-level
problems or the discrete hyperparameters.
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