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Abstract
For artificially intelligent learning systems to have
widespread applicability in real-world settings, it is
important that they be able to operate decentrally. Unfortu-
nately, decentralized control is difficult—computing even an
epsilon-optimal joint policy is a NEXP complete problem.
Nevertheless, a recently rediscovered insight—that a team of
agents can coordinate via common knowledge—has given
rise to algorithms capable of finding optimal joint policies in
small common-payoff games. The Bayesian action decoder
(BAD) leverages this insight and deep reinforcement learning
to scale to games as large as two-player Hanabi. However, the
approximations it uses to do so prevent it from discovering
optimal joint policies even in games small enough to brute
force optimal solutions. This work proposes CAPI, a novel
algorithm which, like BAD, combines common knowledge
with deep reinforcement learning. However, unlike BAD,
CAPI prioritizes the propensity to discover optimal joint
policies over scalability. While this choice precludes CAPI
from scaling to games as large as Hanabi, empirical results
demonstrate that, on the games to which CAPI does scale,
it is capable of discovering optimal joint policies even when
other modern multi-agent reinforcement learning algorithms
are unable to do so.

Introduction
In reinforcement learning (Sutton and Barto 2018), an agent
seeks to learn a policy that extracts a large return from an
environment, making it an algorithmic formulation of choice
for many control problems. However, the standard reinforce-
ment learning framework assumes that decision making is
centralized. In general, a control problem may require mul-
tiple decision makers to act in a setting that bars complete in-
formation sharing, often in practice because decision makers
are spatially separated. This problem is known as decentral-
ized control and has been studied by a number of different
communities using varying formalisms (Yu-Chi Ho 1980;
Oliehoek and Amato 2016; Littman 1994), which we col-
lectively refer to as common-payoff games (Leyton-Brown
and Shoham 2008).1
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1Cooperative game is sometimes used as an umbrella term for

the same purpose. This work uses common-payoff game to avoid

Despite involving multiple agents, the decentralized con-
trol problem bears relatively little similarity to general
game-theoretic settings (Powers and Shoham 2004), in
which agents possess adversarial incentives and there is not
a generally agreed upon notion of optimality. It is also dis-
tinct from other problem settings operating under common-
payoff game formalisms, such as ad-hoc coordination (Stone
et al. 2010), in which some of the agents are externally speci-
fied, or emergent communication (Lazaridou, Peysakhovich,
and Baroni 2017), in which coordination must arise natu-
rally (not from precoordinated learning procedures). Instead,
in the decentralized control problem, the entity seeking to
maximize return specifies all agents, including possibly pre-
coordinated learning procedures.

While the decentralized control problem bears resem-
blance to the classical reinforcement problem in that both
involve maximizing expected return, decentralized control
presents challenges that do not arise in classical reinforce-
ment learning. Most notably, dynamic programming is not
directly applicable to agents in decentralized control prob-
lems because the value of an agent’s information state de-
pends on the policies of its teammates. One way to circum-
vent this issue is by alternating maximization (Nair et al.
2003). Each agent maximizes its policy in turn, holding
the policies of its teammates fixed. This procedure guaran-
tees convergence to a Nash equilibrium, but can be arbitrar-
ily far away from an optimal joint policy, as measured by
expected return. Independent reinforcement learning (IRL)
(Tan 1997), a paradigm in which all agents concurrently exe-
cute reinforcement learning algorithms, is another approach
to dealing with decentralized control problems that has been
the subject of attention in the deep multi-agent reinforce-
ment learning community. However, the convergence guar-
antees of IRL are less well-understood than those of alternat-
ing maximization and those that do exist show convergence
only to local optima (Bono et al. 2018; Claus and Boutilier
1998).

Arguably the most exciting line of research over the last
decade in the pursuit of optimal joint policies for common-
payoff games stems from the seminal insight of Nayyar,
Mahajan, and Teneketzis (Nayyar, Mahajan, and Teneket-

conflation with cooperative game theory, in which cooperative
game carries a distinct meaning.
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zis 2013). In their work, they show that, by conditioning on
common knowledge, a team of decentralized agents can ef-
fectively act as a single agent, allowing for the direct appli-
cation dynamic programming and resolving the difficulty of
joint exploration. But conditioning on common knowledge
is not a panacea. Finding an optimal, or even ε-optimal, joint
policy for a Dec-POMDP (Oliehoek and Amato 2016), the
standard formalism for common-payoff games, is a NEXP-
complete problem (Bernstein et al. 2000; Rabinovich, Gold-
man, and Rosenschein 2003). While Nayyar, Mahajan, and
Teneketzis’s insights lead to solution methods for toy games,
they are not immediately applicable to larger games, as con-
ditioning on common knowledge is an exponential reduc-
tion. And while there has significant progress in scaling
similar ideas in the Dec-POMDP community (Dibangoye
et al. 2016; Dibangoye and Buffet 2018), resulting algo-
rithms have largely been restricted to games having hun-
dreds of states and fewer than ten actions.

At the time of writing, the Bayesian action decoder
(BAD) (Foerster et al. 2019) is the only attempt that has been
made to scale Nayyar, Mahajan, and Teneketzis’s common
knowledge approach to very large settings. BAD is a policy-
based approach relying on deep learning and independence
assumptions. When combined with population based train-
ing, BAD achieves good performance in two-player Han-
abi. However, while BAD achieves its intent of scalability,
the approximations it requires to do so are so compromising
that it struggles to solve games small enough to brute force
an optimal solution.

Ideally there would an exist a common-knowledge ap-
proach matching or exceeding BAD’s performance on large
games that was also capable of solving small and medium-
sized games. This work takes a first step toward this goal
by introducing cooperative approximate policy iteration
(CAPI), a novel deep approximate policy iteration algo-
rithm for common-payoff imperfect information games.
Like BAD, CAPI seeks to scale Nayyar, Mahajan, and
Teneketzis’s insights. But unlike BAD, CAPI prioritizes re-
covering the optimal joint policy over scalability. To demon-
strate the efficacy of CAPI, we consider two common-payoff
games from OpenSpiel. Having as many as tens of thousands
of states and as many as hundreds of actions, these games are
two orders of magnitudes larger than the common-payoff
games that are often considered in Dec-POMDP literature
(Dibangoye et al. 2016). We show that CAPI is able to
achieve strong performance, solving (discovering an optimal
policy of) both games a majority of the time.

Background
Public and Common Knowledge
Common knowledge has long been a subject of investigation
in philosophy (Vanderschraaf and Sillari 2013; Lewis 1969),
multi-agent systems (Halpern and Moses 2000), and (epis-
temic) game theory (Aumann 1976; Pacuit and Roy 2015;
Perea 2012). Let KG

1 be the set of information known to all
agents in group G. Let KG

i+1 be the subset of KG
i that is

known by all agents to be in KG
i . Then

KG
common := ∩∞i=1K

G
i

is common knowledge among G. The significance of com-
mon knowledge is that the inclusion status of any proposi-
tion is known by every member of the group. In general, the
same cannot be said for the set KG

i for any i ∈ N. This dis-
tinction has important implications regarding the abilities of
groups of agents to coordinate their actions.

Unfortunately, while common knowledge appears to be
essential for coordination in many settings, the infinite
regress that defines it can make it expensive to compute
(Schroeder de Witt, Foerster et al. 2019; Kovarı́k et al. 2019;
Šustr, Kovařı́k, and Lisý 2019; Clark and Marshall 1981;
Halpern and Moses 2000). In imperfect information games,
a recent effort to circumvent this issue focuses attention on
public knowledge, a special subset of common knowledge
that is easily computable (Kovarı́k et al. 2019). Specifically,
public knowledge is the subset KG

public ⊂ KG
common of com-

mon knowledge that is publicly announced as such.

Factored Observation Stochastic Games
This work adopts finite common-payoff factored-
observation stochastic game (FOSG) formalism (Kovarı́k
et al. 2019). Finite common-payoff FOSGs have sufficient
expressive power to represent finite Dec-POMDPs, the
standard formalism for common-payoff games, and handle
public knowledge in a principled manner. A common-payoff
FOSG is a tuple G = 〈N ,W, w0,A, T ,R,O〉 where
• N = {1, . . . , N} is the player set.
• W is the set of world states and w0 is a designated initial

state.
• A = A1 × · · · × AN is the space of joint actions.
• T is the transition function mappingW ×A → ∆(W).
• R=(R1, . . . ,RN ) and R1= · · ·=RN : W × A → R is

the reward function.
• O = (Opriv(1), . . . ,Opriv(N),Opub) is the observation

function where
– Opriv(i) : W × A ×W → Opriv(i) specifies the private

observation that player i receives.
– Opub : W ×A×W → Opub specifies the public obser-

vation that all players receive.
– Oi=Oi(w, a,w′)=(Opriv(i)(w, a,w

′),Opub(w, a,w
′))

is player i’s observation.
Note that actions need not be observable in FOSGs.

There are also a number of important derived objects in
FOSGs.
• A history is a finite sequence h = (w0, a0, . . . , wt). We

write g v h when g is a prefix of h.
• The set of histories is denoted byH.
• The information state for player i at h =

(w0, a0, . . . , wt) is si(h) := (O0
i , a

0
i , . . . , O

t
i).

• The information state space for player i is
Si := {si(h) | h ∈ H}.

• The legal actions for player i at si is denoted Ai(si).
• A joint policy is a tuple π = (π1, . . . , πN ), where policy
πi maps Si → ∆(Ai).
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• The public state at h is the sequence
spub(h) := spub(si(h)) := (O0

pub, . . . , O
t
pub).

• The public tree Spub is the space of public states.
• The public set for s ∈ Spub is Ipub(s):={h | spub(h) = s}.
• The information state set for player i at s ∈ Spub is
Si(s) := {si ∈ Si | spub(si) = s}.

• The reach probability of h under π is
Pπ(h) = PT (h)

∏
i∈N P

π
i (h) where

– Chance’s contribution is
PT (h) :=

∏
h′awvh T (h′, a, w).

– Player i’s contribution is
Pπi (h) := Pπi (si(h)) :=

∏
s′iavsi(h) πi(s

′
i, a).

Public Knowledge in Common-Payoff Games
Nayyar, Mahajan, and Teneketzis (Nayyar, Mahajan, and
Teneketzis 2013) were the first to formalize the general
importance of public knowledge for coordinating teams of
agents in common-payoff games. They introduce the par-
tial history sharing information structure, a model for de-
centralized stochastic control resembling common-payoff
FOSGs in that it explicitly acknowledges public obser-
vations. Nayyar, Mahajan, and Teneketzis show that this
structure can be converted into a POMDP, which we re-
fer to as the public POMDP.2 Given a common-payoff
FOSG 〈N ,W, w0,A, T ,R,O〉, we can construct a public
POMDP 〈W̃, w̃0, Ã, T̃ , R̃, Õ〉 as follows.

• The world states of the public POMDP W̃ are the histories
H of the common-payoff FOSG.
• The initial world state of the public POMDP w̃0 is the one

tuple (w0).
• The actions of the public POMDP are called prescription

vectors. A prescription vector is denoted by Γ and has N
components. The ith component of a prescription vector
Γi is the prescription for player i. A prescription Γi maps
si to an element of Ai(si) for each si ∈ Si(spub(h)). In
words, a prescription instructs a player in the common-
payoff FOSG how to act as a function of its private infor-
mation. An example is shown in Figure 1.

• Given w̃ ≡ h and Γ, the transition distribution T̃ (w̃,Γ) is
induced by T (h, a), where

a ≡ Γ(h) := (Γ1(s1(h)), . . . ,ΓN (sN (h))) .

• Given w̃ ≡ h and w̃′ ≡ h′, the reward R̃(w̃,Γ, w̃′) ≡
R1(h,Γ(h), h′) = · · · = RN (h,Γ(h), h′).

• Given w̃ ≡ h and w̃′ ≡ h′, the observation Õ(w̃,Γ, w̃′) ≡
Opub(h,Γ(h), h′).
In summary, the public POMDP can be informally de-

scribed as involving a coordinator who only observes pub-
lic observations and instructs the players how to act based
on these observations. One can imagine that this formula-
tion could be executed at test time in a decentralized fashion

2In control literature, this is called the common information ap-
proach.
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Figure 1: An example prescription vector. There are two
players, with five actions each. Player one (red) has two pos-
sible information states while player two (blue) has three.
The prescription vector decides each player’s action as a
function of its information state, as shown by the darkened
squares.

by having each player carry around an identical copy of the
central coordinator. Since each player feeds its copy of the
coordinator the same public observations, each copy of the
coordinator produces the same prescription vector and it is
as if a single coordinator were acting in the public POMDP.

As with any with POMDP, the public POMDP can also be
considered as a belief MDP, as is exampled in Figure 2. We
follow the precedent set by Foerster et al., who refer to this
perspective as the public belief MDP (PuB-MDP).

The public POMDP and PuB-MDP have proven highly
valuable and have been applied extensively in control lit-
erature (Gagrani and Nayyar 2018; Afshari and Mahajan
2018; Vasconcelos and Martins 2016; Arabneydi and Ma-
hajan 2014; Gagrani and Nayyar 2017; Ouyang, Asghari,
and Nayyar 2018; Lessard and Nayyar 2013; Tavafoghi,
Ouyang, and Teneketzis 2018; Tavafoghi, Ouyang, and
Teneketzis 2016; Ouyang, Tavafoghi, and Teneketzis 2015;
Zhang, Miehling, and Baar 2019; Nayyar et al. 2014; Gupta
2020) and, to a lesser extent, reinforcement learning (Foer-
ster et al. 2019; Hadfield-Menell et al. 2016; Arabneydi and
Mahajan 2015) literature. Unfortunately, the public POMDP
is so massive (there are roughly |Ai|N ·|Si| actions at each
decision point) that it is infeasible to apply POMDP solu-
tion methods (Hausknecht and Stone 2015; Silver and Ve-
ness 2010; Somani et al. 2013; Smith and Simmons 2012;
Pineau, Gordon, and Thrun 2006; Ross et al. 2008; Spaan
and Vlassis 2005; Shani, Pineau, and Kaplow 2013), out-of-
the-box, to common-payoff games of non-trivial size.

The Tiny Hanabi Suite
To emphasize the contrast in guarantees between algorithms
running in the PuB-MDP and independent learning algo-
rithms, we display results from the Tiny Hanabi Suite—a
collection of six very small Dec-POMDPs detailed in the
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Figure 2: A visualization of a decision point in the PuB-
MDP. The game begins in state bs, a distribution over the
public set Ipub(s). The coordinator is given a choice between
two possible prescriptions Γ′ and Γ′′. Both choices generate
observations O′pub and O′′pub with positive probabilities (in-
ducing public states s′ and s′′ respectively). Accordingly,
there are four possible belief states for the next time step.

appendix. We compare independent Q-learning (IQL), hys-
teretic Q-learning (HQL) (Matignon, Laurent, and Le Fort-
Piat 2007), independent advantage actor centralized critic
(IA2C2) (Lowe et al. 2017; Foerster et al. 2017), value de-
composition networks (VDN) (Sunehag, Lever et al. 2017),
simplified action decoding (SAD) (Hu and Foerster 2020),
and Q-learning in the PuB-MDP. All algorithms were im-
plemented tabularly and tuned across nine hyperparameter
settings. The results shown in Figure 3 are averages over
32 runs. Code for the Tiny Hanabi Suite is available at
https://github.com/ssokota/tiny-hanabi.

Despite tuning, reinforcement learning algorithms per-
form poorly. HQL, VDN and SAD solve only four of the
six games, IQL solves only three, and IA2C2 solves only
one. In contrast, Q-learning in the PuB-MDP solves all six
games. There results reaffirm that the differences in guaran-
tees between algorithms that operate in the PuB-MDP and
algorithms that operate within the independent reinforce-
ment learning paradigm are not just theoretical—they also
manifest in practice, even for modern multi-agent reinforce-
ment learning algorithms.

Cooperative Approximate Policy Iteration
In this section, we introduce CAPI, a novel instance of ap-
proximate policy iteration operating within the PuB-MDP.
At a high level, at each decision point, CAPI generates a
large number of prescription vectors using a policy and eval-
uates each of these prescription vectors according to its ex-
pected reward and the expected estimated value of the next
belief state, selecting the most highly assessed prescription
vector as its action. We provide pseudocode for CAPI in Al-
gorithm 1. Each step is explained in greater detail below.

1. At each decision point, CAPI takes a belief state b and a
number of rollouts K as argument.

2. CAPI produces its policy π(b) (over prescription vectors)
as a function of the belief state. CAPI can either keep a
separate tabular policy for each public state in the game

or produce it by passing the belief state through a neural
network.

3. CAPI acquiresK prescription vectors as a function of the
policy π(b). Acquisition can be done either by sampling
or taking the K-most-likely.

4. CAPI evaluates each of the K prescription vectors. For
each prescription vector Γ(k), this involves

(a) Computing expected reward r(k) for Γ(k) given b.
(b) Computing the next belief state b(k,Opub) for each

Opub.
(c) Estimating the value v(k,Opub) of b(k,Opub) using the

value network.
(d) Computing the probability distribution p(k) over

public observations given b and Γ(k).

The assessed value is the expected reward plus the ex-
pected estimated value of the next belief state

q(k) ← r(k) + E
Opub∼p(k)

v(k,Opub).

5. CAPI trains the policy to more closely resemble the
most highly assessed prescription vector Γ(k∗) and the
value network to more closely resemble the correspond-
ing value q(k

∗).

6. CAPI returns a random prescription vector among those
it assessed if it is exploring. Otherwise it returns the most
highly assessed prescription vector.

Episode
0 1M0 1M 0 1M

Ex
pe

ct
ed

 R
et

ur
n

IQL
HQL
IA2C2
VDN
SAD
PuBMDP

Game A Game B Game C

Game D Game E Game F

Figure 3: Performance comparison in the Tiny Hanabi Suite.
Q-learning in the PuB-MDP consistently solves every game.
In contrast, the algorithms operating within the independent
reinforcement learning paradigm (IQL, HQL, IA2C2, VDN,
SAD) are unable to do so.
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Algorithm 1 CAPI

procedure ACT(b, K)
[Γ(k)]← prescription vectors(π(b),K)
[r(k)]← expected rewards(b, [Γ(k)])

[b(k,Opub)]← next beliefs(b, [Γ(k)])

[v(k,Opub)]← estimate values([b(k,Opub)])
[p(k)]← pub observation probabilities(b, [Γ(k)])

[q(k)]← [r(k)] + pub expectation([p(k)], [v(k,Opub)])
k∗ ← argmax([q(k)])
add to buffer(b,Γ(k∗), q(k

∗))
if explore then

return random([Γ(k)])

return Γ(k∗)

We run CAPI without sampling transitions, meaning that
the episode is played out for every transition (i.e., every
branch of the public tree) that occurs with positive probabil-
ity, rather than sampling each transition. After each episode,
we train the value network and policy and wipe the buffer.

As of yet, we have left two important details unexplained.
First, how can CAPI pass a belief state over an exponential
number of histories into a network? To do so, CAPI adopts
a trick from DeepStack (Moravčı́k, Schmid et al. 2017; Ko-
varı́k and Lisý 2019), and instead passes the public state s
and each player’s contribution to the reach probability[

Pπi |Si(s)(· | s)
]
i∈N

as input, where Pπi denotes player i’s contribution to the
reach probability and f |X denotes the function f restricted
to the domainX . This information is a sufficient statistic for
the belief state, but is more compact (albeit still exponential
in the general case). An explanation of sufficiency is offered
in the appendix and can also be found in Kovarı́k and Lisý.

Second, how can CAPI maintain a policy over an expo-
nentially large space? To do so, CAPI adopts a trick from
BAD (Foerster et al. 2019) and uses a distribution over pre-
scription vectors that factors across information states

P (Γ | b) =
∏
i∈N

∏
si∈Si(b)

π(Γ(si) | b).

This parameterization reduces the space required to store
the distribution from |Ai|N ·|Si| to |Ai| · N · |Si|, making
it explicitly manageable in the games we consider. While
this parameterization is constraining in that direct optimiza-
tion by gradient ascent will only guarantee a local optima,
search gives CAPI the opportunity to escape these local op-
tima. CAPI can optionally exploit this parameterization to
add structured exploration by randomly setting rows of the
policy to uniform random.

Experiments
Problem Domains
We consider two common-payoff games from Open-
Spiel (Lanctot, Lockhart et al. 2019) to demonstrate the ef-
ficacy of CAPI.

Trade Comm The first is a communication game based on
trading called Trade Comm. The game proceeds as follows.

1. Each player is independently dealt one of num items
with uniform chance.

2. Player 1 makes one of num utterances utterances,
which is observed by player 2.

3. Player 2 makes one of num utterances utterances,
which is observed by player 1.

4. Both players privately request one of the num items ∗
num items possible trades.

The trade is successful if and only if both player 1 asks to
trade its item for player 2’s item and player 2 asks to trade its
item for player 1’s item. Both players receive a reward of one
if the trade is successful and zero otherwise. In our experi-
ment, we use num items = num utterances = 12.
This means that there is exactly enough bandwidth for the
players to losslessly communicate their items and an opti-
mal policy receives an expected reward of one.

This deceivingly easy-sounding game nicely illustrates
the difficulty of common-payoff games. It is too large to be
tackled directly by using a public POMDP transformation
and POMDP solution methods (the combination of which
have been applied to games having fewer than 10 actions,
whereas Trade Comm has 100s). But simultaneously, as
is shown in the appendix, independent deep reinforcement
learning (Mnih, Kavukcuoglu et al. 2015; Mnih et al. 2016)
catastrophically fails to learn a good policy.

The code used to generate the results for CAPI is available
at https://github.com/ssokota/capi.

Abstracted Tiny Bridge For our second game, we con-
sider Abstracted Tiny Bridge, which is a small common-
payoff version of contract bridge retaining some interesting
strategic elements. In the game, each player is dealt one of
12 hands as a private observation. The two players then bid
to choose the contract. The common payoff is determined
by the chosen contract, the hand of the player who chose the
contract, and the hand of player who did not chose the con-
tract. The challenge of the game is that the players must use
their bids (actions) both to signal their hands and to select the
contract, for which there are increasingly limited options as
more bids are made. The exact rules are detailed on Open-
Spiel.

Despite its name, Abstracted Tiny Bridge is much larger
than games traditionally considered in Dec-POMDP liter-
ature, having over 50,000 nonterminal Markov states. For
reference, Mars Rover (Amato and Zilberstein 2009), the
largest game considered by many Dec-POMDP papers, has
only 256.

Baselines

We again use tabular IQL, HQL, IA2C2, VDN, and SAD as
baselines. In our preliminary experiments the tabular imple-
mentations of these algorithms outperformed the respective
deep variants.
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IA2C2 VDN SAD CAPIIQL HQL

1.0

0.9

0.8

0.7

Figure 4: Performance comparison in Trade Comm. CAPI
consistently solves the game (30/32), whereas none of IQL,
HQL, IA2C2, VDN, or SAD found an optimal policy on
any of the 32 runs. Results for IA2C2 and VDN are below
the bottom cutoff of the graph. Reported results are for best
joint policy discovered.

Results
Below, we describe the high level takeaways of our experi-
ments. Implementation details can be found in the appendix.

Trade Comm In Figure 4, we show results for IQL, HQL,
IA2C2, VDN, and SAD after 24 hours (as many as 100 mil-
lion episodes) and results for CAPI after 2,000 episodes. To
give context to the scores on the graph, the optimal return
is one (gray line) and the best joint policies that do not re-
quire coordination achieve an expected return of only 1/144.
IA2C2 and VDN (below bottom cutoff of graph) barely out-
performed the best no-coordination joint policy. The poor
performance for IA2C2 may be attributable to the stochas-
ticity of its policies, which are not well suited to Trade
Comm’s sparse rewards. For VDN, the poor performance
may be caused by its assumption that the joint value func-
tion decomposes additively, which provides a bad inductive
bias for Trade Comm’s non-monotonic value landscape. In
contrast to IA2C2 and VDN, HQL, IQL, SAD, and CAPI
significantly outperform the best no-coordination joint poli-
cies. Among the three, CAPI does the best, solving the game
in 30 out of the 32 runs and nearly solving it on the remain-
ing 2. In contrast, none of IQL, HQL, and SAD solve Trade
Comm on any of their respective 32 runs.

Abtracted Tiny Bridge In Figure 5, we show results for
IQL, HQL, IA2C2, VDN, and SAD after 10 million episodes
and results for CAPI after 100 thousand episodes. To give
context to the scores on the graph, the optimal return is the
gray line and the best joint policy that we are aware of that
does not require coordination achieves an expected return of
20.32. IA2C2 arguably performed the worst, having both the
lowest scoring minimum, median and maximum. IQL and
VDN performed comparably, with VDN performing slightly
worse. HQL and SAD arguably performed the best among

IA2C2 VDN SAD CAPIIQL HQL
19.6

19.8

20.0

20.2

20.4

20.6

20.8

21.0

Figure 5: Performance comparison in Abstracted Tiny
Bridge. CAPI solves the game on 18 of the 32 runs. None
of IQL, HQL, IA2C2, VDN, or SAD solve the game on any
of their respective runs. Reported results are for best joint
policy discovered.

the independent reinforcement learning algorithms, consis-
tently discovering policies that outperform the others on av-
erage. CAPI shows the strongest performance, solving the
game on 18 of its 32 runs, contrasting the independent rein-
forcement learning algorithms, which do not solve the game
on any of their runs and perform significantly worse on av-
erage.

Related Work
From Dec-POMDP Literature
Independently from Nayyar, Mahajan, and Teneketzis,
Dibangoye et al. (Dibangoye et al. 2016) show that
a common-payoff game can be converted into a non-
observable MDP (NOMDP) (Oliehoek and Amato 2014),
a special kind of POMDP in which the agent (in this case
the coordinator) receives no observations. Dibangoye et al.
call the corresponding belief MDP the occupancy state
MDP. Dibangoye et al. also introduce feature-based heuris-
tic search value iteration (FB-HSVI), a novel planning algo-
rithm with asymptotic optimality guarantees. In a large-scale
study, Dibangoye et al. show that combining the occupancy
state, FB-HSVI, and equivalence relations over information
states is able to solve games with hundreds of states and out-
performs contemporaneously existing methods.

MacDermed and Isbell build on the occupancy state MDP
approach, showing that it can be extended to infinite horizon
problems when beliefs are bounded. They also show how
belief compression can be combined with point-based value
iteration (Spaan and Vlassis 2005) to achieve good empir-
ical results. There is also recent work that extends the oc-
cupancy state MDP approach to the reinforcement learning
problem setting (Dibangoye and Buffet 2018) and to special
cases involving asymmetric observability (Xie, Dibangoye,
and Buffet 2020).
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Compared to the games investigated in these works, the
games investigated in this work are larger. However, the
scalability that is gained by leveraging deep learning and
CAPI’s policy parameterization precludes CAPI from hav-
ing the same guarantees as these algorithms.

From Cooperative MARL Literature
Outside of this work, there has also been work by the multi-
agent reinforcement learning community to apply the PuB-
MDP at scale. BAD (Foerster et al. 2019) scales a policy-
based approach to the PuB-MDP by using an independence
assumption across private features to analytically approxi-
mate belief states and an independence assumption to pa-
rameterize the distribution over prescription vectors. Foer-
ster et al. also introduce a belief update correction procedure
resembling expectation propagation (Minka 2001) and use
population-based training to show how BAD can be scaled
to two-player Hanabi.

Compared to BAD, CAPI is significantly less scalable—
two-player Hanabi is much larger than the games considered
in this work. However, the cost of this scalability is that BAD
cannot solve games even as small as game E of the Tiny
Hanabi Suite. In contrast, our results demonstrate that CAPI
is capable of discovering optimal policies.

There has also been work applying decision-time search
at scale in common-payoff games. SPARTA (Lerer et al.
2020) runs a one-ply search over the next action in the game
at each public belief state, using an externally specified pol-
icy as a blueprint according to which the rest of the rollout
is played. Lerer et al. show that in the limit in the number
of rollouts, SPARTA produces a policy no worse than its
blueprint. In practice, empirical results on Hanabi suggest
that SPARTA’s policy tends to significantly outperform its
blueprint.

Similarly to SPARTA, CAPI performs decision-time plan-
ning in the PuB-MDP. Unlike SPARTA, CAPI is a self-
contained learning algorithm and does not require an exter-
nally specified blueprint. It is also unlike SPARTA in that its
design principles are geared toward solving games, whereas
SPARTA is designed for scalability and has failure cases
even in small games.

From Adversarial Game Literature
Public belief states have also played an important role in
recent successes in adversarial games. In poker, DeepStack
(Moravčı́k, Schmid et al. 2017), Libratus (Brown and Sand-
holm 2018), and Pluribus (Brown and Sandholm 2019)
combine public belief states (Brown and Sandholm 2017;
Šustr, Kovařı́k, and Lisý 2019) with equilibrium computa-
tion methods and precomputed value functions (Kovarı́k and
Lisý 2019). More recently, Brown et al. proposed ReBeL
(Brown et al. 2020), which is similar to CAPI in that both
learn policies and value functions over public belief states
from self-play and use decision-time planning.

From Mixed-Motive Game Literature
Recent work on the game Diplomacy is similar to CAPI in
how it handles a combinatorial action space (Anthony, Ec-
cles et al. 2020; Gray, Lerer et al. 2020). The sampled best

response algorithm Anthony, Eccles et al. propose is espe-
cially similar in that it also performs a one-ply search using
a variant of policy iteration with sampled actions. The equi-
librium search algorithm Gray, Lerer et al. propose is also
similar in that it performs a one-ply search over theK-most-
likely actions.

Conclusion and Future Work
In this work, inspired by BAD (Foerster et al. 2019) and the
seminal work of Nayyar, Mahajan, and Teneketzis, we pro-
pose CAPI, a novel approximate policy iteration algorithm
for common-payoff imperfect information games. In many
ways, CAPI is similar to BAD, but differs notably in that it
is more correct and less scalable. Empirically, we demon-
strate the efficacy of CAPI by showing that it is able to solve
games on which modern multi-agent reinforcement learning
algorithms struggle.

The direction for future work that we are most interested
in is the construction of a single public knowledge approach
inheriting CAPI’s performance (or better) on small games
and BAD’s performance (or better) on large games. The ex-
istence of such an algorithm would be an exciting and unify-
ing discovery. It may require effective mechanisms for learn-
ing or approximating public belief states and for working
with compressed or implicit representations of prescription
vectors. Both of these mechanisms would also be of signifi-
cance for two-player zero-sum games, where the intractabil-
ity of public belief states and prescription vectors is a lim-
iting factor for applying decision-time planning approaches
to larger problems.
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