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Abstract

Integrating model-based machine learning methods into deep
neural architectures allows one to leverage both the expres-
sive power of deep neural nets and the ability of model-based
methods to incorporate domain-specific knowledge. In par-
ticular, many works have employed the expectation maxi-
mization (EM) algorithm in the form of an unrolled layer-
wise structure that is jointly trained with a backbone neu-
ral network. However, it is difficult to discriminatively train
the backbone network by backpropagating through the EM
iterations as they are prone to the vanishing gradient prob-
lem. To address this issue, we propose Highway Expecta-
tion Maximization Networks (HEMNet), which is comprised
of unrolled iterations of the generalized EM (GEM) algo-
rithm based on the Newton-Rahpson method. HEMNet fea-
tures scaled skip connections, or highways, along the depths
of the unrolled architecture, resulting in improved gradient
flow during backpropagation while incurring negligible addi-
tional computation and memory costs compared to standard
unrolled EM. Furthermore, HEMNet preserves the underly-
ing EM procedure, thereby fully retaining the convergence
properties of the original EM algorithm. We achieve signif-
icant improvement in performance on several semantic seg-
mentation benchmarks and empirically show that HEMNet
effectively alleviates gradient decay.

1 Introduction
The Expectation Maximization (EM) algorithm (Dempster,
Laird, and Rubin 1977) is a well-established algorithm in
the field of statistical learning used to iteratively find the
maximum-likelihood solution for latent variable models. It
has traditionally been used for a variety of problems, rang-
ing from unsupervised clustering to missing data imputa-
tion. With the dramatic rise in adoption of deep learning in
the past few years, recent works (Jampani et al. 2018; Hin-
ton, Sabour, and Frosst 2018; Li et al. 2019; Wang et al.
2020; Greff, Van Steenkiste, and Schmidhuber 2017) have
aimed to combine the model-based approach of EM with
deep neural networks. These two approaches are typically
combined by unrolling the iterative steps of the EM as layers
in a deep network, which takes as input the features gener-
ated by a backbone network that learns the representations.
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Jointly training this combined architecture discriminatively
allows one to leverage the expressive power of deep neural
networks and the ability of model-based methods to incorpo-
rate prior knowledge of the task at hand, resulting in poten-
tially many benefits (Hershey, Roux, and Weninger 2014).

First, unrolled EM iterations are analogous to an atten-
tion mechanism when the underlying latent variable model
is a Gaussian Mixture Model (GMM) (Hinton, Sabour, and
Frosst 2018; Li et al. 2019). The Gaussian mean estimates
capture long-range interactions among the inputs, just like
in the self-attention mechanism (Vaswani et al. 2017; Wang
et al. 2018; Zhao et al. 2018). Furthermore, EM attention (Li
et al. 2019) is computationally more efficient than the orig-
inal self-attention mechanism, which computes representa-
tions as a weighted sum of every point in the input, whereas
EM attention computes them as a weighted sum of a smaller
number of Gaussian means. The EM algorithm iteratively
refines these Gaussian means such that they monotonically
increase the log-likelihood of the input features, increasingly
enabling them to attend to the fundamental semantics of the
input while suppressing its irrelevant noise and details.

Despite the beneficial effects EM has on the forward pass,
jointly training a backbone neural network with EM lay-
ers is challenging as they are prone to the vanishing gra-
dient problem (Li et al. 2019). This phenomenon, which
was first introduced in (Vaswani et al. 2017), is a problem
shared by all attention mechanisms that employ the dot-
product softmax operation in the computation of attention
maps. Skip connections have shown to be remarkably effec-
tive at resolving vanishing gradients for a variety of deep
network architectures (Srivastava, Greff, and Schmidhuber
2015; He et al. 2016b; Huang et al. 2017; Gers, Schmidhu-
ber, and Cummins 1999; Hochreiter and Schmidhuber 1997;
Cho et al. 2014), including attention-based models (Vaswani
et al. 2017; Bapna et al. 2018; Wang et al. 2019). However,
the question remains as how to incorporate skip connections
in a way that maintains the underlying EM procedure of con-
verging to a (local) optimum of the data log-likelihood.

In this paper, we aim to address the vanishing gradient
problem of unrolled EM iterations while preserving the EM
algorithm, thereby retaining its efficiency and convergence
properties and the benefits of end-to-end learning. Instead of
unrolling EM iterations, we unroll generalized EM (GEM)
iterations, where the M-step is replaced by one step of the
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Newton-Rahpson method (Lange 1995). This is motivated
by the key insight that unrolling GEM iterations introduces
weighted skip connections, or highways (Srivastava, Greff,
and Schmidhuber 2015), along the depths of the unrolled ar-
chitecture, thereby improving its gradient flow during back-
propgation. The use of Newton’s method is non-trivial. Not
only do GEM iterations based on Newton’s method require
minimal additional computation and memory costs com-
pared to the original EM, but they are also guaranteed to
improve the data log-likelihood, thereby inheriting the de-
noising capabilities of the EM algorithm. To demonstrate the
effectiveness of our approach, we formulate the proposed
GEM iterations as an attention module for existing back-
bone networks, which we refer to as Highway Expectation
Maximization Networks (HEMNet), and evaluate its perfor-
mance on semantic segmentation, a task that has been shown
to benefit from denoising computations (Li et al. 2019).

2 Related Works
Unrolled expectation maximization. With the recent rise
in the adoption of deep learning, many works have incor-
porated modern neural networks with the well-studied EM
algorithm to leverage its clustering and filtering capabili-
ties. SSN (Jampani et al. 2018) combines unrolled EM it-
erations with a neural network to learn task-specific super-
pixels. EMCaps (Hinton, Sabour, and Frosst 2018) use un-
rolled EM as an attentional routing mechanism between ad-
jacent layers of the network. EMANet (Li et al. 2019) de-
signs an EM-based attention module that boosts semantic
segmentation accuracy of a backbone network. A similar
module is used in (Wang et al. 2020) as a denoising filter for
fine-grained image classification. On the other hand, NEM
(Greff, Van Steenkiste, and Schmidhuber 2017) incorporates
generalized EM (GEM) (Wu 1983) to learn representations
for unsupervised clustering, where the M-step of the orig-
inal EM is replaced with one gradient ascent step towards
improving the data log-likelihood. Unlike original EM and
our proposed GEM based on Newton’s method, NEM does
not guarantee an improvement of the data log-likelihood.
Skip connections. Skip connections are direct connections
between nodes of different layers of a neural network that
bypass, or skip, the intermediate layers. They help overcome
the vanishing gradient problem associated with training very
deep neural architectures (Bengio, Simard, and Frasconi
1994) by allowing gradient signals to be directly backprop-
agated between adjacent layers (He et al. 2016a; Srivastava,
Greff, and Schmidhuber 2015; Huang et al. 2017; Hochreiter
and Schmidhuber 1997; Cho et al. 2014). Skip connections
are particularly crucial to attention-based models, which are
also prone to vanishing gradients (Bapna et al. 2018; Wang
et al. 2019; Zhang, Titov, and Sennrich 2019). The Trans-
former (Vaswani et al. 2017) employs an identity skip con-
nection around each of the sub-layers of the network, with-
out which the training procedure collapses, resulting in sig-
nificantly worse performance (Bapna et al. 2018). Subse-
quent works (Bapna et al. 2018; Wang et al. 2019) trained
deeper models by creating weighted skip connections along
the depth of the Transformer’s encoder, providing multiple
backpropagation paths and improving gradient flow.

Our approach is motivated by the success of the above
works in combating vanishing gradients and, in fact, struc-
turally resembles Highway Networks (Srivastava, Greff, and
Schmidhuber 2015) and Gated Recurrent Units (Cho et al.
2014). The key difference is that our method introduces skip
connections into the network in a way that preserves the
underlying EM procedure and by extension its convergence
properties and computational efficiency.

3 Preliminaries
3.1 EM Algorithm for Gaussian Mixture Models
The EM algorithm is an iterative procedure that finds the
maximum-likelihood solution for latent variable models.
They are described by the joint distribution p(X,Z|θ),
where X and Z denote the dataset of N observed samples
xn and the corresponding set of latent variables zn, respec-
tively, and θ denotes the model parameters. The Gaussian
mixture model (GMM) (Richardson and Green 1997) is a
widely used latent variable model that models the distribu-
tion of observed data point xn as a linear superposition of
K Gaussians:

p(xn) =
K∑

k=1

πkN (xn|µk,Σk), (1)

ln p(X|θ) =
N∑

n=1

ln

{
K∑

k=1

N (xn|µk, σ
2I)

}
, (2)

where the mixing coefficient πk, mean µk, and covariance
Σk are the parameters for the k-th Gaussian. In this paper,
we use a fixed isotropic covariance Σk = σ2I and drop the
mixing coefficients as done in many real applications. The
EM algorithm aims to maximize the resulting log-likelihood
function in Eq. (2) by performing coordinate ascent on its
evidence lower bound L (ELBO) (Neal and Hinton 1999):

ln p(X|θ) ≥
∑
Z

q(Z) ln p(X,Z|θ)︸ ︷︷ ︸
Q(θ,q(Z))

+
∑
Z

−q(Z) ln q(Z)︸ ︷︷ ︸
H(q(Z))

=
N∑

n=1

K∑
k=1

γnk lnN (xn|µk, σ
2I)− γnk ln γnk︸ ︷︷ ︸

L(µ,γ)

,

(3)

which is the sum of the expected complete log-likelihood
Q(θ, q) and entropy term H(q), for any arbitrary distribu-
tion q(Z) defined by

∑
k γnk = 1. By alternately maximiz-

ing the ELBO with respect to q and θ via the E- and M-step,
respectively, the log-likelihood is monotonically increased
in the process and converges to a (local) optimum:

E-step: γnk =
N (xn|µold

k , σ2I)∑K
j=1N (xn|µold

j , σ2I)
(4)

M-step: µnew
k =

1

Nk

N∑
n=1

γnkxn (5)
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Figure 1: High-level structure of the proposed HEMNet

In the E-step, the optimal q is p(Z|X,θold), the posterior
distribution of Z. Eq. (4) shows the posterior for GMMs,
which is described by γnk, the responsibility that the kth
Gaussian basis µk takes for explaining observation xn. In
the M-step, the optimal θnew = arg maxθ Q(θ, q(θold))
since the entropy term of the ELBO isn’t dependent on θ.
For GMMs, this arg max is tractable, resulting in the closed-
form of Eq. (5), where Nk =

∑N
n=1 γnk.

When the M-step is not tractable, however, we resort to
the generalized EM (GEM) algorithm, whereby instead of
maximizing Q(θ, q) with respect to θ the aim is to at least
increase it, typically by taking a step of a nonlinear optimiza-
tion method such as gradient ascent or the Newton-Raphson
method. In this paper, we use the GEM algorithm based on
the Newton-Raphson method instead for its favorable prop-
erties, which are described in section 4.2:

θnew = θold − η

[(
∂2Q

∂θ∂θ

)−1
∂Q

∂θ

]
θ=θold

(6)

3.2 Unrolled Expectation Maximization
In this section, we no longer consider EM iterations as an
algorithm, but rather as a sequence of layers in a neural-
network-like architecture. This structure, which we refer to
as “unrolled EM”, is comprised of a pre-defined T number
of alternating E- and M-steps, both of which are considered
as network layers that take as input the output of its previous
step and the feature map X generated by a backbone CNN.
For simplicity, we consider the feature map X of shape C ×
H×W from a single sample, which we reshape intoN×C,
where N = H ×W .

Given the CNN features X ∈ RN×C and Gaussian bases
from the t-th iteration µ(t) ∈ RK×C , the E-step com-
putes the responsibilities γ(t+1) ∈ RN×K according to
Eq. (4), which can be rewritten in terms of the RBF kernel
exp(−||xn − µk||22/σ2):

γ
(t+1)
nk =

exp(−||xn − µ
(t)
k ||22/σ2)∑K

j=1 exp(−||xn − µ
(t)
j ||22/σ2)

(7)

E-step: γ(t+1) = softmax
(

Xµ(t)>

σ2

)
(8)

As shown in Eq. (8), the RBF kernel can be replaced by the
exponential inner dot product exp(x>nµk/σ

2), which brings
little difference to the overall results (Wang et al. 2018; Li
et al. 2019) and can be efficiently implemented by a softmax
applied to a matrix multiplication operation scaled by the

temperature σ2. The M-step then updates the Gaussian bases
according to Eq. (5), which is implemented by a matrix mul-
tiplication between normalized responsibilities γ̄ and CNN
features X:

M-step: µ(t+1) = γ̄(t+1)>X, (9)

After unrolling T iterations of EM, the input xn, whose
distribution was modeled as a mixture of Gaussians, is re-
constructed as a weighted sum of the converged Gaussian
bases, with weights given by the converged responsibilities
(Li et al. 2019; Wang et al. 2020). As a result, reconstructing
the input features X̃ ∈ RN×C , which we call the R-step, is
also implemented by matrix multiplication:

R-step: X̃ = γ(T )µ(T ) (10)

Unrolling T iterations of E- and M-steps followed by one
R-step incursO(NKTC) complexity (Li et al. 2019). How-
ever, T can be treated as a small constant for the values used
in our experiments, resulting in a complexity of O(NKC).

4 Highway Expectation Maximization
Networks

4.1 Vanishing Gradient Problem of EM
Vanishing gradients in unrolled EM layers stem from the
E-step’s scaled dot-product softmax operation, shown in
Eq. (8). This also happens to be the key operation of the
self-attention mechanism in the Transformer (Vaswani et al.
2017), which was first proposed to address vanishing gradi-
ents associated with softmax saturation; without scaling, the
magnitude of the dot-product logits grows larger with in-
creasing number of channels C, resulting in a saturated soft-
max with extremely small local gradients. Therefore, gradi-
ents won’t be backpropagated to layers below a saturated
softmax. The Transformer counteracts this issue in self-
attention layers by setting the softmax temperature σ2 =√
C, thereby curbing the magnitude of the logits.
However, even with this dot-product scaling operation the

Transformer is still prone to gradient vanishing, making it
extremely difficult to train very deep models (Bapna et al.
2018; Wang et al. 2019). In fact, the training procedure has
shown to even collapse when residual connections are re-
moved from the Transformer (Bapna et al. 2018). To make
matters worse, an EM layer only has a single gradient path
through µ(t) that reach lower EM layers, as opposed to the
self-attention layer, which backpropagates gradients through
multiple paths and therefore has shown to prevent more se-
vere gradient vanishing (Zhang, Titov, and Sennrich 2019).
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Figure 2: Architecture of single HEM layer, which is com-
prised of one E-step and N-step operation

4.2 Unrolled Highway Expectation Maximization

In order to resolve the vanishing gradient problem in un-
rolled EM layers, we propose Highway Expectation Max-
imization Networks (HEMNet), which is comprised of
unrolled GEM iterations based on the Newton-Raphson
method, as shown in Fig. 1. The key difference between
HEMNet and unrolled EM is that the original M-step is re-
placed by one Newton-Raphson step, or N-step:

N-step:

µ
(t+1)
k = µ

(t)
k − η

(
∂2Q

∂µk∂µk

)−1
∂Q
∂µk

(11)

= µ
(t)
k − η

−σ2

N
(t+1)
k

{
N∑

n=1

γ
(t+1)
nk

σ2

(
xn − µ

(t)
k

)}
(12)

= (1− η)µ
(t)
k︸ ︷︷ ︸

skip connection

+η

(
1

N
(t+1)
k

N∑
n=1

γ
(t+1)
nk xn

)
︸ ︷︷ ︸

FEM
(
µ

(t)
k ,X

)
, (13)

where η is a hyperparameter that denotes the step size. For
GMMs, the N-step update is given by Eq. (11), which re-
arranged becomes Eq. (13), a weighted sum of the current
µ

(t)
k and the output of one EM iteration FEM

(
µ

(t)
k ,X

)
. In-

terestingly, the original M-step is recovered when η = 1,
implying that the N-step generalizes the EM algorithm.

Eq. (13) is significant as the first term introduces a skip
connection that allows gradients to be directly backpropa-
gated to earlier EM layers, thereby alleviating vanishing gra-
dients. Furthermore, the weighted-sum update of the N-step
endows HEMNet with two more crucial properties: improv-
ing the ELBO in the forward pass and incurring negligible
additional space-time complexity compared to unrolled EM.

Backward-pass properties: alleviating vanishing gradi-
ents The update equation of Eq. (13) resembles that of
the Highway Network (Srivastava, Greff, and Schmidhuber
2015), which contain scaled skip connections, or highways,
that facilitate information flow between neighboring layers.
HEMNet also contains highways in between its unrolled it-
erations, or HEM layers, that bypass the gradient-attenuating
E-step and allow gradients to be directly sent back to earlier
HEM layers, as shown in Fig. 2. To show this, we derive ex-
pressions for the upstream gradients to each HEM layer and

its (shared) input, by first recursively applying Eq. (13):

µ
(T )
k =(1− η)(T−t)µ

(t)
k

+

{
T−1∑
i=t

η(1− η)(T−i−1)FEM
(
µ

(i)
k ,X

)}
,

(14)

and then applying the chain rule to Eq. (14), where E , T ,
F̂ (i)

k = η(1 − η)(T−i−1)FEM
(
µ

(i)
k ,X

)
are the loss func-

tion, number of HEM layers, and shorthand that absorbs the
scalars, respectively:

∂E
∂µ

(t)
k

=
∂E

∂µ
(T )
k

∂µ
(T )
k

∂µ
(t)
k

=
∂E

∂µ
(T )
k

{
(1− η)(T−t) +

∂

∂µ
(t)
k

T−1∑
i=t

F̂ (i)
k

} (15)

It can be seen that the upstream gradient to µk is the
sum of two gradient terms: a term (1 − η)(T−t) ∂E

∂µ
(T )
k

directly propagated through the skip connections and a
term ∂E

∂µ
(T )
k

∂

∂µ
(t)
k

∑T−1
i=t F̂

(i)
k propagated through the E-step,

which is negligible due to the E-step’s vanishing gradient
problem and hence can be ignored. This means that as we
increase the scalar (1− η)(T−t) (by reducing η), the propor-
tion of upstream gradients backpropagated to earlier HEM
layers increases as well. Furthermore, it can be seen that
when η = 1 (the original EM case) the skip connection
term in Eq. (15) vanishes and leaves only gradients prop-
agated through the gradient-attenuating E-step, highlighting
the vanishing gradient problem of unrolled EM.

One consequence of Eq. (15) is that as η decreases, the
backbone network parameters will be increasingly influ-
enced by earlier HEM layers, as shown in the following
derivation of the upstream gradients to input point xn, which
is generated by the backbone network:

∂E
∂xn

=

T∑
t=1

∂E
∂x

(t)
n

(16)

=
T∑

t=1

K∑
k=1

∂E
∂µ

(t)
k

∂µ
(t)
k

∂xn︸ ︷︷ ︸
grad. from N-step

+
∂E
∂µ

(t)
k

∂µ
(t)
k

∂γ
(t)
nk

∂γ
(t)
nk

∂xn︸ ︷︷ ︸
grad. from E-step

(17)

≈
T∑

t=1

K∑
k=1

{
(1− η)(T−t)

∂E
∂µ

(T )
k

}(
η
γ
(t)
nk

N
(t)
k

)
(18)

Eq. (17) shows that, ignoring the gradients from the E-step,
∂E
∂xn

becomes a weighted sum of ∂µ
(t)
k

∂xn
weighted by ∂E

∂µ
(t)
k

,

which is substituted with Eq. (15). As η is reduced, the up-
stream gradients to earlier HEM layers grow relatively larger
in magnitude, meaning that the loss gradients with respect to
xn become increasingly dominated by earlier HEM layers.
Therefore, the backbone network can potentially learn bet-
ter representations as it takes into account the effect of its
parameters on not only the final HEM layers but also on ear-
lier HEM layers, where most of the convergence of the EM
procedure occurs. A full derivation is given in Appendix A.
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PPPPPPTtrain

η 0.1 0.2 0.4 0.8 EMANet

1 77.17 77.50 77.92 77.26 77.31
2 77.16 77.80 77.50 78.10 77.55
3 77.05 77.82 77.81 77.94 76.51
4 77.64 77.73 78.11 77.10 76.63
6 77.46 78.22 77.83 77.40 76.26
8 77.48 78.14 77.60 78.04 76.48
12 77.74 78.11 77.73 77.84 76.17
16 77.64 77.65 77.81 77.06 76.29

Table 1: Ablation study on training iteration number Ttrain
and step size η on PASCAL VOC. The rightmost column de-
notes EMANet (Li et al. 2019), where η = 1.0.

PPPPPPTeval

η 0.1 0.2 0.4 0.8 EMANet

1 64.52 70.30 73.20 77.16 76.26
2 70.72 75.50 76.94 78.10 77.55
3 73.72 77.33 77.85 78.34 77.73
4 75.34 77.96 78.11 78.42 77.70
6 76.88 78.22 78.24 78.37 77.50
8 77.47 78.13 78.24 78.30 77.37

12 77.74 77.98 78.19 78.26 77.21
16 77.84 77.90 78.17 78.23 77.16

Table 2: Ablation study on evaluation iteration number Teval.
For each η, we perform ablations on the best Ttrain (under-
lined). The best Teval is highlighted in bold.
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Gradient to X from E-step
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η= 0.4
η= 0.8
η= 1.0

0 10000 20000 30000
iteration

(d)

Total gradient to X

Figure 3: The effects of changing η on (a) the ELBO, (b) the gradient to input X from N-step and (c) from E-step at the
beginning of training, and (d) the total gradient to X during training. The E-step gradients in (c) are on the order of 10−7 and
is therefore not displayed. The mean absolute gradients were computed by backpropagating with respect to the same set of 100
randomly chosen training samples, every 2000 training iterations.

Forward-pass properties: improvement of ELBO In the
forward pass, the N-step increases the ELBO for fractional
step sizes, as shown in the following proposition:
Proposition 1. For step size η ∈ (0, 1], the N-step of a HEM
iteration given by Eq. (13) updates µ such that

L(µ(t+1),γ(t+1)) > L(µ(t),γ(t+1)), (19)
unless µ(t+1) = µ(t), where L is the ELBO for GMMs in
Eq. (3), γ(t+1) are the responsibilities computed by the E-
step using µ(t) in Eq. (4), and t is the iteration number.

The proof is given in Appendix B. Since HEMNet is com-
prised of alternating E-steps and N-steps, it increases the
ELBO, just as does the original unrolled EM. This is a non-
trivial property of HEMNet. Increasing the ELBO converges
the unrolled HEM iterations to a (local) maximum of the
data-log likelihood. In other words, with every successive
HEM iteration, the updated Gaussian bases µk and attention
weights γnk can better reconstruct the original input points,
as their important semantics of the input increasingly dis-
tilled into the GMM parameters.

Computational complexity Eq. (13) shows that comput-
ing the N-step update requires one additional operation to
the original M-step: a convex summation of the M-step out-
put FEM

(
µ(t),X

)
and the current µ(t) estimate. This op-

eration incurs minimal additional computation and memory
costs compared to the matrix multiplications in the E- and
M-step, which dominates unrolled EM. Therefore, HEMNet
hasO(NKC) space-time complexity, as does unrolled EM.

5 Experiments
5.1 Implementation Details
We use ResNet (He et al. 2016a) pretrained on Ima-
geNet (Russakovsky et al. 2015) with multi-grid (Chen et al.
2017) as the backbone network. We use ResNet-50 with an
output stride (OS) of 16 for all ablation studies and Resnet-
101 with OS = 8 for comparisons with other state-of-the-
art approaches. We set the temperature σ2 =

√
C follow-

ing (Vaswani et al. 2017), where C is the number of in-
put channels to HEMNet, which is set to 512 by default.
The step size is set to η = 0.5 for PASCAL VOC (Ever-
ingham et al. 2010) and PASCAL Context (Mottaghi et al.
2014), and η = 0.6 for COCO Stuff (Caesar, Uijlings,
and Ferrari 2018). We set the training iteration number to
Ttrain = 3 for all datasets. We use the moving average
mechanism (Ioffe and Szegedy 2015; Li et al. 2019) to up-
date the initial Gaussian bases µ(0). We adopt the mean
Intersection-over-Union (mIoU) as the performance metric
for all experiments across all datasets. Further details, in-
cluding the training regime, are outlined in Appendix C.

5.2 Ablation Studies
Ablation study on step size In Fig. 3, we analyze the ef-
fects of the step size η on the ELBO in the forward pass and
the gradient flow in the backward pass. It can be seen that
as η is reduced, the convergence of the ELBO slows down,
requiring more unrolled HEM layers than would otherwise
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Method SS MS FLOPs Memory Params

ResNet-101 - - 370G 6.874G 40.7M

DeeplabV3+ 77.62 78.72 +142G +318M +16.0M
PSANet 78.51 79.77 +185G +528M +26.4M
EMANet* 79.73 80.94 +45.2G +236M +5.15M
HEMNet* 80.93 81.44 +45.2G +236M +5.15M
EMANet** 80.05 81.32 +92.3G +329M +10.6M
HEMNet** 81.33 82.23 +92.3G +331M +10.6M

Table 3: Comparisons on PASCAL VOC val set in mIoU
(%). All results are computed for a ResNet-101 backbone,
where OS = 8 for training and evaluation. FLOPs and mem-
ory are computed for input size of 513 × 513. SS: Single-
scale input testing. MS: Multi-scale input testing augmented
by left-right flipped inputs. * and ** denote 256 and 512
input channels, respectively, to EMANet and HEMNet.

Method Backbone mIoU (%)

DeeplabV3 (Chen et al. 2017) ResNet-101 85.7
PSANet (Zhao et al. 2018) ResNet-101 85.7
EncNet (Zhang et al. 2018a) ResNet-101 85.9
Exfuse (Zhang et al. 2018b) ResNet-101 86.2
SDN (Fu et al. 2019) ResNet-101 86.6
CFNet (Zhang et al. 2019) ResNet-101 87.2
EMANet (Li et al. 2019) ResNet-101 87.7
HEMNet ResNet-101 88.0

Table 4: Comparisons on the PASCAL VOC test set.

(Fig. 3a) . On the other hand, the gradients backpropagated
to input X from each HEM layer, which is dominated by
the N-step, become more evenly distributed as a greater pro-
portion of upstream gradients are sent to earlier HEM layers
(Fig. 3b). The subtlety here is that reducing η does not seem
to necessarily increase the magnitude of the total upstream
gradients to X (Fig. 3d), since the gradients sent back to X
from the t-th HEM layer is proportional to η(1−η)(T−t), as
shown in Eq. (18). This suggests that the change in perfor-
mance from changing η is likely due to the resulting change
in relative weighting among the different HEM layers when
computing the gradients with respect to xn, not the absolute
magnitude of those gradients.

In other words, there is a trade-off, controlled by η, be-
tween the improvement of the ELBO in the forward pass
and how evenly the early and later HEM layers contribute
to backpropagating gradients to X in the backward pass. Ta-
ble 1 shows this trade-off, where the best performance for
each value of Ttrain is achieved by intermediate values of
η, suggesting that they best manage this trade-off. Further-
more, the best η decreases for larger Ttrain, since later HEM
layers become increasingly redundant as they converge to
an identity mapping of the GMM parameter estimates as the
underlying EM procedure converges as well. Decreasing η
reduces the relative weighting on these redundant layers by
increasing the proportion of upstream gradients sent to ear-
lier HEM layers, resulting in potentially better-learned rep-
resentations.

Method Backbone mIoU (%)

MSCI (Lin et al. 2018) ResNet-152 50.3
SGR (Liang et al. 2018) ResNet-101 50.8
CCL (Ding et al. 2018) ResNet-101 51.6
EncNet (Zhang et al. 2018a) ResNet-101 51.7
DANet (Fu et al. 2019) ResNet-101 52.6
ANLNet (Zhu et al. 2019) ResNet-101 52.8
EMANet (Li et al. 2019) ResNet-101 53.1
CFNet (Zhang et al. 2019) ResNet-101 54.0
HEMNet ResNet-101 54.3

Table 5: Comparisons on the PASCAL Context test set.

Method Backbone mIoU (%)

RefineNet (Lin et al. 2017) ResNet-101 33.6
CCL (Ding et al. 2018) ResNet-101 35.7
ANLNet (Zhu et al. 2019) ResNet-101 37.2
SGR (Liang et al. 2018) ResNet-101 39.1
DANet (Fu et al. 2019) ResNet-101 39.7
EMANet (Li et al. 2019) ResNet-101 39.9
HEMNet ResNet-101 40.1

Table 6: Comparisons on the COCO Stuff test set.

Ablation study on iteration number We further inves-
tigate the effect of changing the training iteration number
Ttrain. It can be seen in Table 1 that for all step sizes η
the mIoU generally increases with the Ttrain up to a certain
point, after which it decreases. This is likely attributed to the
vanishing gradient problem as an exponentially less propor-
tion of the upstream gradients reach earlier HEM layers as
Ttrain increases, meaning that the backbone network param-
eters are increasingly influenced by the later HEM layers,
which amounts to a mere identity mapping of the GMM pa-
rameter estimates for high values of Ttrain. This is corrobo-
rated by the observation that the performance peaks at larger
Ttrain for smaller η, which can be explained by the fact that
smaller η slows down the exponential decay of the upstream
gradients to earlier HEM layers, allowing us to unroll more
HEM layers. In the case of EMANet (Li et al. 2019) the per-
formance peaks at a low value of Ttrain = 2, most likely be-
cause gradients aren’t backpropagated through the unrolled
EM iterations, preventing the rest of the network from learn-
ing representations optimized for the EM procedure.

Table 2 shows the effect of changing the evaluation it-
eration number, after training. It can be seen that for all
values of η except 0.2, increasing T beyond Ttrain during
evaluation, where vanishing gradients is no longer an issue,
can further improve performance. The observation can be at-
tributed to the improvement in the ELBO with more HEM
layers, which is consistent with previous findings (Jampani
et al. 2018; Li et al. 2019). We suspect that the reason for the
performance deterioration at high values of Teval is that the
Gaussian bases have not fully converged at the chosen values
of Ttrain and that there is still room for the Gaussian bases’
norms to change, making it difficult for HEMNet to gener-
alize beyond its training horizon (David Krueger 2016).
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Figure 4: Visualization of the attention maps γ, input feature maps X from the backbone CNN, and reconstructed inputs
X̃ = γµ for a sample image from the PASCAL VOC 2012 val set. The images in the top-left corner contain the original image,
label, and the prediction made by HEMNet with a ResNet-101 backbone. The three rows below show the attention maps (left)
and reconstructed inputs (right) at each HEM iteration. γ·k denotes the attention map w.r.t. the k-th Gaussian basis µk and X̃·c
denotes the c-th channel of the reconstructed input, where 1 ≤ i, j, k ≤ K and 1 ≤ a, b, c ≤ C.

5.3 Comparisons with State-of-the-arts
We first compare our approach to EMANet (Li et al. 2019)
and other baselines such as DeeplabV3+ (Chen et al. 2018)
on the PASCAL VOC validation set. Table 3 shows that
HEMNet outperforms all baselines by a large margin. Most
notably, HEMNet outperforms EMANet while incurring vir-
tually the same computation and memory costs and using
the same number of parameters. Furthermore, HEMNet with
256 input channels exceeds EMANet with 512 input chan-
nels, and HEMNet’s single-scale (SS) performance is on par
with EMANet’s multi-scale (MS) performance, which is a
robust method for improving semantic segmentation accu-
racy (Zhao et al. 2017; Chen et al. 2018; Li et al. 2019). We
also display significant improvement over EMANet on the
PASCAL VOC, PASCAL Context and COCO Stuff test set,
as shown in Table 4, Table 5, and Table 6.

5.4 Visualizations
In Fig. 4, we demonstrate the effect of improving the ELBO
in HEMNet by visualizing the responsibilities γ, which act
as attention weights, and the feature map X̃ reconstructed
from those attention weights. It can be seen that the atten-
tion map with respect to each Gaussian basis attends to a
specific aspect of the input image, suggesting that each basis
corresponds to a particular semantic concept. For instance,
the attention maps with respect to bases i, j, and k highlights
the background, person, and motorbike, respectively.

Furthermore, after every HEM iteration the attention
maps grow sharper and converge to the underlying semantics

of each basis. As a result, every feature map reconstructed
from the converged attention maps γ and Gaussian bases µ
recovers the fundamental semantics of the noisy input X,
while suppressing irrelevant concepts and details. The de-
noising capability stemming from this underlying EM pro-
cedure is the reason why HEMNet was applied to seman-
tic segmentation, a task that requires denoising unnecessary
variations in the input image to capture its fundamental se-
mantics (Li et al. 2019). HEMNet facilitates this denoising
of the backbone CNN features as the module’s constituent
HEM iterations and R-step, which estimates the optimal
GMM parameters and reconstructs X from these estimates,
respectively, amount to a special case of the GMM Symmet-
ric Smoothing Filter (Chan, Zickler, and Lu 2017).

6 Conclusion

In this work, we proposed Highway Expectation Maximiza-
tion Networks (HEMNet) in order to address the vanishing
gradient problem present in expectation maximization (EM)
iterations. HEMNet is comprised of unrolled iterations of the
generalized EM algorithm based on the Newton-Rahpson
method, which introduces skip connections that ameliorate
gradient flow while preserving the underlying EM procedure
and incurring negligible additional computation and mem-
ory costs. We performed extensive experiments on several
semantic segmentation benchmarks to demonstrate that our
approach effectively alleviates vanishing gradients and en-
ables better performance.
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Ethical Impact
Our research can be broadly described as an attempt to lever-
age what has been two very successful approaches to ma-
chine learning: model-based methods and deep neural net-
works. Deep learning methods have shown state-of-the-art
performance in a variety of applications due to their excel-
lent ability for representation learning, but they are consid-
ered as black box methods, making it extremely difficult to
interpret their inner workings or incorporate domain knowl-
edge of the problem at hand. Combining deep neural net-
works with well-studied, classical model-based approaches
provide a straightforward way to incorporate problem spe-
cific assumptions, such as those from the physical world
like three-dimensional geometry or visual occlusion. Fur-
thermore, this combined approach also provides a level of
interpretability to the inner workings of the system, through
the lens of well-studied classical methods. In our paper we
consider a semantic segmentation task, which has become
a key component of the vision stack in autonomous driv-
ing technology. Combining deep neural networks with the
model-based approaches can be crucial for designing and
analyzing the potential failure modes of such safety-critical
applications of deep-learning based systems. For instance
in our approach, the Gaussian bases converge to specific
semantics with every passing EM iteration, and the corre-
sponding attention maps give an indication of the underlying
semantics of a given input image. This can help researchers
better understand what the system is actually learning, which
can be invaluable, for example, when trying to narrow down
the reason for an accident induced by a self-driving vehicle.
We hope that our work encourages researchers to incorpo-
rate components inspired by classical model-based machine
learning into existing deep learning architectures, enabling
them to embed their domain knowledge into the design of
the network, which in turn may provide another means to
better interpret its inner mechanism.
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