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Abstract
Point processes are a useful mathematical tool for describing
events over time, and so there are many recent approaches
for representing and learning them. One notable open ques-
tion is how to precisely describe the flexibility of point pro-
cess models and whether there exists a general model that
can represent all point processes. Our work bridges this gap.
Focusing on the widely used event intensity function repre-
sentation of point processes, we provide a proof that a class
of learnable functions can universally approximate any valid
intensity function. The proof connects the well known Stone-
Weierstrass Theorem for function approximation, the uniform
density of non-negative continuous functions using a transfer
functions, the formulation of the parameters of a piece-wise
continuous functions as a dynamic system, and a recurrent
neural network implementation for capturing the dynamics.
Using these insights, we design and implement UNIPoint,
a novel neural point process model, using recurrent neural
networks to parameterise sums of basis function upon each
event. Evaluations on synthetic and real world datasets show
that this simpler representation performs better than Hawkes
process variants and more complex neural network-based ap-
proaches. We expect this result will provide a practical basis
for selecting and tuning models, as well as furthering theoret-
ical work on representational complexity and learnability.

1 Introduction
Temporal point processes (Daley and Vere-Jones 2007) are
a preferred tool for describing events happening in irregular
intervals, such as, earthquake modelling (Ogata 1988), so-
cial media (Zhao et al. 2015), and finance (Embrechts, Lin-
iger, and Lin 2011). One common variant is the self-exciting
Hawkes process with parametric kernel (Laub, Taimre, and
Pollett 2015), which describes prior events triggering future
events. However, misspecification of the kernel will likely
result in poor performance (Mishra, Rizoiu, and Xie 2016).
One may ask what are the most flexible classes of point
process intensity functions? How can they be implemented
computationally? Does a flexible representation lead to good
performance?

There is a body of literature surrounding these three ques-
tions. Multi-layer neural networks are well known for be-
ing flexible function approximators. They are able to ap-
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Figure 1: Overview of our method of universally approxi-
mating point processes. A RNN is used to parameterise a
set of basis functions for each interarrival time τi. Then, the
sum of basis functions is used to approximate a continuous
function, which is composed with a transfer function f+ to
universally approximate all valid intensity functions.

proximate any Borel-measurable function on a compact
domain (Cybenko 1989; Hornik, Stinchcombe, and White
1989). A number of neural architectures have been proposed
for point processes. The Recurrent Marked Temporal Point
Process model (RMTPP) (Du et al. 2016) uses Recurrent
Neural Networks (RNN) to encode event history, and de-
fines the conditional intensity function by a parametric form.
Common choices of such parametric forms include an ex-
ponential function (Du et al. 2016; Upadhyay, De, and Ro-
driguez 2018) or a constant function (Li et al. 2018; Huang,
Wang, and Mak 2019). Variants of the RNN have been
explored, including NeuralHawkes (Mei and Eisner 2017)
that makes the RNN state a functions over time; as well as
Transformer Hawkes (Zuo et al. 2020) and Self-attention
Hawkes (Zhang et al. 2019) which uses attention mecha-
nisms instead of recurrent units. However, a conceptual gap
on the flexibility of the neural point process representation
still remains. Piece-wise exponential functions (Du et al.
2016; Upadhyay, De, and Rodriguez 2018) only encode in-
tensities that are monotonic between events. The functional
RNN representation (Mei and Eisner 2017) is flexible but
uses many more parameters. Transformers (Zuo et al. 2020;
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Zhang et al. 2019) are generic sequence-to-sequence func-
tion approximators (Yun et al. 2020), but the functional form
of the Transformer Hawkes point process intensity func-
tion is not an universal approximator. Furthermore, intensity
functions are non-negative and discontinuous at event times
which means neural network approximation results cannot
be applied directly.

Recent results shed light on alternative point process rep-
resentations. Omi, Ueda, and Aihara (2019) uses a posi-
tive weight monotone neural network to learn the compen-
sator (the integral of the intensity function). Although it is a
generic approximator for compensators, it might assign non-
zero probability to invalid inter-arrival times as the com-
pensator can be non-zero at time zero. (Shchur, Biloš, and
Günnemann 2020) represents inter-arrival times using nor-
malising flow and mixture models, which can universally ap-
proximate any density. However, by defining the point pro-
cess with the event density, the model cannot account for
event sequences which stop naturally (see Section 3). These
approaches are promising alternatives but are not a full re-
placement for intensity functions, which are preferred since
they are intuitive and can be superimposed.

In this work, we propose a class of neural networks that
can approximate any point process intensity function to arbi-
trary accuracy, along with a proof showing the role of three
key constituents: a set of uniformly dense basis functions,
a positive transfer function, and an approximator for arbi-
trary dynamic systems. We implement this proposal using
RNNs, the output of which is used to parameterise a set of
basis functions upon arrival of each event, as shown in Fig-
ure 1. Named UNIPoint, the proposed model performs well
across synthetic and real world datasets in comparison to the
Hawkes process and other neural variants. This work pro-
vides a general yet parsimonious representation for temporal
point processes, and so forms a solid basis for future devel-
opment in point process representations that incorporate rich
contextual information into event models.

Our primary contributions are:

• A novel architecture that can approximate any point pro-
cess intensity function to arbitrary accuracy.

• A theoretical guarantee for the flexible point process rep-
resentation that builds upon the theory of universally ap-
proximating continuous functions and dynamic systems.

• UNIPoint — the neural network implementation of the
proposed architecture with strong empirical results on
both synthetic and real world datasets. Reference code is
available online1.

Notation
C(X,Y ) denotes the class of continuous functions mapping
from domainX to range Y . Denote R as the set of real num-
bers, R+ as the non-negative reals and R++ as the strictly
positive reals. Define the composition of a function f and
a class of functions F as f ◦ F = {f ◦ g : g ∈ F}. The
sigmoid function [1 + exp(−x)]−1 is denoted as σ(x).

1https://github.com/alexandersoen/unipoint

2 Preliminary: Temporal Point Processes
A temporal point process is an ordered set of event times
{ti}Ni=0. We typically describe a point process by its condi-
tional intensity function λ(t | Ht−) which can be interpreted
as the instantaneous probability of an event occurring at time
t given event history Ht− , consisting of the set of all events
before time t. This can be written as (Daley and Vere-Jones
2007):

λ(t | Ht−)
.
= lim
h↓0+

P(N [t, t+ h) > 0 | Ht−)

h
, (1)

where N [t1, t2) is the number of events occurring between
two arbitrary times t1 < t2. Equation 1 restricts the con-
ditional intensity function to non-negative functions. Given
history Ht− , the conditional intensity is a deterministic
function of time t. Following standard convention, we refer
to the conditional intensity function as simply the intensity
function, abbreviating λ(t | Ht−) to λ?(t).

Point processes can be specified by choosing a functional
form for the intensity function. For example, the Hawkes
process, one of the simplest interacting point process (Bacry,
Mastromatteo, and Muzy 2015), can be defined as follows:

λ?(t) = µ+
∑
ti<t

ϕ(t− ti), (2)

where µ specifies the background intensity and ϕ(t − ti)
is the triggering kernel which characterises the self-exciting
effects of prior events ti.

The likelihood of a point process is (Daley and Vere-Jones
2007)

L =

[
N∏
i=1

λ?(ti)

]
exp

(
−
∫ T

0

λ?(s) ds

)
, (3)

where the negated term in the exponential is known as the
compensator function Λ?(t) =

∫ T
0
λ?(s) ds.

3 Universal Approximation of Intensities
To represent the influence of past events on future events,
point process intensity functions λ?(t) are often continu-
ous between events (ti−1, ti]; with discontinuities only pos-
sible at events. For example, the intensity function of the
Hawkes process has discontinuities at each event, Eq. (2).
Intuitively, this piece-wise continuous characterisation of
the intensity function encodes the belief that the process only
significantly changes its behaviour when new information
(an event) is observed. As such, there are two behaviours
of a point process we need to approximate: (1) the continu-
ous intensity function segment between consecutive events,
given a fixed event history; and (2) the change in the point
process intensity function when an event occurs, so that we
can approximate the jump dynamics between events.

We consider an intensity function λ?(t) with fixed ob-
servation period (0, T ]. The intensity function can be
segmented by the event times of an event sequence
(t0, t1], (t1, t2], . . . , (tN−1, tN ], (tN , tN+1], where tN+1 =
T . Given a piece-wise continuous intensity function, the seg-
mented intensity function is continuous: ui(τ) = λ?(t) for
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t ∈ (ti−1, ti], where τ = t − ti−1 ∈ (0, ti − ti−1]. Thus
to approximate the intensity function between consecutive
events, we learn a function û(τ ; pi), parameterised by pi, to
approximate any of the segmented intensity functions ui(τ),
where each segment only differs in parameterisation. Then
to approximate the jump dynamics of the intensity function
we utilise the RNN approximation of a dynamic system,
which dictates how the parameters pi change over time.

To quantify the quality of an approximation, we use the
uniform metric between two functions f, g : X → R,

d(f, g) = sup
x∈X
|f(x)− g(x)|. (4)

This metric is the maximum difference of the two functions
over a shared (compact) domain X . The uniform metric
has been used to prove universal approximation properties
for neural networks (Hornik, Stinchcombe, and White 1989;
Debao 1993) and RNNs (Schäfer and Zimmermann 2007).
Given classes of functions F and G, F is a universal ap-
proximator of G if for any ε > 0 and g ∈ G, there exists an
f ∈ F such that d(f, g) < ε. An equivalently expression is:
F is uniformly dense in G.
Remark. Although we refer to Hawkes point processes
as the primary example of a point process to approximate
throughout the paper, following the example of (Mei and
Eisner 2017), we note that as long as the point process has
continuous intensity function between events, our approxi-
mation analysis will hold. Thus, in addition to Hawkes pro-
cesses, the methods proposed in our work can approximate
point processes including self correcting processes and non-
homogenous Poisson processes with continuous densities.

Approximation Between Two Events
To approximate the time shifted non-negative functions
ui(τ), we first introduce transfer functions f+ (Definition 1).
We then prove that the class of composed function f+ ◦ F
preserves uniform density (Theorem 1). Given this theo-
rem, we provide a method for constructing uniformly dense
classes with sums of basis functions Σ(φ) (Definition 2)
which are in turn uniformly dense after composing with f+
(Corollary 1). We further provide a set of suitable basis func-
tions (Table 1).

Formally, we define the M-transfer functions which maps
negative outputs of a function to positive values.
Definition 1. A function f+ : R → R+ is a M-transfer
function if it satisfies the following:

1. f+ is M-Lipschitz continuous;
2. R++ ⊆ f+[R];
3. And f+ is strictly increasing on f−1+ [R++].

Definition 1 provides a wide range of functions. In prac-
tice, it is convenient to use softplus function fSP(x) =
log(1+exp(x)) which is a 1-transfer function — commonly
used in other neural point processes (Mei and Eisner 2017;
Omi, Ueda, and Aihara 2019; Zuo et al. 2020). Alternatively,
f+(x) = max(0, x) could be used; however, this is not dif-
ferentiable at x = 0 which can cause issues in practice. In-
tuitively, M-transfer function are increasing functions which
map to all positive values and have bounded steepness.

When a Gaussian process is used to define an inhomoge-
nous Poisson process, the link functions serve a similar role
to ensure valid intensity functions (Lloyd et al. 2015). How-
ever, many of these link function violate the conditions of
being a M-transfer function (Donner and Opper 2018), i.e.,
the exponential link function f+(x) = exp(x) and squared
link function f+(x) = x2 are not M-Lipschitz continuous
as they have unbounded derivatives; whereas the sigmoid
link function f+(x) = σ(x) is a bounded function (violating
condition 2).

Using M -transfer functions, we can show that a uni-
formly dense class of unbounded functions will be uni-
formly dense for strictly positive functions under composi-
tion. These functions are defined with domain K ⊂ R, a
compact subset, which can be set asK = [0, T ] for intensity
functions.
Theorem 1. Given a class of functions F which is uni-
formly dense in C(K,R) and a M -transfer function f+, the
composed class of functions f+ ◦ F is uniformly dense in
C(K,R++) for any compact subset K ⊂ R.

Proof. Let f ∈ C(K,R++) and ε > 0 be arbitrary. Since
f+ is strictly increasing and continuous on the preimage of
R++ then f−1+ exists, is continuous, and restricted to subdo-
main R++. Thus, there exists some g ∈ C(K,R) such that
f = f+ ◦ g.

AsF is dense with respect to the uniform metric, for ε/M
there exists some h ∈ F such that d(h, g) < ε/M . Thus for
any x ∈ K,

|(f+ ◦ h)(x)− f(x)| = |(f+ ◦ h)(x)− (f+ ◦ g)(x)|
≤M |h(x)− g(x)| < ε.

We have d(f+ ◦ h, f) < ε.

To approximate ui(τ) using Theorem 1 we need a fam-
ily of functions which are able to approximate functions in
C(K,R). We consider the family of functions consisting of
the sum of basis functions φ(·; pj), where pj ∈ P denotes
the parameterisation of the basis function φ.
Definition 2. Denote Σ(φ) as the class of functions corre-
sponding to the sum of basis functions φ : R×P → R, with
parameter space P , as follows:û : R→ R | û(x) =

J∑
j=1

φ(x; pj), pj ∈ P, J ∈ N

 .

The parameter space P of a basis function is determined
by the parametric form of a chosen basis function φ(x; pj).
For example, the class composed of exponential basis func-
tions could be defined with parameter space P = R2 with
functions {φ : R → R | φ(x) = α exp(βx), α, β ∈ R}.
Definition 2 encompasses a wide range of function classes,
including neural networks with sigmoid (Cybenko 1989;
Hornik, Stinchcombe, and White 1989; Debao 1993) or rec-
tified linear unit activations (Sonoda and Murata 2017).

The Stone-Weierstrass Theorem provides sufficient con-
ditions for finding basis function for universal approxima-
tion.
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Theorem 2 (Stone-Weierstrass Theorem (Rudin et al. 1964;
Royden and Fitzpatrick 1988)). Suppose a subalgebra A of
C(K, R), where K ⊂ R is a compact subset, satisfies the
following conditions:

1. For all x, y ∈ K, there exists some f ∈ A such that
f(x) 6= f(y);

2. For all x0 ∈ K, there exists f ∈ A such that f(x0) 6= 0.

Then A is uniformly dense in C(K, R).

Thus, by using Theorem 1 and the Stone-Weierstrass the-
orem, Theorem 2, we arrive at Corollary 1, which gives
sufficient conditions for basis functions φ to ensure that
f+ ◦ Σ(φ) is a universal approximator for C(K,R++).

Corollary 1. For any compact subset K ⊂ R and for
any M -transfer function f+, if a basis function φ(· ; p)
parametrised by p ∈ P satisfies the following conditions:

1.
∑

(φ) is closed under product;
2. For any distinct points x, y ∈ K, there exists some p ∈ P

such that φ(x; p) 6= φ(y; p);
3. For all x0 ∈ K, there exists some p ∈ P such that
φ(x0; p) 6= 0.

Then f+ ◦
∑

(φ) is uniformly dense in C(K,R++).

The first condition of Corollary 1 is given such that the
set of basis functions

∑
(φ) is a subalgebra of C(X,R).

The later two conditions are the required preconditions for
the Stone-Weierstrass Theorem to hold.

Given the conditions of Corollary 1, some interesting
choices for valid basis functions φ(x; p) are the exponen-
tial basis function φEXP(x) = α exp(βx) and the power law
basis function φPL(x) = α(1 + x)−β . These basis functions
are similar to the exponential and power law Hawkes trig-
gering kernels, which have seen widespread use in many do-
mains (Ogata 1988; Bacry, Mastromatteo, and Muzy 2015;
Laub, Taimre, and Pollett 2015; Rizoiu et al. 2017).

We note that the class of intensity functions in Theorem 1
and Corollary 1 are strictly positive continuous functions.
However, these results generalise to non-negative continu-
ous functions as our definition of intensity functions permits
arbitrarily low intensity in ui(τ) — where switching from
arbitrarily low intensities to zero intensity results in arbitrar-
ily low error with respect to the uniform metric on (0, T ].

In Table 1, we provide a selection of interesting basis
functions to universally approximate ui(τ) ∈ C(K,R++).
One should note that Corollary 1 only provides sufficient
conditions, where some of the basis function in Table 1 do
not satisfy the precondition. For example, the sigmoid ba-
sis function φSIG(x) = ασ(βx + δ), (α, β, δ) ∈ R3 does
not allow Σ(φSIG) to be closed under product and thus does
not satisfy the conditions of Corollary 1. However, the sum
of sigmoid basis functions is equivalent to the class of sin-
gle hidden layer neural networks (Hornik, Stinchcombe, and
White 1989; Debao 1993). Thus, in additional to an appro-
priate transfer function it does have the universal approxima-
tion property for non-negative continuous functions through
Theorem 1. Additionally, other basis functions used to de-
fine point process intensity functions can be used, such as

Basis
Function

Functional
Form φ

Parameter
Space P

φEXP
† α exp(βx) (α, β) ∈ R2

φPL
† α(1 + x)−β (α, β) ∈ R×R+

φCOS
† α cos(βx+ δ) (α, β, δ) ∈ R3

φSIG
‡ ασ(βx+ δ) (α, β, δ) ∈ R3

φReLU
∗ max(0, αx+ β) (α, β) ∈ R2

Table 1: Basis function universal approximators for inten-
sity functions between two consecutive events. † indicates
functions that satisfy Corollary 1; ‡ one proven in (Cybenko
1989); and ∗ one proven in (Sonoda and Murata 2017).

radial basis functions (Tabibian et al. 2017) that are not gen-
erally closed under product but have universal approxima-
tion properties (Park and Sandberg 1991).

Approximation for Event Sequences
The approximations to ui(τ) use a set of parameters, e.g.
(α, β, δ) in Table 1. We denote these parameters vectors as
pi ∈ P , and the approximated function segment as ûi(τ ; pi).
Since each segment ûi(τ ; pi) is uniquely determined by pi,
and the union of all segments approximates λ?(t), we would
only need to capture the dynamics in pi.

We express pi as the output of a dynamic system.

si+1 = g(si, ti)

pi = ν(si), (5)

where si+1 is the internal state of the dynamic system, g
updates the internal state at each step, and ν maps from the
internal state to the output.
Theorem 3 (RNN Universal Approximation (Schäfer and
Zimmermann 2007)). Let g : RJ ×RI → RJ be measur-
able and ν : RJ → Rn be continuous, the external inputs
xi ∈ RI , the inner states si ∈ RJ , and the outputs pi ∈ R
(for i = 1, . . . , N ). Then, any open dynamic system of the
form of Eq. (5) can be approximated by an RNN, with sig-
moid activation function, to arbitrary accuracy.

Given that RNNs approximate pi, we use continuity con-
dition on basis φ and in turn û to show how to universally
approximate an intensity function with an RNN.
Theorem 4. Let {ti}Ni=0 be a sequence of events with ti ∈
[0, T ] and λ?(t) be an intensity function. Given a paramet-
ric family of functions F = {û(· ; p) : p ∈ P} which is
uniformly dense in C([0, T ],R++) and û(x; p) continuous
with respect to p for all x ∈ [0, T ]. Then there exists a re-
current neural network

hi = σ(Whi−1 + vti−1 + b)

p̂i = Ahi for t ∈ (ti−1, ti]

λ̂(t) = û(τ ; p̂i) and τ = t− ti−1, (6)

where σ is a sigmoid activation function and [W, v, b, A] are
weights of appropriate shapes, such that λ̂(t) approximates
λ?(t) with arbitrary precision for all (0, T ].
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Proof. Let ε > 0 be arbitrary. For any interval (ti−1, ti], we
know from the uniform density of F that there exists a pi
such that

sup
τ∈[0,T ]

|ûi(τ ; pi)− ui(τ)| ≤ ε

2
. (7)

By the continuity conditions of û, it follows that for each
pi and any τ ∈ [0, T ] there exists δi such that

‖pi − p̂i‖ < δi =⇒ |û(τ ; pi)− û(τ ; p̂i)| <
ε

2
(8)

by taking the minimum over δτ ’s in the (ε/2, δτ )-condition
of continuity for all τ ∈ [0, T ] (where the subscript empha-
sises the range of τ for fixed i).

The LHS of Eq. (8) is the precision needed in our RNN
approximtor for each interval (ti−1, ti]. We take the mini-
mum approximation discrepancy over the sequence of p̂i’s,
δ := mini δi and use an RNN with precision δ to bound the
approximation quality due to p̂i’s using Theorem 3,

sup
τ∈[0,T ]

|û(τ ; pi)− û(τ ; p̂i)| <
ε

2
. (9)

Using the triangle inequality of the uniform metric, we
can combine and bound the discrepancies due to û in Eq. (7)
and those due to p̂i in Eq. (9),

sup
τ∈[0,T ]

|ui(τ)− û(τ ; p̂i)| < ε. (10)

Eq. (10) holds for all i ∈ {1, . . . , N}. Thus uniform density
condition for λ?(t) also holds for the piece-wise approxima-
tor λ̂(t) given by Eq. (6) over the entire sequence.

From Theorem 4 and Corollary 1, universal approxima-
tion with respect to the uniform metric follows immediately
when using basis functions which are continuous with re-
spect to their parameter space, for example Table 1.
Extensions and discussions. While the original work on
learning the compensator function (Omi, Ueda, and Aihara
2019) does not provide theoretical backings for its pro-
posal, we note that Theorem 4, combined with universal ap-
proximation capabilities of monotone neural networks (Sill
1998), can be used to show that the class of monotonic
(increasing) neural networks provide universal approxima-
tion for compensator functions. The guarantee described
here does not explicitly account for additional dimensions
or marks. To extend Theorem 4 in this manner, we consider
replacing basis functions φ(x), which has domain R, to ba-
sis functions with extended domain R × K where K is a
compact set. For example, K can be a set of discrete finite
marks in the case of approximated marked temporal point
processes. The universal approximation property would then
generalise as long as

∑
(φ) is dense in C([0, T ]×K,R++)

and continuous in the parameter space of the basis functions.
Likewise, if we want to approximate a spatial point process,
we letK = R2 and find an appropriate set of basis functions
with domain R×R2.

It is worth mentioning two distinctions from the inten-
sity free approach (Shchur, Biloš, and Günnemann 2020).
First, although density approximation allows for direct event

time sampling, the log-normal mixture representation as-
sumes that an event will always occur on R+ — specif-
ically, events cannot naturally stop. Instead, the intensity
function representation allow for events to stop with prob-
ability 1 − P(τ < ∞) = exp (−Λ?(∞)). In other-words,
1 − P(τ < ∞) is the probability of events not occurring
in finite time, which is non-zero when the intensity function
decays and stays at zero. Furthermore, the intensity free ap-
proach proposed one functional form (log-normal mixture)
for approximating densities, whereas we show that a variety
of basis functions all fulfil the goal of universal approxima-
tion.

4 Implementation with Neural Networks
We propose UNIPoint, a neural network architecture imple-
menting a fully flexible intensity function. Let {ti}Ni=0 be
a sequence of events with corresponding interarrival times
τi = ti − ti−1. Let M be the size of the hidden state of the
RNN, and φ(·; ·) be the chosen basis function with param-
eter space P . Let P denote the dimension of the parameter
space. The approximation guarantees (given in Corollary 1)
hold in the limit of an infinite number of basis functions, in
practice the number of basis functions is a hyper-parameter,
denoted as J . This network has four key components.
Recurrent Neural Network. We use a simple RNN cell (El-
man 1990), though other popular variants would also work,
e.g., LSTM, or GRU. The recurrent unit produces hidden
state vector hi from hi−1 the previous hidden state and τi−1
the normalised interarrival time (divided by standard devia-
tion):

hi = f(Whi−1 + vτi−1 + b) (11)

Here W , v, b, and h0 are learnable parameters. f is any acti-
vation function compatible with RNN universal approxima-
tion, i.e., sigmoid σ (Schäfer and Zimmermann 2007).
Basis Function Parameters are generated using a linear
transformation that maps the hidden state vector of the RNN
hi ∈ RM to parameters pi = (pi1, . . . , piJ),

pij = Ajhi +Bj , t ∈ (ti−1, ti], j ∈ {1, . . . , J}. (12)

Here Aj and Bj are learnable parameters and pij ∈ P .
Eq. (11) and Eq. (12) defines the RNN which approxi-

mates a point processes’ underlying dynamic system. The
error contribution of these two equations is upper bounded
by the sum of their individual contributions (Schäfer and
Zimmermann 2007, Theorem 2).
Intensity Function. Using parameters pi1, . . . , piJ , the in-
tensity function with respect to time since the last event
τ = t− ti−1 is defined as:

λ̂(τ) = fSP

 J∑
j=1

φ(τ ; pij)

 , τ ∈ (0, ti − ti−1], (13)

where fSP(x) = log(1 + exp(x)) is the softplus function.
Loss Function. We use the point process negative log-
likelihood, as per Eq. (3). In most cases the integral cannot
be calculated analytically so instead we calculate it numeri-
cally using Monte-Carlo integration (Press et al. 2007), see
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Training settings and the online appendix (Soen et al. 2020,
Section F).

Our use of RNNs to encode event history is similar to
other neural point process architectures. We note that (Du
et al. 2016) only supports monotonic intensities. Our repre-
sentation is more parsimonious than (Mei and Eisner 2017)
since the hidden states need not be functions over time, yet
the output can still universally approximate any intensity
function. (Omi, Ueda, and Aihara 2019) produce monotoni-
cally increasing compensator functions but can have invalid
inter-arrival times.

5 Evaluation
We compare the performance of UNIPoint models to var-
ious simple temporal point processes and neural network
based models on three synthetic datasets and three real world
datasets. For the simple temporal point processes we con-
sider self-exciting intensity functions which are piece-wise
monotonic (Self-Correcting process (Isham and Westcott
1979) and Exponential Hawkes process (Hawkes 1971)) and
non-monotonic (Decaying Sine Hawkes process). The de-
tails of dataset preprocessing, model settings and parameter
sizes can be found in the appendix (Soen et al. 2020, Section
A and B).

Synthetic Datasets
We synthesise datasets from simple temporal point process
models, generating 2, 048 event sequences each containing
128 events. This results in roughly 262, 000 events, which
is of the same magnitude tested in (Omi, Ueda, and Ai-
hara 2019). Self-correcting process and exponential Hawkes
process datasets have previously been used in other neural
point process studies (Du et al. 2016; Omi, Ueda, and Ai-
hara 2019; Shchur, Biloš, and Günnemann 2020). We con-
sider a decaying sine Hawkes process to test whether the
models capture non-monotonic self-exciting intensity func-
tions. The following synthetic datasets are used:
Self-Correcting Process. The intensity function is

λ?(t) = exp

(
νt−

∑
ti<t

γ

)
,

where ν = 1 and γ = 1.
Exponential Hawkes Process. The intensity function is a
Hawkes process with exponential decaying triggering ker-
nel, given by

λ?(t) = µ+ αβ
∑
ti<t

exp(−β(t− ti)),

where µ = 0.5, α = 0.8, and β = 1.
Decaying Sine Hawkes Process. The intensity function is a
Hawkes process with a sinusoidal triggering kernel product
with an exponential decaying triggering kernel:

λ?(t) = µ+ γ
∑
ti<t

(1 + sin(α(t− ti)) exp(−β(t− ti)),

where µ = 0.5, α = 5π, β = 2, and γ = 1.

Real World Dataset
We further evaluate the performance of our model with three
real world datasets. Although these dataset originally have
marks/event types, we ignore such information to test UNI-
Point. The real world datasets used are:
MOOC2. A dataset of student interactions in online
courses (Kumar, Zhang, and Leskovec 2019), previously
used for evaluating neural point processes (Shchur, Biloš,
and Günnemann 2020). Events correspond to different types
of interaction, e.g., watching videos.
Reddit2. A dataset of user posts on a social media plat-
form (Kumar, Zhang, and Leskovec 2019), previously used
for evaluating neural point processes (Shchur, Biloš, and
Günnemann 2020). Each event sequence corresponds to a
user’s post behaviour.
StackOverflow (Du et al. 2016). A dataset of events which
consists of users gaining badges on a question-answer web-
site. Only users with at least 40 badges between 01-01-2012
and 01-01-2014 are considered.

Baselines
The following traditional and neural network point pro-
cess models are compared to our models. We implement all
but the NeuralHawkes baseline. We also compare to Trans-
formerHawkes (Zuo et al. 2020) but the results are sensitive
to model settings, the observations from which are discussed
in the appendix (Soen et al. 2020, Section C).
Exponential Hawkes Process The point process likelihood
is optimised to determine parameter µ, α, and β in intensity
function

λ?(t) = µ+ αβ
∑
ti<t

exp(−β(t− ti)).

Power Law Hawkes Process. The point process likelihood
is optimised to determine parameters µ, α, and β in intensity
function

λ?(t) = µ+ α
∑
ti<t

(t− ti + δ)−(1+β).

The δ parameter is fixed at 0.5 to compensate for the diffi-
culty of the power law intensity function being infinity when
t− ti + δ = 0 (Bacry, Mastromatteo, and Muzy 2015).
RMTPP (Du et al. 2016). We implement the RMTPP neural
network architecture as a baseline. The intensity function of
RMTPP

λ?(t) = exp(vThi + w(t− ti−1) + b) (14)

is defined with respect to the RNN hidden state hi. We use a
RNN size of 48 for testing.
FullyNeural (Omi, Ueda, and Aihara 2019). We also imple-
ment the fully neural network point process. The integral of
the intensity function (compensator) is defined as a neural
network with RNN hidden state and event time input. We
use a RNN size of 48 and fully connected layer of size 48 to
produce the compensator.

2https://github.com/srijankr/jodie/
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Dataset Synthetic Real World
Models SelfCorrecting ExpHawkes DecayingSine MOOC Reddit StackOverflow

B
as

el
in

e ExpHawkes −0.994± .001 0.044± .037 −0.838± .019 3.578± .060 −0.100± .039 −1.031± .025
PLHawkes −0.994± .001 0.036± .037 −0.845± .019 0.532± .070 −0.787± .035 −0.918± .024
RMTPP −0.776± .003 0.054± .038 −0.864± .020 2.040± .098 −0.336± .031 −0.864± .022
FullyNeural −0.789± .003 0.059± .037 −0.833± .020 4.699± .054† 0.206± .046† −0.810± .022
NeuralHawkes −0.777± .006† 0.066± .037† −0.821± .021† 4.641± .110 0.201± .048 −0.801± .023†

U
N

IP
oi

nt

ExpSum −0.774± .008‡ 0.056± .042 −0.828± .020 3.114± .125 0.151± .045 −0.812± .023
PLSum −0.779± .006 0.064± .038‡ −0.829± .020 4.939± .085‡ 0.162± .046 −0.814± .023
ReLUSum −0.780± .007 0.059± .039 −0.828± .021 4.676± .075 0.221± .046‡ −0.810± .023
CosSum −0.777± .008 0.062± .039 −0.828± .020 4.471± .075 0.139± .044 −0.814± .023
SigSum −0.776± .007 0.064± .038 −0.827± .020‡ 4.346± .076 0.170± .045 −0.814± .023
MixedSum −0.779± .007 0.062± .038 −0.828± .020 4.928± .085 0.201± .047 −0.804± .023‡

Table 2: Averaged log-likelihood scores with corresponding 95% confidence intervals. A higher score is better; the best of the
baselines are indicated by † and the best of the UNIPoint models are indicated by ‡. Bold indicates results when the difference
between † and ‡ are significantly better (t-test p = 0.05).

NeuralHawkes3 (Mei and Eisner 2017). We utilise the ref-
erence implementation for NeuralHawkes (Mei, Qin, and
Eisner 2019), which provides a neural network architecture
that encodes the decaying nature of Hawkes process expo-
nential kernels in the LSTM of the model. We use a LSTM
size of 48 and default parameters for other model settings.

Training Settings
We fit a UNIPoint model for each of the five basis function
types described in Table 1 with softplus transfer functions
and 64 basis functions with learnable parameters. The mix-
ture of basis functions, MixedSum, is used, with 32 power
law and 32 ReLU basis functions. We study effects of the
number of basis functions in the appendix (Soen et al. 2020,
Section E). We fit models for all synthetic and real world
datasets, with a 60 : 20 : 20 train-validation-test split. Our
models are implemented in PyTorch4.

During training, we use a single sample per event inter-
val to calculate the loss function as we find using multiple
samples does not improve performance, as shown in the ap-
pendix (Soen et al. 2020, Section F). All UNIPoint models
tested employ an RNN with 48 hidden units, a batch size
of 64, and are trained using Adam (Kingma and Ba 2014)
with L2 weight decay set to 10−5. The validation set is used
for early stopping: training halts if the validation loss does
not improve by more than 10−4 for 100 successive mini-
batches. The training for one of the real world datasets (e.g.,
StackOverflow) takes approximately 1 day.

We further test UNIPoint using LSTMs in Appendix G
and an alternative transfer function in Appendix H.

Evaluation Metrics
Holdout Log-likelihood. We calculate the log-likelihood
of event sequences using Eq. (3). We numerically calculate
the integral term with Monte-Carlo integration (Press et al.
2007) if it cannot be calculated analytically.

3https://github.com/hmeiatjhu/neural-hawkes-particle-
smoothing

4https://pytorch.org (Paszke et al. 2017)

Total Variation. We use total variation as it mimics the uni-
form metric as they both depend on the difference between
the true and approximate intensity function. It is defined as
TV(f, g) =

∫
|f(s)− g(s)|2 ds. Total variation can only be

used on synthetic datasets where the true intensity is known.
To calculate it, we use Monte-Carlo integration (Press et al.
2007). We do not compute total variation for NeuralHawkes
as the reference implementation does not allow the intensity
function to be evaluated over fixed event histories.

6 Results
Table 2 reports log-likelihoods of all models across the three
synthetic and three real world datasets. Figure 2 reports
the total variations of intensity functions for the synthetic
datasets and relative log-likelihood (calculated by subtract-
ing the log-likelihood of UNIPoint ReLUSum) for the three
real world datasets. The total variation scores are only avail-
able for synthetic datasets since calculating the total varia-
tion requires a ground truth intensity function.
Synthetic datasets. Contrasting the log-likelihood and to-
tal variation metrics reveal interesting insights about model
performance. The SelfCorrecting dataset has a piece-wise
monotonically increasing intensity function. Both metrics
indicate that ExpHawkes, PLHawkes, and RMTPP under
perform the other approaches by a large margin, since they
are restricted to piece-wise monotone intensity functions.
All UNIPoint variants perform well, achieving average like-
lihoods within 0.01 of each other. ExpSum is the best vari-
ant, possibly due to its exponential shape matching that of
the ground-truth SelfCorrecting intensity function.

For the ExpHawkes dataset, the ExpHawkes baseline has
the lowest total variation (close to zero, as expected) but
not the best holdout log-likelihood. This indicates that mod-
els with good log-likelihood scores still have the potential
to overfit given the wrong intensity function representation.
Despite UNIPoint’s guarantees with infinite basis functions,
ExpSum shows significantly better total variation scores
than other UNIPoint models here — showing that, selection
of basis functions for specific datasets is important.

For DecayingSine, the intensity between events are non-
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Figure 2: Total variation of intensity functions for synthetic datasets (left) and relative log-likelihood of event sequences for real
world datasets standardised by subtracting the score of ReLUSum UNIPoint (right). Lower score is better. Markers correspond
to the mean of the score and error bars to the interquartile range. A missing marker indicate a mean above the visible axis range.

monotonic. All UNIPoint variants perform comparably on
both the log-likelihood and total variation metric. The Ful-
lyNeural approach performs comparably with the UNIPoint
variants on total variation, but is inferior on log-likelihood.
This is likely due to it assigning non-zero probabilities
to negative event times. NeuralHawkes has the best log-
likelihood for this dataset, but the difference with respect
to SigSum is not significant.

In addition, we visualise intensity functions learnt by
UNIPoint and other approaches, see the appendix (Soen
et al. 2020, Section D). The neural baseline models learn
similar intensity functions to UNIPoint in ExpHawkes.
However in the case of the MOOC dataset, RMTPP learns an
intensity function that is different to those learnt by the other
neural point processes. Meanwhile, FullyNeural does not ex-
hibit strong decaying components in the intensity function.
Real-world datasets. For all three real-world datasets, base-
lines ExpHawkes, PLHawkes, and RMTPP significantly
under-perform in comparison to the rest of the approaches.
This likely occurs due to their inability to support non-
monotone intensity functions in inter-event intervals.

We observe that UNIPoint variants are significantly better
than the baselines for MOOC and Reddit. UNIPoint is sec-
ond best (to NeuralHawkes) on StackOverflow dataset, but
the difference is not statistically significant. NeuralHawkes
performs strongly on the StackOverflow dataset, potentially
because it has the closest architecture to the UNIPoint Ex-
pSum variant, while also being more complex. In particular
NeuralHawkes has time decaying hidden states and LSTM
recurrent units rather than the a perceptron recurrent unit
and vector-formed hidden state of UNIPoint. The Stack-
Overflow dataset has a longer average sequence length than
MOOC and Reddit, which would advantage the LSTM re-
current units over the standard RNN — since the RNN is
more likely to suffer from vanishing or exploding gradi-
ents than the LSTM which allows for long-term dependen-
cies (Hochreiter and Schmidhuber 1997). Details on dataset
characteristics can be found in the appendix (Soen et al.
2020, Section A). One peculiar result is the performance of

ExpSum in the MOOC dataset. The reason for the poor per-
formance is that the exponential basis function is unstable
with large interarrival times, which can cause numeric over-
flow or underflow. The performance of UNIPoint variants
depend greatly on the particular basis function used for each
dataset. We find that no single type of basis function ensures
that a UNIPoint model performs best over all datasets. For
example, in the MOOC dataset, ignoring ExpSum, the UNI-
Point models have log-likelihood scores from 4.346±0.076
to 4.939± 0.085.

Using mixture of basis function, MixedSum provides
good overall performance. Among the UNIPoint variants, it
is either the best or a close second across all datasets, sug-
gesting that using different types of basis functions improves
model flexibility in practice even with a fixed parameter bud-
get. We also observe an improvement in performance when
more basis functions are used, see Appendix E.

Overall, our evaluations demonstrate the power of UNI-
Point for modelling complex intensity function that are not
piece-wise monotone. Results on real-world datasets show
models with flexible intensity functions outperform Hawkes
processes. Open questions remain on which neural architec-
tures, among the ones with universal approximation power,
strike the best balance of representational power, parsimony,
and learnability.

7 Conclusion
We develop a new method for universally approximating
the conditional intensity function of temporal point pro-
cesses. This is achieved by breaking down the intensity func-
tion into piece-wise continuous functions and approximating
each segment with a sum of basis functions, followed by a
transfer function. We also propose UNIPoint, a neural imple-
mentation of the approximator. Evaluations on synthetic and
real world benchmarks demonstrates that UNIPoint consis-
tently outperform the less flexible alternatives. Future work
include: investigating methods for selecting and tuning dif-
ferent basis functions and further theoretical work on repre-
sentation complexity, expressiveness and learnability.
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