
Scalable Affinity Propagation for Massive Datasets

Hiroaki Shiokawa
Center for Computational Sciences, University of Tsukuba, Japan

shiokawa@cs.tsukuba.ac.jp

Abstract

Affinity Propagation (AP) is a fundamental algorithm to iden-
tify clusters included in data objects. Given a similarities
among objects, it iteratively performs message updates be-
tween all data object pairs until convergence. Although AP
yields a higher clustering quality compared with other meth-
ods, it is computationally expensive. Hence, it has difficulty
handling massive datasets that include numerous data objects.
This is because the message updates require a quadratic cost
of the number of data objects. Here, we propose a novel fast
algorithm, ScaleAP, which outputs the same clusters as AP
but within a shorter computation time. ScaleAP dynamically
excludes unnecessary message updates without sacrificing its
clustering accuracy. Our extensive evaluations demonstrate
that ScaleAP outperforms existing AP algorithms in terms of
running time by up to two orders of magnitude.

1 Introduction
Affinity Propagation (AP) (Frey and Dueck 2007) is one of
the most successful clustering methods to overview com-
plicated data objects in an unsupervised way. AP detects
clusters and their corresponding representative data objects
called exemplars by message-passing processes between all
pairs of data objects. AP can (1) have lower clustering errors
compared to other methods and (2) support any similarity
that does not satisfy the triangle inequality (Sun and Guo
2014; Fujiwara et al. 2015). Hence, AP has been employed
in many applications (Dueck and Frey 2007; Ambrogi et al.
2008; Kazantseva and Szpakowicz 2011).

Although AP is useful in many applications, it has a
quadratic cost to identify clusters since the message-passing
iteratively updates real-valued messages for all object pairs.
If N is the number of data objects and T is the number
of iterations, AP needs O(N2T) time. In the late-2000s,
AP was applied to only small datasets composed of a few
thousand data objects (e.g., social networks and location
datasets). However, recent AI-powered applications handle
massive datasets with numerous data objects because dataset
resources are not only becoming larger but also more preva-
lent (Shiokawa, Fujiwara, and Onizuka 2013, 2015). Hence,
current AP algorithms require several days to obtain clusters
from massive datasets.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1.1 Existing Approaches and Challenges

Many studies have strived to overcome the expensive cost.
One major approach is message sampling (Jia et al. 2008;
Sun et al. 2017). AP updates the real-valued messages for
all object pairs, but it is more reasonable to update only es-
sential pairs that are potentially included in the same clus-
ter. To specify such pairs, the message sampling drops off
unpromising message updates before the message-passing.
For instance, FSAP (Jia et al. 2008) constructs a k-nearest
neighbor (kNN) graph from object similarities to prune un-
necessary object pairs. Similarly, FastAP (Sun et al. 2017)
extracts important messages by previously finding micro-
clusters. Although these methods are faster than AP, they
have two drawbacks. First, they still have high costs for
sampling messages, e.g., O(N2) time. Second, they sacri-
fice clustering accuracy, which makes it difficult to realize
truly effective applications.

Instead of sampling methods, Fujiwara et al. proposed
message bounding techniques (Fujiwara, Irie, and Kitahara
2011). They found that the real-valued messages converge
as increasing the number of iterations, and they theoreti-
cally derived the upper and lower bounds of the messages.
Based on these bounds, Fujiwara et al. designed incremental
message-pruning algorithms, including GraphAP (Fujiwara,
Irie, and Kitahara 2011) and F-AP (Fujiwara et al. 2015).
GraphAP and F-AP guarantee that their pruning methods
do not sacrifice clustering accuracy. Unlike other AP al-
gorithms, GraphAP and F-AP can reduce the running time
while maintaining the same clustering results as AP.

Although the bounding methods have improved the ef-
ficiency, they still suffer from large computational costs to
handle massive datasets (Matsushita, Shiokawa, and Kita-
gawa 2018). In the bounding methods, the upper and lower
bounds estimation requiresO(N2) time. That is, they have a
total time complexity ofO(N2+MT) time, whereM is the
number of non-pruned pairs of data objects. Furthermore,
the bounding methods fail to prune unnecessary messages
if the datasets include many large clusters since the bounds
becomse loose in such cases. This incurs O(M) ≈ O(N2)
time in the worst case. Consequently, the bounding methods
still require almost the same cost as AP, e.g., O(N2T) time.
Hence, it is a challenging task to develop a scalable AP al-
gorithm that guarantees the same results as AP.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9639

1.2 Our Approaches and Contributions
Our goal is to speed up AP without sacrificing its cluster-
ing accuracy. Here, we present a novel efficient algorithm,
ScaleAP, which is designed to reduce the number of mes-
sage updates with a clustering accuracy assurance. The ba-
sic idea underlying ScaleAP is to remove redundant mes-
sage updates computed in the message-passing. To identify
which updates to exclude, ScaleAP focuses on the determin-
istic property of the message updates. In this paper, we the-
oretically clarified that most message updates are uniquely
determined by corresponding similarities between data ob-
jects (Lemmas 2 and 4). That is, messages do not need to be
computed repeatedly for similar object pairs.

Based on this property, ScaleAP employs the following
two approaches to improve efficiency: (1) it theoretically
derives prunable pairs that do not require repeated compu-
tations during the message-passing (Section 3.2), and (2) it
introduces aggregated message updates to efficiently skip
computations for prunable pairs based on the deterministic
property (Section 3.3). As a result, ScaleAP has the follow-
ing attractive characteristics:

• Efficiency: ScaleAP achieves faster clustering than the
state-of-the-art AP algorithms proposed in the last few
years (Section 4.1). We proved that ScaleAP has a better
time complexity than the AP algorithms (Theorem 1).

• Exactness: We theoretically and experimentally con-
firmed that ScaleAP always outputs the same clustering
results as AP, although ScaleAP dynamically removes
message updates (Theorem 2 and Section 4.4).

• Scalability: ScaleAP is more scalable than the other AP
algorithms (Section 4.3). It shows a nearly linear scalabil-
ity against the number of data objects (Section 3.4).

• Easy to deploy: Unlike existing fast algorithms for AP,
ScaleAP does not require user-specified parameters (Al-
gorithm 1). ScaleAP provides users with a simple solution
for applications using AP.

ScaleAP is the first solution to achieve a high efficiency
while ensuring the same clustering results as AP on massive
datasets. ScaleAP outperforms state-of-the-art algorithms by
up to two orders of magnitude in terms of clustering time.
For example, for 120,000 data objects, ScaleAP finds clus-
ters within 30 minutes, whereas AP consumes more than 24
hours. AP is a fundamental tool to enhance application qual-
ity, but it is difficult to apply to massive datasets. However,
ScaleAP, which is well suited to massive datasets, should
improve the quality in diverse AI-powered applications.

2 Preliminary
We formally define the notations and briefly review
AP (Frey and Dueck 2007). Let X be a set of data objects
X = {x1, x2, . . . , xN}, s(i, j) be a real-valued similarity of
a data object pair (xi, xj), and e(i) be the exemplar of data
object xi. AP extracts clusters and the corresponding exem-
plars from pairwise similarities S = {s(i, j) | xi, xj ∈ X}.
It places each data object xi into the same cluster as exem-
plar e(i) to maximize

∑N
i=1 s(i, e(i)). If i = j, s(i, j) is

referred to as the preference, which is a special class of sim-
ilarities to control the number of clusters (Frey and Dueck
2007). The preference is typically set to the minimum or
median value of the similarities.

To identify exemplars from datasets, AP performs a
message-passing process, which is derived from the be-
lief propagation on factor graphs (Kschischang, Frey, and
Loeliger 2001; Yedidia, Freeman, and Weiss 2005). AP iter-
atively exchanges two types of real-valued messages among
data objects: responsibility and availability. In the t-th itera-
tion, AP sends a responsibility rt(i, j) from xi to xj , which
indicates how strongly xi wants to choose xj as its exemplar.
It also sends an availability at(i, j) from xj to xi, which re-
flects the accumulated evidence for how well suited it would
be for xi to choose xj as its exemplar. To compute the con-
verged values, AP lets λ ∈ (0, 1) be a dumping factor and
iteratively updates all messages, which are given as

rt(i, j) = (1− λ)ρt(i, j) + λrt−1(i, j), (1)
at(i, j) = (1− λ)αt(i, j) + λat−1(i, j), (2)

where ρt(i, j) and αt(i, j) are computed as

ρt(i, j) ={
s(i, j)−maxk 6=j{at−1(i, k)+s(i, k)} (i 6=j)

s(i, j)−maxk 6=j{s(i, k)} (i=j)
, (3)

αt(i, j) ={
min

{
0,rt−1(j,j)+

∑
k 6=i,j max{0, rt−1(k,j)}

}
(i 6=j)∑

k 6=i max{0, rt−1(k, j)} (i=j)
. (4)

If t = 0, the messages are initially set to

r0(i, j) = s(i, j)−maxk 6=j{s(i, k)}, and a0 = 0. (5)

After message-passing termination, AP determines an exem-
plar e(i) for each data object xi as

e(i) = arg maxj{rt(i, j) + at(i, j)}. (6)

AP requires O(N2T) time, where N and T are the num-
ber of data objects and iterations, respectively. That is, if a
given dataset is too large, AP incurs an excessive running
time. Hence, AP fails to extract clusters and corresponding
exemplars in massive datasets.

3 Proposed Method: ScaleAP
We present ScaleAP to efficiently detect the same clustering
results as AP. We first overview main ideas and then provide
detailed descriptions of ScaleAP.

3.1 Ideas
Our goal is to efficiently find clusters and the corresponding
exemplars without sacrificing clustering accuracy. AP iter-
atively computes real-valued messages, responsibility and
availability, for all pairs of data objects until the messages
are no longer updated. By contrast, ScaleAP skips unnec-
essary message updates by introducing two approaches.
First, we theoretically identify prunable pairs of data ob-
jects for responsibility and availability. The message up-
dates for prunable pairs are deterministically computed from

9640

the corresponding similarities without message-passing pro-
cesses. Second, we employ an aggregated message update
to remove unnecessary message updates for prunable pairs
while maintaining the same clustering accuracy as AP. Un-
like message sampling and bounding methods, which invoke
exhaustive message computations, ScaleAP computes only
the essential object pairs to efficiently find clusters and the
corresponding exemplars.

Our ideas have two main advantages. (1) ScaleAP finds
all clusters and exemplars on real-world datasets with a
short running time. Our ideas successfully handle the data
manifolds, which are well-known intrinsic structures em-
bedded in real-world data (Roweis and Saul 2000; Belkin
and Niyogi 2003). This is because these manifolds involve
many similar object pairs that are removed by the adap-
tive message aggregation. This is why ScaleAP can in-
crease its performance on real-world datasets. (2) ScaleAP
always outputs the same clusters and exemplars as those of
AP (Frey and Dueck 2007). We theoretically demonstrate
that ScaleAP does not miss opportunities to improve cluster-
ing accuracy, even though it dynamically removes prunable
pairs from the message-passing processes. Thus, ScaleAP
does not sacrifice clustering quality compared to AP.

3.2 Prunable Pairs
We introduce prunable pairs of data objects whose messages
are uniquely computed from the corresponding similarity.

Prunable responsibility: We first define prunable pairs
for responsibility computations.

Definition 1 (Prunable pairs for responsitiblity). In the t-th
iteration, let R̂t(i) be the prunable pairs of responsibility
computations for data object xi. Then R̂t(i) is given as

R̂t(i)={(xi, xj) ∈ X 2 | i 6= j, j 6= ηt−1(i)}, (7)

where ηt−1(i) = arg maxk{at−1(i, k) + s(i, k)}.
Note that R̂t(i) includes all object pairs between xi and
each of X except for (xi, xi) and (xi, xηt−1(i)). From Defi-
nition 1, we can derive the following property:

Lemma 1. Given two object pairs (xi, xj), (xi, xk) ∈
R̂t(i), ρt(i, j) = ρt(i, k) always holds iff s(i, j) = s(i, k).

Proof. We first prove ρt(i, j) = ρt(i, k) ⇒ s(i, j) =
s(i, k). From Definition 1, xi 6= xj and xi 6= xj since
(xi, xj), (xi, xk) ∈ R̂t. Hence, as shown in Eq. (3), we have

s(i,j)=ρt(i, j) + maxl 6=j{at−1(i,l) + s(i,l)}
=ρt(i, k) + maxl 6=j{at−1(i,l) + s(i,l)}=s(i,k). (8)

Thus, if ρt(i, j) = ρt(i, k), s(i, j) = s(i, k) holds.
Similarly, we can prove s(i, j) = s(i, k) ⇒ ρt(i, j) =

ρt(i, k). Therefore, Lemma 1 holds.
Lemma 1 implies that object pairs in R̂t(i), (xi, xj) and
(xi, xk), always have ρt(i, j) = ρt(i, k) if their similari-
ties are equivalent, i.e., s(i, j) = s(i, k), and vice versa. By
Lemma 1, we derive the following property, which plays a
key role in Section 3.3.

Lemma 2. If (xi, xj) ∈ R̂t(i), rt(i, j) is uniquely deter-
mined by the corresponding similarity s(i, j).
Proof. We prove by contradiction. Given (xi, xj), (xi, xk) ∈
R̂t(i), we assume s(i, j) = s(i, k) ⇒ rt(i, j) 6= rt(i, k).
From Eq. (1), we have the following

rt(i, j)=(1−λ)
∑t
l=1 λ

t−lρl(i,j)+λtr0(i,j). (9)

From Lemma 1, ρl(i, j) = ρl(i, k) for l = 1, . . . , t. Ad-
ditionally, from Eq. (5), r0(i, j) = r0(i, k) since s(i, j) =
s(i, k). Thus, we can derive the following equation.

rt(i,j)=(1−λ)
∑t
l=1 λ

t−lρl(i,k)+λtr0(i,k)=rt(i,k). (10)

Since Eq. (10) contradicts the assumption, s(i, j) =
s(i, k)⇒ rt(i, j) = rt(i, k) holds. This completes the proof
of Lemma 2.

Prunable availability: Next, we define prunable pairs for
availability computations.
Definition 2 (Prunable pairs for availability). In the t-th it-
eration, the prunable pairs of availability computations for
data object xj , which are denoted by Ât(j), are defined as

Ât(j)={(xi, xj)∈X 2 | i 6= j,maxk{rt−1(k,j)}≤0}. (11)

The prunable pairs Ât(j) contain all object pairs (xi, xj) ∈
X 2 except for (xj , xj) only if xj does not have any positive
responsibilities in the (t-1)-th iteration. Otherwise, Ât(j) =
∅. From Definition 2, we have the following property:

Lemma 3. Given two object pairs (xi,xj), (xk,xj)∈Ât(j),
αt(i, j) = αt(k, j) always holds.
Proof. As shown in Definition 2, maxl{rt−1(l, j)} ≤ 0

holds since (xi, xj), (xk, xj) ∈ Ât(j). Thus, we can derive∑
l 6=i,j maxl{0, rt−1(l,j)} = 0. (12)

From Eqs. (4) and (12), we can compute αt(i, j) as

αt(i, j) = min{0, rt−1(j, j)} = αt(k, j), (13)

which completes the proof of Lemma 3.
The object pairs, (xi, xj) and (xk, xj), included in Ât(j)
always hold αt(i, j) = αt(k, j), regardless of their simi-
larities. From Lemma 3, we can derive the following key
property, which is an essential in Section 3.3.

Lemma 4. If (xi, xj) ∈ Ât(j), at(i, j) is uniquely deter-
mined by the corresponding initial responsibility r0(j, j).
Proof. From Eq. (2) and Lemma 3, we can derive at(i, j) as

at(i,j)=(1−λ)
∑t
l=1 min{0, rl−1(j,j)}. (14)

That is, at(i, j) is determined by rl−1(j, j) in each iteration.
From Eq. (1), we can also derive rl−1(j, j) as

rt−1(j,j)=(1−λ)
∑t−1
l=1 λ

t−1−lρl(j,j)+λt−1r0(j,j). (15)

Recall that, as shown in Eqs. (1) and (5), ρt−(j,j) =
ρt−2(j,j) = . . . = ρ1(j,j) = r0(j,j) clearly holds. Thus,
from Eq. (15), the following equation holds

rt−1(j,j)=r0(j,j){(1−λ)
∑t−1
l=1λ

t−1−l+λt−1}=r0(j,j). (16)

Thus, at(i,j) = t(1− λ)r0(j, j) if r0(j, j) > 0. Otherwise,
at(i, j) = 0. Hence, from Eq. (14), Lemma 4 holds.

9641

Complexity analysis: Finally, we theoretically assess the
time complexity to compute the prunable pairs as follows:

Lemma 5. In the t-th iteration, if Ât(1), Ât(2), . . . , Ât(N)

are computed, R̂t+1(i) can be obtained in O(1) time.

Proof. As shown in Definition 1, R̂t+1(i) includes all
object pairs (xi, xj) for i 6= j and j 6= arg maxl{s(i, l) +
at(i, l)}. Since at(i, 1), at(i, 2), . . . , at(i,N) are in-
cluded in Ât(1), Ât(2), . . . , Ât(N), respectively,
arg maxl{s(i, l) + at(i, l)} is known after computing
Ât(1), Ât(2), . . . , Ât(N). By letting (xi, xl) be an object
pair maximizing s(i, l) + at(i, l), we can obtain R̂t+1(i) in
O(1) time by removing (xi, xl) from {(xi, xj) | i 6= j}.
Lemma 6. In the t-the iteration, if R̂t(1), R̂t(2), . . . ,

R̂t(N) are computed, Ât+1(i) can be obtained inO(1) time.

Proof. From Definition 2, we need to find maxk{rt(k, i)}
to obtain Ât+1(i). Since rt(1), rt(2), . . . , rt(N) are re-
spectively included in R̂t(1), R̂t(2), . . . , R̂t(N), we can
find maxk{rt(k, i)} when we compute R̂t(1), R̂t(2), . . . ,

R̂t(N). Thus, Ât+1(i) can be obtained in O(1) time by
checking whether maxk{rt(k, i)} ≤ 0 holds or not.

3.3 Aggregated Message Update
We introduce aggregated message update to remove un-
necessary message-passing processes in AP algorithms. If
data objects are included in the prunable pairs, responsibil-
ities and availabilities are uniquely determined by the cor-
responding similarities as shown in Lemmas 2 and 4. Thus,
once the prunable pairs are obtained, messages of the prun-
able pairs can be updated from the corresponding similari-
ties without performing iterative message-passing processes.

To leverage the above properties, ScaleAP replaces the re-
sponsibility and availability computations (Eqs. (1) and (2))
with aggregated responsibility and aggregated availability,
respectively. These are given as:

Definition 3 (Aggregated responsibility). Given (xi, xj) ∈
X 2 and R̂t(i) in the t-th iteration, the aggregated responsi-
bility ŕt(i, j) for (xi, xj) is defined as

ŕt(i,j)=

{
(1−λ)ρt(i,j)+λŕt−1(i,j) ((xi,xj)∈Rt(i))
ŕt(i,k) +4si(j,k) (Otherwise)

, (17)

where Rt(i) = {(xi, xj) | (xi, xj) /∈ R̂t(i)} ∪ {(xi, xk)}
such that k = arg maxl{s(i, l) | (xi, xj) ∈ R̂t}, and
4si(j, k) = s(i, j)− s(i, k).

Definition 4 (Aggregated availability). Given (xi, xj) ∈ X 2

and Ât(j) in the t-th iteration, the aggregated availability
ŕt(i, j) for (xi, xj) is defined as

át(i,j)=

{
(1−λ)αt(i,j)+λát−1(i,j) ((xi,xj) /∈Ât(j))
t(1−λ) min{0, r0(j,j)} (Otherwise)

. (18)

As shown in Definition 3, ScaleAP computes responsibil-
ity by following the iterative message-passing processes in
Eq. (1) only if the object pair (xi, xj) ∈ Rt(i). Otherwise, it

skips the message-passing and reconstructs responsibilities
from the corresponding similarities. Additionally, in the ag-
gregated availability shown in Definition4, ScaleAP directly
obtains the availability from r0(j, j) without using message-
passing if object pairs (xi, xj) ∈ Ât(j).

To discuss the theoretical aspects of Definitions 3 and 4,
we derive the following two properties:
Lemma 7. In the t-th iteration, rt(i, j) = ŕt(i, j) holds.

Proof. If (xi, xj) ∈ Rt(i), rt(i, j) = ŕt(i, j) clearly holds.
Hence, we prove rt(i, j) = rt(i, k) + 4si(j, k) such that
k = arg maxl{s(i, l) | (xi, xl) ∈ R̂t(i)} using mathemati-
cal induction.

First, suppose that t = 1. From Eq. (1), r1(i, j) =
(1−λ)ρ1(i, j) +λr0(i, j). As shown in Definition 1, j, k 6=
maxl{s(i, l)} since (xi, xj), (xi, xk) ∈ R̂1(i). Thus, using
s(i, j) = s(i, k) +4si(j, k), ρ1(i, k) and r0(i, k) should be
computed as ρ1(i, j) = ρ1(i, k) +4si(j, k) and r0(i, j) =
r0(i, k) + 4si(j, k), respectively. That is, from the above
equations, Lemma 7 clearly holds for t = 1.

Next, we prove Lemma 7 for t = n if rn−1(i, j) =
rn−1(i, k) +4si(j, k) holds. From Eq. (1), we have

rn(i, j)=(1− λ)ρn(i, j) + λrn−1(i, j). (19)

From Lemma 1, ρn(i,j) is uniquely determined by the cor-
responding similarity s(i, j) = s(i, k) + 4si(j, k). Thus,
from Eq. (3), we can derive ρn(i, j) as

ρn(i,j)=s(i,k)+4si(j,k)−maxk 6=l{at−1(i,l) + s(i,l)}
=ρn(i,k)+4si(j,k). (20)

Recall that we have rn−1(i, j) = rn−1(i, k) + 4si(j, k).
Hence, from Eq. (19), Lemma 7 holds for t = n, which
completes the proof of Lemma 7.
Lemma 8. In the t-th iteration, at(i, j) = át(i, j) holds.

Proof. If (xi, xj) /∈ Ât(j), then at(i, j) = át(i, j) holds
from Eq. (2) and Definition 4. Here, we prove Lemma 8 for
object pairs included in Ât(j). From Lemma 4, if (xi, xj) ∈
Ât(j), at(i, j) is uniquely determined by r0(j, j). That is,

at(i,j)=(1−λ)
∑t
l=1 min{0, r0(j,j)} = át(i,j), (21)

which completes the proof of Lemma 8.
Lemmas 7 and 8 indicate that ScaleAP can obtain the same
responsibilities and availabilities, even though it skips the
message-passing by the aggregated message update.

3.4 Algorithm
Algorithm 1 gives a full description of ScaleAP. ScaleAP
iteratively performs message updates using a given set of
similarities, S , until all messages converge (lines 3-14).

In each iteration, ScaleAP first computes responsibilities
(lines 4–8). At the beginning of the responsibility computa-
tion, it constructs Rt(i) for each data object xi ∈ X (lines
5–6). From Lemma 5, we can obtain R̂t(i) in O(1). Thus,
ScaleAP can constructs Rt(i) in O(1). Afterward, ScaleAP
computes the responsibilities only for the object pairs in-
cluded in Rt(i) by following Definition 3 (lines 7-8). As

9642

Algorithm 1 Proposed method: ScaleAP
Input: A set of similarities S;
Output: A set of exemplars E ;
1: E ← ∅;
2: Obtain R̂1(i) and Â1(i) for i = 1, . . . , N ;
3: for t = 1 to T do
4: for i = 1 to N do
5: k ← arg maxl{(xi, xl) | (xi, xl) ∈ R̂t(i)};
6: Rt(i)← {(xi, xj) | (xi, xj) /∈ R̂t(i)} ∪ {(xi, xk)};
7: for each (xi, xj) ∈ Rt(i) do
8: Compute ŕt(i, j) by Definition 3;
9: for j = 1 to N do

10: At(j)← {(xi, xj) | (xi, xj) /∈ Ât(j)};
11: for each (xi, xj) ∈ At(j) do
12: Compute át(i, j) by Definition 4;
13: for i = 1 to N do
14: Obtain R̂t+1(i) and Ât+1(i) by Definition 1 and 2;
15: for i = 1 to N do
16: e(i)← arg maxj{rt(i, j) + at(i, j)};
17: E ← E ∪ {e(i)};
18: return E ;

we proved in Lemma 7, we can obtain exactly the same re-
sponsibilities for (xi, xj) /∈ Rt(i) in O(1) if object pairs in
Rt(i) are computed. Hence, in Algorithm 1, ScaleAP skips
to compute responsibilities for (xi, xj) /∈ Rt(i). Then it
computes the availabilities (lines 9–12). Similar to the above
responsibility computations, ScaleAP constructsAt(j) from
Ât(j) in O(1) (line 10). Afterward, it computes the avail-
abilities for object pairs included in At(j) using Defini-
tion 4. After updating the messages by following Lemmas 5
and 6, ScaleAP constructs R̂t+1(i) and Ât+1(i) in O(1) for
each object xi ∈ X (lines 13-14). ScaleAP iterates the above
message updates until those messages are no longer updated.
Finally, it outputs exemplar E using Eq. (6) (lines 15-18).

Algorithm 1 shows that ScaleAP does not require any
pre-computations or user-specified parameters. This sharply
contrasts existing AP algorithms. Consequently, ScaleAP
provides a simple solution for users.

Finally, we discuss the theoretical aspects of ScaleAP. Let
N and T be the number of data objects and iterations, re-
spectively. ScaleAP has the following properties:
Theorem 1. ScaleAP incurs O((1 + ε)NT) time, where ε is
the average number of exemplar candidates.

Proof. From Lemmas 5 and 6, ScaleAP can obtain R̂t(i)
and Ât(i) in O(1) for each iteration. Hence, ScaleAP in-
curs O(NT) time to find prunable pairs. In each iteration,
ScaleAP computes responsibilities for object pairs included
in Rt(i) (lines 4-8 in Algorithm 1). From Definition 3,
Rt(i) contains three object pairs at most (i.e., (xi, xi),
(xi, xj), and (xi, xk), where j = arg maxl{at−1(i, l) +
s(i, l)}, and k = arg maxl{s(i, l)}). Thus, ScaleAP incurs
O(3NT) = O(NT) time for responsibility computations.
Additionally, in the availability computations (lines 9-12),
ScaleAP computes the availability only if a data object xj
has max{rt−1(i, j)} > 0. Recall from Eqs. (1) and (5),
rt−1(i, j) should be a positive value only if s(xi, xj) is the

largest value among all possible xj ∈ X . rt−1(i, j) is the
message sent from xi to xj to represent how strongly xi
wants to choose xj as its exemplar. That is, a data object xj
is a candidate of exemplars in the (t− 1)-th iteration, xj has
max{rt−1(i, j)} > 0, and ScaleAP computes availabilities
for xj . Thus, ScaleAP incurs O(εNT) time for the avail-
ability computations. Finally, it obtains exemplars in O(N)
time. Therefore, ScaleAP requires O(NT + NT + εNT +
N) = O((1 + ε)NT) time to obtain exemplars.

As shown in Section 1, existing AP algorithms require
O(N2T) time. Consequently, Theorem 1 indicates that
ScaleAP is dramatically faster than AP and other state-of-
the-art AP algorithms. In practice, ε should be a small con-
stant in real-world datasets (i.e., ε � N) since real-world
datasets generally have a small number of clusters (Tibshi-
rani, Walther, and Hastie 2001; Shiokawa, Amagasa, and
Kitagawa 2019). Specifically, as shown in Table 1, the real-
world datasets examined in the next section have at most
31 clusters, which are significantly smaller than the dataset
sizes. Thus, ScaleAP has a nearly linear scalability against
the number of data objects. In other words,O((1+ε)NT) ≈
O(NT) on the real-world datasets. In Section 4, we experi-
mentally verify the efficiency of ScaleAP.
Theorem 2. ScaleAP always outputs the same exemplars as
those of AP (Frey and Dueck 2007).
Proof. As we proved in Lemmas 7 and 8, rt(i, j) = ŕt(i, j)
and at(i, j) = át(i, j) always hold even if an object pair
(xi, xj) is not computed by Algorithm 1. In each iteration,
ScaleAP can perform the same message updates as those of
AP. From Eq. (6), the exemplars are uniquely determined
by the values of responsibility and availability. Therefore,
ScaleAP always outputs the same exemplars as AP.

4 Experimental Evaluation
We experimentally evaluated the effectiveness of ScaleAP
by comparing it with the following AP algorithms.
• AP: The original AP algorithm (Frey and Dueck 2007).
• FSAP: The most popular message sampling approach (Jia

et al. 2008). It samples object pairs by constructing a kNN
graph and performs message-passing on the graph until
convergence. For the graph construction, we set k = 15.

• FastAP: The state-of-the-art message sampling ap-
proach (Sun et al. 2017). FastAP constructs a sparse factor
graph by finding micro-cluster structures from given sim-
ilarities. It performs the message-passing on the graph.

• GraphAP: The message bounding algorithm, which
prunes unpromising object pairs while keeping its clus-
tering quality (Fujiwara, Irie, and Kitahara 2011).

• F-AP: The state-of-the-art bounding algorithm (Fujiwara
et al. 2015). It improves the efficiency of GraphAP by us-
ing dynamic message pruning methods.

• MLAP: The multi-level coarsening algorithm proposed
by (Shang et al. 2012). It recursively coarsens object pairs
by using the eigenvalue decomposition.

All experiments were conducted on a server with Intel Xeon
CPU 2.60 GHz and 768 GiB RAM.

9643

Name N # of attributes # of clusters Data source
Human 10,299 561 6 (Anguita et al. 2013)
MoCap 78,095 38 5 (Gardner et al. 2014)
Youtube 120,000 647 31 (Madani, Georg, and Ross 2013)

Table 1: Statistics of real-world datasets.

ScaleAP AP FSAP MLAP FastAP GraphAP F-AP

Human MoCap Youtube
100

101

102

103

104

DNF

R
un

ni
ng

ti
m

e
(s

ec
.)

(a) Median

Human MoCap Youtube
100

101

102

103

104

DNF

R
un

ni
ng

ti
m

e
(s

ec
.)

(b) Minimum

Figure 1: Running time

100 200 300 400 500 600 700 800 900 1000

of iterations

105

106

107

108

109

1010

#
of

up
da

te
d

ob
je

ct
pa

ir
s

ScaleAP AP FSAP FastAP GraphAP F-AP

100 200 300 400 500 600 700 800 900 1000

of iterations

105

106

107

108

109

1010

#
of

up
da

te
d

ob
je

ct
pa

ir
s

(a) Median

100 200 300 400 500 600 700 800 900 1000

of iterations

105

106

107

108

109

1010

#
of

up
da

te
d

ob
je

ct
pa

ir
s

(b) Minimum

Figure 2: # of message updates on MoCap

Datasets: We used three real-world datasets summarized in
Table 1. All the datasets are published by UCI Machine
Learning Repository (Dua and Graff 2017). Note that in the
Youtube dataset, we chose the 647-dimensional HOG fea-
tures provided by (Madani, Georg, and Ross 2013).
Experimental settings: The experiments used the negative
Euclidean distance as the similarity between data objects. In
accordance with (Frey and Dueck 2007), we set the prefer-
ence to both the median and minimum of the input similar-
ities, λ = 0.5, and the maximum number of iterations to
T = 1, 000. The results were the average of over 10 inde-
pendent runs. We also reported the standard deviation values
of accuracy, whereas they were omitted from runtime evalu-
ations since they were smaller than 0.1 seconds.

4.1 Efficiency
Figure 1 shows the running time on the real-world datasets,
where DNF indicates that the runtime exceeded 24 hours.
Overall, ScaleAP achieves the highest performance. On
average, ScaleAP is 58.7 times faster than the other ap-
proaches. Although ScaleAP guarantees the same results as
AP, it is up to 106.6, 83.4, and 75.9 times faster than AP,
GraphAP, and F-AP, respectively. As we proved in Theo-
rem 1, ScaleAP shows a better time complexity compared to
other competitive algorithms. This feature is responsible for
the superior running time compared to other methods.

ScaleAP is still efficient even if the preference is set to
the minimum. This differs from the bounding algorithms,
which significantly degrade their running time for such pref-
erence setting. The bounding algorithms prune messages by
updating the bounds of the messages. However, if one pref-
erence is smaller than the others, the bounds become loose.
This is why bounding algorithms fail to prune message up-
dates for the minimum preference. By contrast, ScaleAP
finds the prunable pairs (Section 3.2) regardless of the pref-
erence value. Thus, ScaleAP can efficiently compute mas-
sive datasets compared to the other AP algorithms.

4.2 Effectiveness
To verify how ScaleAP effectively reduces message updates
during the message-passing, Figure 2 plots the number of
computed pairs in each iteration. The results of MLAP are
excluded because MLAP does not employ the message-
passing. Compared to AP, ScaleAP shows a 95.4% reduc-
tion in the updates during iterative computations. Moreover,
the other algorithms computed many more messages than
ScaleAP. Although FSAP and FastAP also reduced the num-
ber of message updates, they require a longer running time
than ScaleAP (Figure 1). To preserve the clustering quality,
these algorithms have sampling overheads prior to message-
passing processes. By contrast, as we proved in Lemmas 5
and 6, ScaleAP can find each prunable pair in O(1) with-
out pre-computations and overheads. Thus, ScaleAP can ef-
ficiently reduce the number of message updates.

Next, we evaluated the effectiveness of our approaches
by comparing the runtime of ScaleAP with variants that
exclude either the aggregated responsibility or the aggre-
gated availability. Figure 3 shows the runtime of each algo-
rithm, where W/O-AR and W/O-AA represent ScaleAP with-
out the aggregated responsibility and the aggregated avail-
ability, respectively. On average, ScaleAP is 24.5 and 10.7
times faster than W/O-AR and W/O-AA, respectively. These
results indicate that the aggregated responsibility leads to
an enhanced efficiency improvement. As discussed in Sec-
tion 3.4,Rt(i) includes at most three object pairs regardless
of the similarities. Consequently, the cost for the responsibil-
ity computations approaches an almost linear running time.

4.3 Scalability
We assessed the scalability of ScaleAP. Figure 4 shows the
running time on Youtube as a function of the number of data
objects. We randomly sampled 102, 103, 104, and 105 ob-
jects from Youtube and evaluated the runtime on each sam-
pled dataset. If the method did not finish within 24 hours,
the results are excluded from Figure 4. ScaleAP is more

9644

MoCap 3DMap Power
10−1

100

101

102

103

104

R
un

ni
ng

ti
m

e
(s

ec
.)

ScaleAP W/O-AR W/O-AA

Human MoCap Youtube
100

101

102

103

104

105

R
un

ni
ng

ti
m

e
(s

ec
.)

(a) Preference (median)

Human MoCap Youtube
100

101

102

103

104

105

R
un

ni
ng

ti
m

e
(s

ec
.)

(b) Preference (minimum)

Figure 3: Effectiveness

100 200 300 400 500 600 700 800 900 1000

of iterations

105

106

107

108

109

1010

#
of

up
da

te
d

ob
je

ct
pa

ir
s

ScaleAP AP FSAP FastAP GraphAP F-AP

102 103 104 105

of data objects

10−1

100

101

102

103

104

105

R
un

ni
ng

ti
m

e
(s

ec
.)

(a) Preference (median)

102 103 104 105

of data objects

10−1

100

101

102

103

104

105

R
un

ni
ng

ti
m

e
(s

ec
.)

(b) Preference (minimum)

Figure 4: Scalability

MoCap 3DMap Power
0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su

re

ScaleAP FSAP MLAP FastAP GraphAP F-AP

Human MoCap
0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su

re

(a) Preference (median)

Human MoCap
0.0

0.2

0.4

0.6

0.8

1.0

F
-m

ea
su

re

(b) Preference (minimum)

Figure 5: F-measure (Error bars show standard deviation)

ScaleAP AP FSAP MLAP FastAP GraphAP F-AP

Human MoCap Youtube
0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

(a) Preference (median)

Human MoCap Youtube
0.0

0.2

0.4

0.6

0.8

1.0

N
M

I

(b) Preference (minimum)

Figure 6: NMI (Error bars show standard deviation)

scalable than the other AP algorithms. It shows a nearly lin-
ear scalability against the number of data objects. As de-
scribed in Section 1, AP and its variants require O(N2T)
time, whereas ScaleAP requires O((1 + ε)NT) time, as dis-
cussed in Theorem 1. Furthermore, the real-world datasets
have very small numbers of clusters (Table 1). This implies
that the number of exemplars, ε, should be a small constant
in the datasets. Consequently, the practical cost of ScaleAP
is O((1 + ε)NT) ≈ O(NT). Thus, ScaleAP achieves a
nearly linear scalability.

4.4 Exactness
One advantage of ScaleAP is that it outputs the same exem-
plars as those of AP, while dynamically excluding unneces-
sary message updates. To verify this advantage, we used the
following metrics to evaluate AP algorithms:

• F-measure: We measured F-measure (Manning, Ragha-
van, and Schütze 2008) of the obtained exemplars against
those of AP. F-measure is 1 if the exemplars exactly match
those of AP. Otherwise, it approaches 0.

• Normalized mutual information (NMI): We measured
NMI (Cilibrasi and Vitányi 2005) to evaluate the cluster-
ing accuracy of each algorithm against the ground-truth
clusters of each dataset. NMI is 1 if the obtained clusters
are the same as the ground truth.

To compare the exactness of ScaleAP, Figure 5 shows the
F-measure. ScaleAP detects the same exemplars as those of
AP. On the other hand, the other sampling algorithms (FSAP,
MLAP, and FastAP) fail to reproduce the exemplars of AP.
ScaleAP theoretically guarantees the same responsibilities
and availabilities as AP by Lemmas 7 and 8, while remov-
ing message updates during the message-passing processes.

That is, ScaleAP performs the message-passing processes
equivalent to those processes of AP. Hence, ScaleAP finds
the same exemplars as AP by Theorem 2.

Figure 6 compares NMI scores to analyze the cluster-
ing accuracy. ScaleAP has higher NMI scores than FSAP,
MLAP, and FastAP. In addition, ScaleAP yields the same
NMI scores as AP. As described in Section 1.1, FSAP,
MLAP, and FastAP samples, exemplars, or object pairs aim
to reduce the high computational cost. However, these sam-
pling approaches fail to reproduce the same exemplars as AP
(Figure 5). By contrast, as we proved in Theorem 2, ScaleAP
is theoretically designed to find the same exemplars as AP.
Therefore, ScaleAP can successfully inherit the high clus-
tering quality from AP.

5 Conclusion
ScaleAP is an efficient AP algorithm that produces the same
clustering results as AP but with a faster computation time.
ScaleAP excludes unnecessary message updates by finding
prunable pairs during message passing. In an experiment,
ScaleAP offers an improved efficiency on massive datasets
compared to other AP algorithms without sacrificing the
clustering quality. Consequently, employing ScaleAP for
massive datasets should enhance the effectiveness of AI-
powered applications.

Acknowledgments
This work was partially supported by JST ACT-I and JST
PRESTO JPMJPR2033, Japan. I thank to Hiroyuki Kita-
gawa, Ken-ichi Kawarabayashi, and Tomohiro Matsushita
for their helps and useful discussions.

9645

References
Ambrogi, F.; Boracchi, P.; Biganzoli, E.; Raimondi, E.; and
Soria, D. 2008. Cancer Profiles by Affinity Propagation. In
Proceedings of the 7th IEEE International Conference on
Machine Learning and Applications (ICMLA 2008), 650–
655.
Anguita, D.; Ghio, A.; Oneto, L.; Parra, X.; and Reyes-
Ortiz, J. L. 2013. A Public Domain Dataset for Hu-
man Activity Recognition Using Smartphones. In
Proceedings of the 21st European Symposium on Ar-
tificial Neural Networks, Computational Intelligence
and Machine Learning (ESANN 2013), 437–442. URL
https://archive.ics.uci.edu/ml/datasets/Human+Activity+
Recognition+Using+Smartphones.
Belkin, M.; and Niyogi, P. 2003. Laplacian Eigenmaps for
Dimensionality Reduction and Data Representation. Neural
Compututation 15(6): 1373–1396. ISSN 0899-7667.
Cilibrasi, R.; and Vitányi, P. M. 2005. Clustering by Com-
pression. IEEE Transactions on Information Theory 51(4):
1523–1545.
Dua, D.; and Graff, C. 2017. UCI Machine Learning Repos-
itory. URL http://archive.ics.uci.edu/ml. Accessed: Septem-
ber 1st, 2020.
Dueck, D.; and Frey, B. J. 2007. Non-metric Affinity Propa-
gation for Unsupervised Image Categorization. In Proceed-
ings of the 11th IEEE International Conference on Com-
puter Vision (ICCV 2007), 1–8.
Frey, B. J.; and Dueck, D. 2007. Clustering by Passing Mes-
sages Between Data Points. Science 315(5814): 972–976.
Fujiwara, Y.; Irie, G.; and Kitahara, T. 2011. Fast Algorithm
for Affinity Propagation. In Proceedings of the 22nd Inter-
national Joint Conference on Artificial Intelligence (IJCAI
2011), 2238–2243.
Fujiwara, Y.; Nakatsuji, M.; Shiokawa, H.; Ida, Y.; and Toy-
oda, M. 2015. Adaptive Message Update for Fast Affinity
Propagation. In Proceedings of the 21st ACM SIGKDD Con-
ference on Knowledge Discovery and Data Mining (KDD
2015), 309–318.
Gardner, A.; Kanno, J.; Duncan, C. A.; and Selmic, R. 2014.
Measuring Distance between Unordered Sets of Different
Sizes. In Proceedings of the 27th IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR 2014), 137–
143. URL https://archive.ics.uci.edu/ml/datasets/MoCap+
Hand+Postures.
Jia, Y.; Wang, J.; Zhang, C.; and Hua, X.-S. 2008. Finding
Image Exemplars Using Fast Sparse Affinity Propagation.
In Proceedings of the 16th ACM International Conference
on Multimedia (MM 2008), 639–642.
Kazantseva, A.; and Szpakowicz, S. 2011. Linear Text Seg-
mentation Using Affinity Propagation. In Proceedings of
the 2011 Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP 2011), 284–293.
Kschischang, F. R.; Frey, B. J.; and Loeliger, H. 2001. Factor
Graphs and the Sum-Product Algorithm. IEEE Transactions
on Information Theory 47(2): 498–519.

Madani, O.; Georg, M.; and Ross, D. A. 2013. On Us-
ing Nearly-Independent Feature Families for High Pre-
cision and Confidence. Machine Learning 92: 457–
477. URL https://archive.ics.uci.edu/ml/datasets/YouTube+
Multiview+Video+Games+Dataset.
Manning, C. D.; Raghavan, P.; and Schütze, H. 2008.
Introduction to Information Retrieval. New York, NY,
USA: Cambridge University Press. ISBN 0521865719,
9780521865715.
Matsushita, T.; Shiokawa, H.; and Kitagawa, H. 2018. C-
AP: Cell-based Algorithm for Efficient Affinity Propaga-
tion. In Proceedings of the 20th International Conference
on Information Integration and Web-based Applications &
Services (iiWAS 2018), 156–163.
Roweis, S. T.; and Saul, L. K. 2000. Nonlinear Dimen-
sionality Reduction by Locally Linear Embedding. Science
290(5500): 2323–2326.
Shang, F.; Jiao, L.; Shi, J.; Wang, F.; and Gong, M. 2012.
Fast Affinity Propagation Clustering: A Multilevel Ap-
proach. Pattern Recognition 45(1): 474–486. ISSN 0031-
3203.
Shiokawa, H.; Amagasa, T.; and Kitagawa, H. 2019. Scaling
Fine-grained Modularity Clustering for Massive Graphs. In
Proceedings of the 28th International Joint Conference on
Artificial Intelligence (IJCAI 2019), 4597–4604.
Shiokawa, H.; Fujiwara, Y.; and Onizuka, M. 2013. Fast
Algorithm for Modularity-based Graph Clustering. In Proc.
AAAI 2013, 1170–1176.
Shiokawa, H.; Fujiwara, Y.; and Onizuka, M. 2015.
SCAN++: Efficient Algorithm for Finding Clusters, Hubs
and Outliers on Large-scale Graphs. Proceedings of the Very
Large Data Bases Endowment (PVLDB) 8(11): 1178–1189.
Sun, L.; and Guo, C. 2014. Incremental Affinity Propagation
Clustering Based on Message Passing. IEEE Transactions
on Knowledge and Data Engineering 26(11): 2731–2744.
Sun, L.; Guo, C.; Liu, C.; and Xiong, H. 2017. Fast Affin-
ity Propagation Clustering Based on Incomplete Similarity
Matrix. Knowledge and Information Systems 51: 941–963.
Tibshirani, R.; Walther, G.; and Hastie, T. 2001. Estimating
the Number of Clusters in a Data Set via the Gap Statistic.
Journal of the Royal Statistical Society: Series B (Statistical
Methodology) 63(2): 411–423.
Yedidia, J. S.; Freeman, W. T.; and Weiss, Y. 2005. Con-
structing Free-Energy Approximations and Generalized Be-
lief Propagation Algorithms. IEEE Transactions on Infor-
mation Theory 51(7): 2282–2312.

9646

