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Abstract

Invariance and stability are essential notions in dynamical sys-
tems study, and thus it is of great interest to learn a dynamics
model with a stable invariant set. However, existing methods
can only handle the stability of an equilibrium. In this paper,
we propose a method to ensure that a dynamics model has
a stable invariant set of general classes such as limit cycles
and line attractors. We start with the approach by Manek and
Kolter (2019), where they use a learnable Lyapunov function
to make a model stable with regard to an equilibrium. We
generalize it for general sets by introducing projection onto
them. To resolve the difficulty of specifying a to-be stable
invariant set analytically, we propose defining such a set as a
primitive shape (e.g., sphere) in a latent space and learning
the transformation between the original and latent spaces. It
enables us to compute the projection easily, and at the same
time, we can maintain the model’s flexibility using various
invertible neural networks for the transformation. We present
experimental results that show the validity of the proposed
method and the usefulness for long-term prediction.

1 Introduction
Machine learning of dynamical systems appears in diverse
disciplines, such as physics (Raissi, Perdikaris, and Karni-
adakis 2019), biology (Costello and Martin 2018), chemistry
(Li, Kermode, and De Vita 2015), and engineering (Morton
et al. 2018). Recent progress in dynamics models includes
the Gaussian process dynamics models (Wang, Fleet, and
Hertzmann 2006) and models based on deep neural networks
(e.g., Takeishi, Kawahara, and Yairi 2017; Lusch, Kutz, and
Brunton 2018; Chen et al. 2018; Manek and Kolter 2019;
Greydanus, Dzamba, and Yosinski 2019). Whatever mod-
els are employed, we often would like to know and control
the nature of a learned dynamics model, for example, to re-
flect prior knowledge of the dynamics and to ensure specific
behavior of the learned dynamics model.

Invariance and stability of some subsets of a state space
play a key role in dynamical systems study as they concisely
describe the asymptotic behavior (i.e., in t→∞) of a system.
For example, dynamical systems with stable invariant sets
are used to explain neurological functions such as working
memory and eye control (Eliasmith 2005). Moreover, various
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self-sustained oscillations in physical, chemical, or biolog-
ical phenomena are modeled as systems with stable closed
orbits (Strogatz 2015). In the dynamical systems study, ana-
lyzing system’s stability has been a classical yet challenging
problem. In contrast, synthesizing (i.e., achieving) stability of
some dynamics models is a problem that has been addressed
mainly in automatic control and machine learning. Whereas
control theory has been trying to achieve stable systems by
designing control inputs, another possible strategy is to learn
a dynamics model from data with a constraint that the model
attains some desired stability property.

In this work, we tackle the problem of learning dynamics
models with guaranteed invariance and stability. This prob-
lem is important in many practices of machine learning. For
example, we often have prior knowledge that a target phe-
nomenon shows self-sustained oscillations (Strogatz 2015).
Such prior knowledge is a powerful inductive bias in learning
and can be incorporated into learning by forcing a model to
have a stable limit cycle. Likewise, we often want to assure
the invariance and stability (i.e., time-asymptotic behavior)
of a learned forecasting model for meaningful prediction or
safety issues. To these ends, we need a method to guarantee
invariance and stability of a dynamics model.

Learning dynamics models with provable stability is not a
new task. Learning linear dynamical systems with stability
(e.g., Lacy and Bernstein 2003; Siddiqi, Boots, and Gordon
2008; Huang et al. 2016) is a long-standing problem, and
learning stable nonlinear dynamics has also been addressed
by many researchers (e.g., Khansari-Zadeh and Billard 2011;
Neumann, Lemme, and Steil 2013; Umlauft and Hirche 2017;
Duncker et al. 2019; Chang, Roohi, and Gao 2019; Manek
and Kolter 2019; Massaroli et al. 2020). However, these
methods can only handle the stability of a finite number
of equilibria (i.e., points where a state remains if no external
perturbation applies) and are not suitable for guaranteeing
general stable invariant sets (e.g., limit cycles, limit tori, and
continuous sets of infinitely many equilibria). This limitation
has been hindering useful applications of machine learning
on dynamical systems, for example in physics and biology.

We develop a dynamics model with provable stability of
general invariant sets. The starting point of our model is
the approach by Manek and Kolter (2019), where they use
a learnable Lyapunov function to modify a base dynamics
model to ensure the stability of an equilibrium. We generalize
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it for handling general subsets of state space (e.g., closed
orbits, surfaces, and volumes) as stable invariant sets, by
introducing projection onto such sets in the definition of the
learnable Lyapunov function. A practical difficulty arising
here is that in general, we cannot specify the geometry of a to-
be stable invariant set analytically. To resolve this difficulty,
we propose defining such a set as a primitive shape (e.g.,
a sphere) in a latent space and learning the transformation
between the original state space and the latent space (see
Figure 1). We can configure such a primitive shape so that
the projection is easily computed. At the same time, we can
maintain the flexibility of the model using the rich machinery
of invertible neural networks that have been actively studied
recently (see, e.g., Papamakarios et al. 2019).

In the remainder, we review the technical background in
Section 2. We first give a general definition of the proposed
dynamics model in Section 3 and then show its concrete con-
structions in Section 4. We introduce some related studies in
Section 5. We present experimental results in Section 6, with
which we can confirm the validity of the proposed method
and its usefulness for the application of long-term prediction.
The paper is concluded in Section 7.

2 Background
2.1 Invariant Sets of Dynamical Systems
We primarily consider a continuous-time dynamical system
described by an ordinary differential equation

ẋ = f(x), (1)

where x ∈ X ⊂ Rd is a state vector in a state space X . ẋ
denotes the time derivative, dx/dt. We assume that f : X →
X is a locally Lipschitz function. We denote the solution of
(1) with initial condition x(0) = x0 as x(t). An invariant
set of a dynamical system is defined as follows:
Definition 1 (Invariant set). An invariant set S of dynamical
system (1) is a subset of X such that a trajectory x(t) starting
from x0 ∈ S remains in S, i.e., x(t) ∈ S for all t ≥ 0.

2.2 Stability of Equilibrium
A state xe s.t. f(xe) = 0 is called an equilibrium of (1)
and constitutes a particular class of invariant sets. One of
the common interests in analyzing dynamical systems is the
Lyapunov stability of equilibria (e.g., Hirsch, Smale, and
Devaney 2003; Giesl and Hafstein 2015). Informally, an equi-
librium xe is stable if the trajectories starting near xe remain
around it all the time. More formally;
Definition 2 (Stability of equilibrium). An equilibrium xe

is said to be Lyapunov stable if for every ε > 0, there exists
δ > 0 such that, if ‖x(0)− xe‖ < δ, then ‖x(t)− xe‖ < ε
for all t ≥ 0. Moreover, if xe is stable, and x(t) → xe as
t→∞, xe is said to be asymptotically stable.

The (asymptotic) stability of equilibria plays a crucial role
in analyzing dynamical systems as well as in applications. For
example, in computational neuroscience, dynamical systems
with stable equilibria are used to explain phenomena such
as associative memory and pattern completion. In physics,
coupled phase oscillators whose equilibria are stable are used

to model synchronization phenomena. In engineering, equi-
librium stability is used for roughly assessing the safety of
controlled agents and the plausibility of forecasting.

Lyapunov’s direct method is a well-known way to assess
the stability of equilibria (see, e.g., Hirsch, Smale, and De-
vaney 2003), which can be summarized as follows:
Theorem 1 (Lyapunov’s direct method). Let xe be an equi-
librium of dynamical system (1). Let V : U → R be a func-
tion on a neighborhood U of xe, and further suppose:
(A) V has a minimum at xe; e.g., a sufficient condition is:

(∀x ∈ U V (x) ≥ 0) ∧ (V (x) = 0⇔ x = xe).
(B) V is strictly decreasing along trajectories of (1); e.g.,

when V is differentiable, a sufficient condition is:
(∀x ∈ U\{xe} V̇ = dV/dt = 〈∇V (x),f(x)〉 < 0.

If such a function V exists, then it is called a Lyapunov
function, and xe is asymptotically stable.

2.3 Dynamics Models with Stable Equilibrium
Manek and Kolter (2019) proposed a concise method to en-
sure the stability of an equilibrium of a dynamics model by
construction. They suggested learning a function V that sat-
isfies condition (A) in Theorem 1 with neural networks and
projecting outputs of a base dynamics model onto a space
where condition (B) also holds. Consequently, the modified
model’s equilibrium becomes asymptotically stable.

Their dynamics model, ẋ = f(x), is built as

f(x) =

{
f̂(x)− β(x)

‖∇V (x)‖22
∇V (x), if β(x) ≥ 0,

f̂(x), otherwise,

where β(x) = ∇V (x)Tf̂(x) + αV (x).

(2)

Here, f̂ : Rd → Rd is a base dynamics model, and α ≥ 0
is a nonnegative constant. Function V : Rd → R works as a
Lyapunov (candidate) function. V is designed so that it has a
global minimum at x = 0 and no local minima:

V (x) = σ (q(x)− q(xe)) + ε‖x− xe‖22, (3)

where ε > 0 is a positive constant to ensure the positivity of
V , and σ : R → R≥0 = [0,∞) is a convex nondecreasing
function with σ(0) = 0. Function q : Rd → R also needs
to be convex, and they use the input convex neural networks
(Amos, Xu, and Kolter 2017) for q.

3 Proposed Method
3.1 Stability of General Invariant Set
We begin with reviewing the theory around stability of gen-
eral invariant sets, which comprises the theoretical backbone
of the proposed method. First, stability of a general invariant
set is formally defined as follows:
Definition 3 (Stability of invariant set). Let S ⊂ X be
a positively invariant set of dynamical system (1), and let
dist(x, S) = infs∈S ‖x− s‖ denote the distance between x
and S. S is said to be stable if for every ε > 0, there exists
δ > 0 such that, if dist(x(0), S) < δ, then dist(x(t), S) < ε
for all t ≥ 0. Moreover, if S is stable, and dist(x, S)→ 0 as
t→∞, S is said to be asymptotically stable.
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Stable invariant sets appear in various forms in a variety
of dynamics. For example, a closed invariant orbit is called a
limit cycle, and if it is asymptotically stable, nearby trajecto-
ries approach to it as t→∞. Such stable limit cycles play a
key role in understanding behavior of various physical and
biological phenomena with oscillation (Strogatz 2015). More-
over, invariant sets comprising infinitely many equilibria are
often considered in analyzing higher-order coupled oscilla-
tors in physics (Tanaka and Aoyagi 2011) and continuous
attractor networks in neuroscience (Eliasmith 2005).

The LaSalle’s theorem characterizes the asymptotic stabil-
ity of a general invariant set (see, e.g., Khalil 2002):

Theorem 2 (LaSalle’s theorem). Let Ω ⊂ D ⊂ Rd be a
compact set that is positively invariant for the dynamical
system (1). Let V : D → R be a differentiable function such
that V̇ (x) ≤ 0 in Ω. Let E ⊂ Ω be the set of all points in Ω

such that V̇ (x) = 0. Let S ⊂ E be the largest invariant set
in E . Then, every solution of (1) starting from a point in Ω
approaches to S as t→∞.

3.2 Dynamics Models with Stable Invariant Set
We give a general framework to construct a dynamics model
with a general stable invariant set. This framework can be im-
plemented with any parametric function approximators, such
as neural networks, as its components. We provide concrete
examples of implementation later in Section 4.

The proposed dynamics model, ẋ = f(x), is depicted
in Figure 1. It comprises five steps. Given a state vector
x as an input, it first computes a transformed latent state
z = φ(x) via a learnable bijective function φ (Step 1).
Latent state z is fed into a base dynamics model h (Step 2).
Then, h(z) may be modified to be g(z) to ensure stability
of some set S̃ (Step 3). g(z) may further be modified to be
f̃(z) to ensure invariance of S̃ (Step 4). Finally, it computes
f(x) = φ−1(f̃(x)) via the inverse of φ (Step 5). In the
following, we explain the details of the five steps.

Step 1: Learnable Invertible Feature Transform Given
a state vector x ∈ X ⊂ Rd as an input, we transform it into a
latent state z ∈ Z ⊂ Rd using a learnable bijective function
φ : X → Z , that is,

z = φ(x). (4)

We restrict φ to be bijective for provable existence of a stable
invariant set. A bijective function φ can be modeled in a
number of ways given the development of invertible neural
networks in the area of normalizing flows (see, e.g., Papa-
makarios et al. 2019, and references therein). Hence, we
believe that restricting φ to be bijective does not severely
limit the flexibility of the proposed dynamics model.

Such a feature transform, together with its inverse in
Step 5, is indispensable when we cannot exactly parametrize
the geometry of a to-be stable invariant set (in X ) that a
learned dynamics model should have. This is often the case
in practice; for example, we may only know the presence
of a limit cycle but cannot describe its shape analytically in
advance. Our proposal lies in avoiding such a difficulty by
defining a set that has a primitive shape (e.g., a unit sphere)

Figure 1: Proposed dynamics model, ẋ = f(x), for the case
where latent stable invariant set S̃ is defined as S̃surf in (7b).
Two states, x /∈ S (blue) and x ∈ S (red), are shown. The
dotted orbits are the original and latent stable invariant sets,
S ⊂ X and S̃ ⊂ Z . Input x ∈ X is first transformed into
a latent state z ∈ Z by a learnable bijective function φ and
then fed into a base dynamics model h. h(z) is modified to
ensure the stability and/or invariance of S̃ by (6) and/or (8),
respectively. Finally, things are projected back to X by φ−1.

in Z , expecting (inverse of) φ should learn an appropriate
transformation of the primitive shape in Z into a to-be stable
invariant set in the original space, X . Hereafter, a to-be stable
invariant set in X and the corresponding primitive set in Z
are denoted by S ⊂ X and S̃ ⊂ Z , respectively.

Step 2: Base Dynamics Model The second component is a
base dynamics model h : Z → Z that acts on the latent state
z. We can use any parametric models as h. Note that we do
not have control on the invariance and stability properties of
base dynamics model ż = h(z). Hence, we need to modify
the output of h to make S̃ a stable invariant set.

Step 3: Ensuring Stability In this step, we modify the out-
put of the base dynamic model, h, so that z’s trajectories
converge to some limit set S̃ ⊂ Z in t → ∞. According
to Theorem 2, for trajectories to converge to S̃, it is suffi-
cient that there exists a function V : Z → R whose value
decreases along trajectories everywhere outside S̃. To this
end, we construct a candidate function for V by generalizing
the method of Manek and Kolter (2019).

Suppose S̃ ⊂ Z is convex. This assumption does not
make us lose much generality because even if S̃ is convex,
corresponding S ⊂ X is not necessarily convex thanks to
the feature transform φ in Step 1 and Step 5. Let PS̃z de-
note the orthogonal projection of z onto S̃, that is, PS̃z =
arg mins∈S̃ ‖z − s‖22. Let q : Z → R be a convex function,
and σ : R → R≥0 be a convex nonnegative nondecreasing
function with σ(0) = 0. We define a function V as

V (z) = σ
(
q(z)− q

(
PS̃z

))
+ ε‖z − PS̃z‖

2
2, (5)

with ε > 0. It reaches the minimum V (z) = 0 at z ∈ S̃ and
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does not have any local minima at z /∈ S̃ from construction.
Given such a function (5), we modify the outputs of the base
dynamics model, h(z), into g(z) as follows:

g(z)=

{
h(z), z ∈ S̃,
h(z)− u

(
β(z)

)β(z)+η(z)
‖∇V (z)‖22

∇V (z), z /∈ S̃,

where β(z) = ∇V (z)Th(z) + αV (z).

(6)

Here, u is the unit step function (i.e., u(a) = 1 if a ≥ 0 and
u(a) = 0 otherwise), and α ≥ 0 is a nonnegative constant.
η : Rd → R≥0 is a nonnegative function that works like
a slack variable. Merely setting η(z) = 0 also ensures the
stability of S̃, but it may be useful to make η a learnable
component if we want more flexibility. Note that (5) and (6)
do not ensure anything about the positive invariance property
of S̃; it is deferred in Step 4.

Comparing (5) and (6) to (3) and (2), we can see that
Step 3 here is indeed a generalized version of the method
of Manek and Kolter (2019). We note that such a general-
ization is meaningful only with other components of the
proposed method; we need the learnable feature transform
of Step 1 and Step 5 to avoid difficulty of parametrizing a
stable invariant set analytically, and the procedure of Step 4
is indispensable to ensure that trajectories do not escape from
a limit set. Step 3 does not work without these remedies.

We may compute PS̃ in a closed form when S̃ is a simple-
shaped set like a sphere or a 2-torus. Such a simple S̃ does
not severely drop the flexibility of a dynamics model if we
set φ to be flexible enough. Meanwhile, we can also adopt S̃
with nontrivial PS̃ if needed, by employing the technique of
the convex optimization layer (Agrawal et al. 2019).

Step 4: Ensuring Invariance Recall that the previous step
only ensures S̃ is a limit set. Even if trajectories converge to
S̃ in t→∞, they may escape unless it is also invariant. To
make S̃ invariant, we further modify the output of g.

Without loss of generality, we consider the following two
types of the definition of S̃:

S̃vol = {z | CS̃(z) ≥ 0}, (7a)

S̃surf = {z | CS̃(z) = 0}, (7b)

where CS̃ : Z → R is a continuously differentiable function.
The invariance of such sets can be characterized as follows:

Proposition 1. For a dynamical system ż = F (z) with some
F : Z → Z ,
(a) If CS̃(z) = 0 ⇒ ∇CS̃(z)TF (z) > 0, then S̃vol in

(7a) is a positively invariant set.
(b) If CS̃(z) = 0 ⇒ ∇CS̃(z)TF (z) = 0, then S̃surf in

(7b) is a positively invariant set.

Proof. Let z(t) be a trajectory of the dynamical system,
ż = F (z). Let c : R → R be a function such that
c(τ) = CS̃(z(τ)). First, let us consider case (a). For a
proof by contradiction, assume the negation of (a), that is,
CS̃(z) = 0 ⇒ ∇CS̃(z)TF (z) > 0 and S̃ = S̃vol is not a
positively invariant set (i.e., z(t) ∈ S̃ and z(s) /∈ S̃ for some

t ≤ s). Then, from the definition of S̃vol in (7a), we have
c(t) ≥ 0 and c(s) < 0. By the continuity of c, there is at least
one point r ∈ [t, s] where c(r) = 0 and ċ(r) ≤ 0. At this
point, CS̃(z(r)) = 0 and∇CS̃(z(r))TF (z(r)) = ċ(r) ≤ 0,
which is a contradiction to what we assumed. Therefore, (a)
holds.

Second, let us see (b). Analogously to the above case,
assume CS̃(z) = 0 ⇒ ∇CS̃(z)TF (z) = 0 and S̃ = S̃surf

is not a positively invariant set. Then, from the definition of
S̃surf in (7b), we have c(t) = 0 and c(s) 6= 0. Hence, we have
c(r) = 0 and ċ(r) 6= 0 at some point r ∈ [t, s], which is a
contradiction. Therefore, (b) holds.

Given this fact, we modify the outputs of the previous step,
g(z), into f̃(z) as follows:

f̃(z) =

{
g(z)− γ(z)−ξ(z)

‖∇CS̃(z)‖22
∇CS̃(z), CS̃(z) = 0,

g(z), CS̃(z) 6= 0,

where γ(z) = ∇CS̃(z)Tg(z).

(8)

The definition of ξ depends on that of S̃; if S̃ is defined as
S̃vol in (7a), ξ : Z → R>0 is a positive-valued function; if S̃
is as S̃surf in (7b), it is simply ξ(z) = 0. Note that in actual
computation, condition CS̃(z) = 0 in (8) should be replaced
by |CS̃(z)| ≤ ε with a tiny ε.

Step 5: Projecting Back Things have been described in
terms of the latent state z ∈ Z after Step 1. However, what
we want is a dynamics model on x ∈ X , namely ẋ = f(x).
As the final part of the proposed method, we project things
back to X via the inverse of φ, that is,

f(x) = φ−1
(
f̃(z)

)
= φ−1

(
f̃
(
φ(x)

))
. (9)

Recall that we assumed φ is invertible in Step 1.

3.3 Analysis
The dynamics model in (9) has a stable invariant set that
can be learned from data. We summarize such a property
as follows, where we describe the cases of ·vol and ·surf in
parallel.

Proposition 2. Let S̃vol (or S̃surf) be a subset of Z ⊂ Rd
defined in (7a) (or (7b)). Let f̃ : Z → Z be the function in
(8). Then, for a dynamical system ż = f̃(x), S̃vol (or S̃surf)
is a positively invariant set and is asymptotically stable.

Proof. Let us consider the case of S̃vol (the discussion
holds analogously for S̃surf). Recall that from the definition,
CS̃(z) = 0 implies z ∈ S̃. Hence, from (8), if CS̃(z) = 0,
then ∇CS̃(z)Tf̃(z) = ξ(z) > 0, which proves the invari-
ance of S̃ (Proposition 1). As for stability, we should show

V̇ (z) = 0, if and only if z ∈ S̃,
V̇ (z) < 0, otherwise.

(10)

Suppose z ∈ S̃. We have V (z) = 0 for every z ∈ S̃ from
the construction, and the orbits of f̃ stay in S̃ because S̃ is a
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positively invariant set. Hence, V̇ (z) = 0 for z ∈ S̃. On the
other hand, suppose z /∈ S̃. Then, we have

∇V (z)Tf̃(z) + αV (z)

= ∇V (z)Tg(z) + αV (z)

= ∇V (z)Th(z) + αV (z)− u
(
∇V (z)Th(z) + αV (z)

)
·
(
∇V (z)Th(z) + αV (z) + η(z)

)
= β(z)− u

(
β(z)

)(
β(z) + η(z)

)
.

First, suppose β(z) ≥ 0. Then u(β(z)) = 1, and thus
∇V (z)Tf̃(z) + αV (z) = −η(z) ≤ 0. Second, suppose
β(z) < 0. Then u(β(z)) = 0, and thus ∇V (z)Tf̃(z) +

αV (z) = β(z) < 0. As V (z) > 0 at z /∈ S̃ from the
construction of V , in either of the cases above, we have
∇V (z)Tf̃(z) ≤ −αV (z) < 0. Hence, V̇ (z) < 0 for all
z /∈ S̃. This proves (10), from which we can say that S̃ is
the largest subset of the state space such that V̇ (z) = 0.
Therefore, from Theorem 2, S̃ is asymptotically stable.

Corollary 1. Suppose a subset of X , namely Svol = {x |
CS̃(φ(x)) ≥ 0} (or Ssurf = {x | CS̃(φ(x)) = 0}), where
CS̃ is the function that appeared in (7). Let f = φ−1 ◦ f̃ ◦φ
as in (9). Then, Svol (or Ssurf) is an asymptotically stable
invariant set of a dynamical system defined as ẋ = f(x).

3.4 Extension
The proposed dynamics model in Section 3.2 works not only
as a standalone machine learning model, but also as a module
embedded in a larger machine learning method. For example,
suppose we have high-dimensional observations y ∈ Y (e.g.,
observation of fluid flow). In such a case, we often try to
transform y into lower-dimensional vectors, namely x, using
methods like principal component analysis and autoencoders.
We can then consider a dynamics model (with a stable in-
variant set) on x as in Section 3.2, rather than on y directly.
Temporal forecasting is performed in the space of x and then
returned to the space of y.

Such an extension is straightforward yet useful, but a draw-
back is that if the dimensionality reduction is lossy, which is
often the case, we can no longer guarantee a stable invariant
set in Y . Nonetheless, such an approximative model may still
be useful. We exemplify such a case in Section 6.4, where
we reduce the dimensionality of fluid flow observations by
principal component analysis and learn a dynamics model on
the low-dimensional space.

4 Implementation Examples
4.1 Learnable Components
The components of the proposed method, namely φ, h, q, η,
and ξ, can be any parametric models such as neural networks.
Let us introduce examples for each component.
φ Choice of φ’s model depends on the availability of prior
knowledge of the dynamics to be learned (see also Table 1).
For example, if we know the topology of S (e.g., it is a
closed orbit), we can model φ as a diffeomorphic function
such as the neural ODE (NODE) (Chen et al. 2018) and

coupling flows (see, e.g., Teshima et al. 2020). In fact, such
prior knowledge is often available from our scientific under-
standing of physical, chemical, and biological phenomena
(see, e.g., Strogatz 2015; Tanaka and Aoyagi 2011; Eliasmith
2005). We may use other types of invertible models if less
prior knowledge is available; for example, a neural ODE with
auxiliary variables (namely, ANODE) (Dupont, Doucet, and
Teh 2019) can represent non-homeomorphic functions. If
perfect prior knowledge is available (i.e., we can specify the
geometry of S ⊂ X analytically), simply set z = φ(x) = x.
h We can substitute arbitrary models to the base dynamics,
h, in accordance with the nature of data.
q The convex function, q in (5), can be modeled using the
input-convex neural networks (Amos, Xu, and Kolter 2017)
as in the previous work (Manek and Kolter 2019).
η and ξ The slack-like functions, η and ξ in (6) and (8),
respectively, can be modeled as neural networks with output-
value clipped to be nonnegative or positive.

4.2 Stable Invariant Set
Besides the learnable components, we should prepare a to-be
stable invariant set. If we do not know the analytic form of
S ⊂ X (i.e., CS), which is usually the case, we are to define
S̃ ⊂ Z (i.e., CS̃) instead. A general guideline we suggest
is to set S̃ as a simple primitive shape, such as spheres and
tori. As stated earlier, setting S̃ to be a primitive shape does
not severely restrict the flexibility of the model, thanks to the
learnable feature transform, φ, which “deforms” a simple S̃
to various S. We can regard unknown coefficients in CS̃ (e.g.,
radius of sphere) as learnable parameters, too.

We can also consider the case of low-dimensional S by
setting S̃ also low-dimensional. Here, axes of Z ignored by
a low-dimensional S̃ can be arbitrary because the feature
transform φ modeled by a neural network is usually flexible
enough to learn a rotation between Z and X .

Care may have to be taken in the computation of PS̃ . If we
do not know a closed form of PS̃z, as long as S̃ is convex
as we assumed, we can use the differentiable convex opti-
mization layer (Agrawal et al. 2019) to allow gradient-based
optimization. For example, suppose we have S̃ of the type of
(7a). Then, PS̃ is an optimization problem:

PS̃z = arg min
s
‖z − s‖22 s.t. CS̃(s) ≥ 0. (11)

The derivative of its output (i.e., ∂PS̃z/∂z) can be computed
by the techniques of Agrawal et al. (2019) via the implicit
function theorem on the optimality condition of (11).
Examples Let us provide concrete examples of the config-
uration of φ and CS̃ (also summarized in Table 1).
Example 1. If we exactly know that S is a sphere around
the origin, we can set φ to be the identity function, i.e.,
z = φ(x) = x, and set CS̃(z) = ‖z‖2 − r2. In this case,
PS̃z = PSx = rx/‖x‖ for x 6= 0 (and arbitrary for x = 0).
Radius r may or may not be a learnable parameter.
Example 2. If we know the dynamics should have a stable
limit cycle, we can set S to be a circle along a pair of axes of
Z , expecting φ learns an appropriate coordinate transform
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φ(x) CS̃(z)

Perfect knowledge available
(i.e., exact S ⊂ X is known)

identity S̃ = S
(cf. Example 1)

Partial knowledge available
(i.e., rough behavior of phenomenon is known)

e.g., self-sustained oscillations NODE Example 2
e.g., quasiperiodic patterns NODE Example 3

e.g., neural integrators (A)NODE Example 4

Table 1: Implementation examples in accordance with avail-
ability of prior knowledge. NODE (Chen et al. 2018) and
ANODE (Dupont, Doucet, and Teh 2019) are mentioned
here, but other invertible neural nets are applicable, too. For
concrete examples of each case of “partial knowledge,” e.g.,
Strogatz (2015) and Eliasmith (2005) are informative.

to adjust the axes to those in the original space. For example,
CS̃(z) = z2

1 + z2
2 − r2 (and ignore zi’s for i > 2).

Example 3. We may set S̃ to be a 2-torus, CS̃(z) =

(
√
z2

1 + z2
2 − R)2 + z2

3 − r2, onto which the orthogonal
projection PS̃z can be computed analytically.
Example 4. Another common option is a hyperplane
CS̃(z) = cTz − b. This is useful in modeling, for exam-
ple, sets of infinitely many equilibria, which often appear in
computational neuroscience (Eliasmith 2005).

Example 5. More generally, we may set S̃ to be a quadric,
CS̃(z) = zTQz + pTz + r. In this case, we need the differ-
entiable optimization layer (Agrawal et al. 2019).

4.3 Learning Procedures
Given a dataset and a dynamics model ẋ = f(x) constructed
as above, we are to learn the parameters of the unknown func-
tions, φ, h, and q, and possibly η, ξ, and C. The learning
scheme can be designed in either or both of the following two
ways. First, if we have paired observations of x and ẋ, we
simply minimize some loss (e.g., square loss) between ẋ and
f(x). This is also applicable when we can estimate ẋ from
x’s (e.g., Chartrand 2011). Second, if we have unevenly-
sampled sequences (xt1 , . . . ,xtn), we utilize the adjoint
state method or backpropagation in forward ODE solvers
for optimization (see, e.g., Chen et al. 2018).

5 Related Work
Learning Stable Dynamics Learning stable linear dy-
namical systems, e.g., xt+1 = Axt s.t. ρ(A) < 1, is indeed
a nontrivial problem and has been addressed for decades
(e.g., Lacy and Bernstein 2003; Siddiqi, Boots, and Gordon
2008; Huang et al. 2016; Mamakoukas, Xherija, and Murphey
2020). The problem of learning stable nonlinear systems has
also been studied for various models, such as Gaussian mix-
tures (Khansari-Zadeh and Billard 2011; Blocher, Saveriano,
and Lee 2017; Umlauft and Hirche 2017), kernel methods
(Khosravi and Smith 2021), Gaussian processes (Duncker
et al. 2019), and neural networks (Neumann, Lemme, and

Steil 2013; Manek and Kolter 2019; Tuor, Drgona, and Vra-
bie 2020; Massaroli et al. 2020). However, they only handle
the stability of finite number of equilibria.

We note that, in parallel to the current work, Urain et al.
(2020) developed a method for learning a dynamics model
as an invertible transform from a primitive model for which
asymptotic behavior is specified. Their method requires to
specify a particular primitive model with desired stability
property. In contrast, our method is more general while it
might need more meticulous attention in model configuration.
Learning Stabilizing Controllers Another related direc-
tion is to learn a controller that stabilizes a given dynamical
system. For example, Chang, Roohi, and Gao (2019) pro-
posed a method to learn neural controllers by constructing a
neural Lyapunov function simultaneously. They adopt a self-
supervised learning scheme where a neural controller and a
neural Lyapunov function are trained so that the violation of
the stability condition (in Theorem 1) is minimized. Such an
approach is also applicable to dynamics learning, but existing
methods only focus on discrete equilibria, too.
Learning Physically Meaningful Systems Another re-
lated thread of studies is to learn physical systems, such as
Lagrangian (Lutter, Ritter, and Peters 2019; Cranmer et al.
2020) and Hamiltonian (Greydanus, Dzamba, and Yosinski
2019; Matsubara, Ishikawa, and Yaguchi 2020) mechanics us-
ing neural networks. Extension to port-Hamiltonian systems
(Zhong, Dey, and Chakraborty 2020) is also considered.

6 Experiment
6.1 Configuration

Implementation We implemented the learnable compo-
nents (i.e., φ, h, q, η, and ξ) with neural networks. We
used ANODE (Dupont, Doucet, and Teh 2019) for φ in
Sections 6.3 and 6.4 to allow much flexibility, while non-
augmented NODE (Chen et al. 2018) was also sufficient. For
the other components, we used networks with fully-connected
hidden layers. We used the exponential linear unit as the acti-
vation function. Other details are found in the appendix.
Baselines Besides the proposed model in (9), we tried
either or both of the following models as baselines:

1) Base dynamics model without stability nor invariance,
i.e., ẋ = φ−1(h(φ(x))); we may refer to this baseline
as a vanilla model.

2) Stable dynamics model like ours, but the stable invariant
set is fixed to be an equilibrium at x = 0 (i.e., almost
the same with Manek and Kolter (2019)); we may refer
to this baseline as a stable equilibrium model.

6.2 Simple Examples
As a proof of concept, we examined the performance of the
proposed method on simple dynamical systems whose stable
invariant set is known analytically. Hence, we do not need φ
(i.e., set φ(x) = x) in the two experiments in this section.
Limit Cycle We examined the system with a limit cycle:

ẋ1 = x1−x2−x1(x2
1 +x2

2), ẋ2 = x1 +x2−x2(x2
1 +x2

2),
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Figure 2: Test results on the system with limit cycle in Section 6.2. (left)
Examples of long-term prediction from x1, x2 = −.1, .1 for 200 steps. (right)
Average (and stdev) long-term prediction errors against prediction steps.
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Figure 3: Contour plot of V (x) learned on
the data generated from the system with line
attractor in Section 6.2. The dotted line is the
true line attractor, x1 = 0.
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Figure 4: Results of Section 6.3. (a) True vector field of (12) and two trajectories. Red dashed-line rectangle is the training data
region. (b) Learned vector field and trajectories from it. (c) Learned V (x). (d) Learned V (x) without φ. (e) Prediction errors.

whose orbits approach to a unit circle as t→∞. We gener-
ated four sequences of length 20 with ∆t = .075 and used
the pairs of x and ẋ as training data. For the proposed model,
we set CS(x) = x2

1 + x2
2 − 1 (i.e., the truth) with S defined

as in (7b).
In Figure 2, we show the results of long-term prediction

given only xt=0 that was not in the training data. The left
panel depicts trajectories of length 200 predicted by the true
system, the vanilla model, and the proposed model. The pro-
posed model’s trajectory successfully reaches the plausible
limit cycle, while it is not surprising as a natural consequence
of the model’s construction. The right panel shows the av-
erage long-term prediction errors against prediction steps (a
single step corresponds to the ∆t). The average was taken
with regard to 20 test sequences with different xt=0. We can
observe that the proposed stable model achieves consistently
lower prediction errors.
Line Attractor We examined another simple system:

ẋ1 = x1(1− x2), ẋ2 = x2
1.

Line x1 = 0 constitutes a line attractor of this system as a
set of infinitely many stable equilibria; every orbit starting
at x1 6= 0 approaches to some point on this line as t → ∞.
We generated eight sequences of length 80 with ∆t = .05 as
training data. We learned the proposed model with φ(x) = x
and CS(x) = c1x1 + c2x2, where c1 and c2 were learnable
parameters, and S was defined as in (7b).

In Figure 3, we show the values of learned V (x). We can
say it is successfully learned because V (x) monotonically
decreases toward the line x1 = 0. Moreover, it reflects the
fact that a state of this system moves faster when |x1| � 0
and x2 � 0 (i.e., in the lower part of the x-plane).

6.3 Learning Vector Field of Nonlinear Oscillator
The Van der Pol oscillator:

ẋ1 = x2, ẋ2 = µ(1− x2
1)x2 − x1 (12)

is well known as a basis for modeling many physical and
biological phenomena. It has a stable limit cycle, whose
exact shape cannot be described analytically. As training data
(Figure 4a), we used the values of x and ẋ sampled from an
even grid on area [−2.5, 2.5]× [−4.5, 4.5] with µ = 2. For
the proposed model, we set S̃ to be a circle defined as in (7b),
expecting φ would be learned so that it transforms a circle
into the limit cycle of the system.

In Figure 4b, we show the learned vector field and two
trajectories generated from it. They successfully resemble the
truth (in Figure 4a), even outside the area of the training data.
In Figure 4c, we depict the values of learned V (x), wherein
we can observe V (x) decreases toward the limit cycle of the
system (the dashed orbit). In Figure 4d, for comparison, we
show learned V (x) without a learnable feature transform φ;
not surprisingly, it fails to capture the shape of the limit cycle.
In Figure 4e, we show an example of long-term prediction
errors against prediction steps (a single step corresponds to
the ∆t). The model with the proposed stability guarantee
achieves significantly lower long-term prediction errors.

6.4 Application: Fluid Flow Prediction
We apply the proposed stable dynamics model to an appli-
cation of fluid flow prediction. The target flow is so-called
cylinder wake (see Figure 5a); a cylinder-like object is lo-
cated in a 2D field, fluids come from one side uniformly, and
there occurs a series of vortices past the object in certain con-
ditions. This is a limit cycle known as the Kármán’s vortex
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Figure 5: Long-term predictions of fluid flow. Red&yellow and blue&cyan denote positive and negative values of vorticity,
respectively. (a) Ground truth. (b) The vanilla model. (c) The stable equilibrium model. (d) The proposed model.

street. Before the flow reaches the limit cycle, it typically
starts from an unstable equilibrium, and then the vortices
begin to grow gradually. This stage is called off-attractor.
Cylinder wake has been studied as one of standard problems
of fluid dynamics and also appears as a testbed of forecasting
methods even recently (see, e.g., Kutz et al. 2016).

As training data, we generated such flow using the im-
mersed boundary projection method (Taira and Colonius
2007; Colonius and Taira 2008) and used the part from near
the equilibrium to a time point before the limit cycle is com-
pletely observed; hence the training data were off-attractor.
The data comprised the observations of the vorticity in the
field of size 199 × 449. As preprocessing, we reduced the
dimensionality of data from 89351 to 26 by PCA, which
lost only 0.1% of the energy. We contaminated the data with
Gaussian noise. We estimated ẋ by (xt+∆t − xt)/∆t and
learned the proposed dynamics model with a cycle along the
first two axes of Z as S̃ (i.e., CS̃(z) = z2

1 + z2
2 − r2).

In Figure 5, we show the results of long-term prediction
starting at a time point where the flow is almost on the limit
cycle (i.e., on-attractor). The two baselines (in Figures 5b
and 5c) fail to replicate the true limit cycle (in Figure 5a). In
contrast, the long-term prediction by the proposed method
(in Figure 5d) shows a plausible oscillating pattern, though
the oscillation phase is slightly different from the truth. It is
worth noting that with the proposed stable dynamics model,
we were able to predict the on-attractor oscillating patterns
only from off-attractor training data.

7 Conclusion
We proposed a dynamics model with the provable existence
of a stable invariant set. It can handle the stability of general
types of invariant sets, for example, limit cycles and line
attractors. Future directions of research include the treatment
of random dynamical systems as the current method is limited
to deterministic dynamics. Consideration of the input-to-state
stability of controlled systems is also an interesting problem.
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