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Abstract

Estimating feature point correspondence is a common tech-
nique in computer vision. A line of recent data-driven
approaches utilizing the graph neural networks improved
the matching accuracy by a large margin. However, these
learning-based methods require a lot of labeled training data,
which are expensive to collect. Moreover, we find most meth-
ods are sensitive to global transforms, for example, a ran-
dom rotation. On the contrary, classical geometric approaches
are immune to rotational transformation though their perfor-
mance is generally inferior. To tackle these issues, we pro-
pose a new learning-based matching framework, which is
designed to be rotationally invariant. The model only takes
geometric information as input. It consists of three parts: a
graph neural network to generate a high-level local feature, an
attention-based module to normalize the rotational transform,
and a global feature matching module based on proximal op-
timization. To justify our approach, we provide a convergence
guarantee for the proximal method for graph matching. The
overall performance is validated by numerical experiments.
In particular, our approach is trained on the synthetic random
graphs and then applied to several real-world datasets. The
experimental results demonstrate that our method is robust to
rotational transform and highlights its strong performance of
matching accuracy.

Introduction
Graph matching (GM) is a ubiquitous technique in com-
puter vision and pattern recognition to establish the cor-
respondence between two sets of feature points. Its appli-
cations range from object recognition (Brendel and Todor-
ovic 2011), tracking (Hwann-Tzong Chen, Horng-Horng
Lin, and Tyng-Luh Liu 2001) and shape matching (Berg,
Berg, and Malik 2005). Practitioners encounter two major
challenges when deploying GM. First, one has to make con-
siderable efforts to seek a robust feature representation for
constructing the GM objective. Second, the graph matching
algorithm is often hard to reach satisfiable performance due
to its intrinsic nature of NP-hardness.

Traditionally, people consider developing a GM algo-
rithm and finding a good feature extractor as two separated
problems. The GM problem is commonly formulated as a
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quadratic assignment optimization problem (Koopmans and
Beckmann 1957; Rainer et al. 1998), which can be solved
approximately by adopting a variety of relaxation strate-
gies (Leordeanu and Hebert 2005; Caelli and Caetano 2005;
Marius, Martial, and Sukthankar 2009). Meanwhile, the fea-
tures fed into the GM objective are majorly handcrafted, for
example, coordinate positions for geometric features (Zhou
and la Torre 2016).

A line of recent works considered the above two tasks
for solving feature matching as a joint problem by utiliz-
ing the graph neural network (GNN). The general idea is to
build an end-to-end model consisting of a feature extractor
and a feature matching module. For visual input, the feature
extractor is a deep convolutional neural network, e.g. VGG
(Simonyan and Zisserman 2015), and for geometric features
that only involve coordinate information, the higher-order
local feature is generated by a graph neural network (Zhang
and Lee 2019). The feature matching module can either be
the Sinkhorn-Knopp transform of a proper mutual distance
of node features (Wang, Yan, and Yang 2019) or a differ-
entiable module of a more involved GM algorithm (Zanfir
and Sminchisescu 2018). Since the whole model is differen-
tiable with respect to the model parameters, the model can
be trained in an end-to-end fashion. More recently, Super-
Glue (Sarlin et al. 2020) proposed an approach based on a
combination of the convolutional neural network and graph
neural network for the feature matching tasks.

Compared with the traditional methods, the contemporary
data-driven approaches improve the matching accuracy by a
large margin. However, these learning-based methods usu-
ally require a large number of labeled training data, which
are expensive to collect. In addition, we found existing meth-
ods are highly sensitive to global transform, e.g. rotational
transform, raising a generalization issue to many real-world
applications, where global calibration is not possible at in-
ference stage (Zhang and Lee 2019). On the contrary, tra-
ditional methods with geometric feature input are robust to
global rotational transform though the overall performance
is not as good as the GNN-based methods. See Figure 1 for
a detailed experimental example.

In this work, we proposed a new GNN framework. Our
model enjoys the advantages of both the classical method
and the GNN based method. Using purely geometric in-
formation as input, the performance is on a par with the
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Figure 1: Overall matching accuracy (%) on Willow-Object
dataset. For each method, we did two experiments. Left bar
shows the accuracy on the original data, and the right bar
indicates the accuracy on the rotated data.

state-of-art method. On the other hand, our method is in-
sensitive to global rotational transform. The proposed model
consists of three modules: a high-order local feature extrac-
tor based on GNN, a differentiable global feature matching
module based on the proximal method, and an attention-
based calibration module to deal with rotation ambiguity.
Specifically, we deploy the same feature extractor as the
work used in (Zhang and Lee 2019) to get a local feature
vector for each node, where the input is a graph with only 2D
coordinate node locations. We implement the global node-
wise matching module by using the proximal optimization
method, which decomposes the quadratic assignment prob-
lem for graph matching into a sequence of convex optimiza-
tion problems. The rotation calibration module generates a
set of candidate graphs by rotating one input graph at differ-
ent degrees and applies an attention mechanism to encour-
age the candidate graph with the aligned angle to match the
target graph. Our model was trained in an end-to-end fashion
by using synthetic random graphs. It can directly generalize
to real-life datasets without further fine-tuning on human-
labeled data.

In summary, our contributions are threefold.

• We proposed a neural network for geometric 2D graph
matching, which is designed to be rotationally invariant.
The model only takes keypoints’ coordinate information
as input, and it uses only synthetic random graphs for
training.

• We provide a convergence guarantee for the proximal
graph matching algorithm, which acts as a node-wise
matching module in the proposed network.

• Numerical results show that the proposed method is on
par with the state-of-art geometric method in the standard
rotation-aligned setting, and improves the prediction ac-

curacy with a large margin in the rotation-misaligned sce-
nario.

Classical Proximal Graph Matching
In this section, we first introduce the classical graph match-
ing problem, which is formulated as a quadratic assignment
problem. Then, we introduce the proximal method for solv-
ing this quadratic optimization problem. Finally, we discuss
a special matching problem that only considers the local fea-
ture as input without taking any graph structure into consid-
eration.

Formulation Let G1 = (V1, E1) and G2 = (V2, E2)
be two undirected graphs with an equal number of nodes,
i.e.,|V1| = |V2| = n, where Vi and Ei for i = 1, 2 represents
nodes set and edges set of the graph Gi respectively. For the
case |V1| 6= |V2|, one can add additional auxiliary nodes to
meet the equality condition.

Formally, graph matching is formulated as a quadratic as-
signment problem (Koopmans and Beckmann 1957; Rainer
et al. 1998). Let x ∈ {0, 1}n2

be an assignment vector such
that if node i in G1 is mapped to node j in G2, then xij = 1,
xij′ = 0 and xi′j = 0 for all i′ ∈ V1 \{i} and j′ ∈ V2 \{j}.
The optimal assignment of graph matching is then formu-
lated as

max
x∈{0,1}n2

x>Mx s.t. Cx = 1, (1)

where the binary matrix C ∈ {0, 1}n2×n2

encodes n2 linear
constraints ensuring that

∑
i∈V1

xij′ = 1 and
∑
j∈V2

xi′j =

1 for all i′ ∈ V1 and j′ ∈ V2. The affinity matrix is of size
M ∈ Rn2×n2

. The diagonal terms Mii,jj represents the
reward if node i in G1 is mapped to node j in G2. The off-
diagonal terms Mii′,jj′ represents the reward if pair (i, i′)
in G1 corresponds to pair (j, j′) in G2.

Constructing the Affinity Matrix Traditionally, the affin-
ity matrix M is defined manually based on concrete applica-
tions. For example, Koopman-Beckmann’s formula (Koop-
mans and Beckmann 1957) constructs the affinity matrix by
setting M = A1 ⊗A2, where A1 and A2 are adjacent ma-
trices of G1 and G2 respectively. Intuitively, [M ]ii′,jj′ = 1
if and only if both pairs of (i, i′) and (j, j′) are directly con-
nected in G1 and G2 respectively, and [M ]ii′,jj′ = 0 other-
wise. If only adjacent matrix is used, the diagonal terms are
all zero.

In many practical situations, we usually have additional
prior information on nodes correspondence, such as loca-
tions of nodes in an image. Those prior information forms
node feature vectors f1,i, i ∈ V1 and f2,j , j ∈ V2. One way
to construct affinity matrix utilizing this prior information is
to set M as

[M ]ii,jj = exp(−‖f1,i − f2,j‖2/ρ), (2)

for diagonal terms, and for off-diagonal entries,

[M ]ii′,jj′ = exp[−(dii′ − djj′)2/ρ] (3)

if (i, i′) ∈ E1 and (j, j′) ∈ E2, and [M ]ij′,i′j = 0 other-
wise, where dii′ = ‖f1,i− f1,i′‖ and djj′ = ‖f2,j − f2,j′‖,
and ρ is a decay parameter.
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Finally, based on this physical meaning of the affinity ma-
trix, it is convenient to decompose the affinity matrix M into
two parts

M = Diag(u) + P , (4)
where u is the diagonal vector of M , and the matrix P con-
tains all off-diagonal entries of M . Then, the original objec-
tive (1) is equivalent to the following objective function:

max
x∈{0,1}n2

u>x+ x>Px s.t. Cx = 1, (5)

Proximal Method We relax the integer optimization prob-
lem (5) to a continuous version with an additional entropy
regularizer h(·), and obtain

min
z∈Rn2×1

+

− u>z − z>Pz + h(z)

s.t. Cz = 1,

(6)

where z is the continuous counterpart of the assignment vec-
tor x in (5). The function h(z) = z> log(z) is an entropy
regularizer. The matrix C is the same as the one in (1), which
ensures that the reshaped matrix version of z is an n × n
doubly stochastic matrix.

Following the proximal variational inference method
adopted in (Mohammad et al. 2015), we decompose the
non-convex objective in (6) into a sequence of convex sub-
problems

zt+1 = argmin
z∈Z

z>∇g(zt) + h(z) +
1

βt
D(z, zt), (7)

where g(z) = −u>z − z>Pz and Z is the set of all
n × n doubly stochastic matrices. The non-negative prox-
imal operator D(·, ·) satisfies that D(x,y) = 0 if and only
if x = y, βt > 0 is a scalar parameter controlling the proxi-
mal weight. The proximal functionD(·, ·) can be understood
as a distance function for the geometry of Z . We choose the
Kullback-Leibler divergence as the proximal function

D(x,y) = x> log(x)− x> log(y). (8)

The KL divergence has a better description of the geometry
(Mohammad et al. 2015) of the variable z, as zij can be
interpreted as the probability mapping node i in G1 to node
j in G2 .

In (7), the two parts g(z) and h(z) are treated sepa-
rately. The first part g(z) contains complicated terms that
we should use the first-order approximation z>∇g(zt), and
the second part h(z) is a simple convex term such that we
can directly solve (7) without any approximation on h. The
convex optimization (7) has an analytical solution

z̃t+1 = exp
[ βt
βt + 1

(u+ Pzt) +
1

βt + 1
log(zt)

]
(9)

zt+1 = Sinkhorn(z̃t+1), (10)

where Sinkhorn(z) is the Sinkhorn-Knopp transform
(Richard and Paul 1967) that maps a nonegative matrix of
size n × n to a doubly stochastic matrix. Here, the input
and output variables are n2 vector. When use the Sinkhorn-
Knopp transform, we reshape the input (output) as an n× n
matrix ( n2-dimensional vector) respectively.

Algorithm 1 : Differentiable Proximal Graph Matching

Input: node affinity vector u, edge affinity matrix P , a
sequence of stepsize {β0, β1, β2, ....}, and a maximum it-
eration T .
Initialization: z0 ⇐= Sinkhorn(u), t⇐= 0.
for t = 0 to T − 1 do
z̃t+1 ⇐= exp

[
βt

1+βt
(u+ Pzt) +

1
1+βt

log(zt)
]

zt+1 ⇐= Sinkhorn(z̃t+1)
end for
Output zT

Matching without Graph Structure In some cases, the
node feature fi’s are informative enough to estimate the
node correspondence or one just needs a quick and rough
estimation. Then, one can neglect the graph structure by set-
ting the off-diagonal terms of the affinity matrix to be zero.
The relaxed optimized problem (6) is then reduced to

min
z∈Rn2×1

+

L(z), with L(z) = −u>z + h(z)

s.t. Cz = 1,

(11)

where h(z) is the entropy regularizer same as the one in (6).
The above optimization problem can be solved by one-step
Sinkhorn-Knopp transform (Patrini et al. 2018).

L∗ = L(z∗), with z∗ = Sinkhorn(exp(u)). (12)

In the next section, we use this as a fast method to estimate
the global matching score of a candidate graph pair, in which
the node-wise affinity µ is set to be

uij = −‖f1,i − f2,j‖2, (13)

with i ∈ V1 and j ∈ V2.
We note that the proximal method for solving graph

matching was investigated based on a view of the Gromov-
Wasserstein distance in (Xu, Luo, and Carin 2019; Xu et al.
2019) in the classical non-learnable setting. The optimiza-
tion problem (11) is also related to the Wasserstein distance
that L∗ is an optimal transport distance between two set
of feature vectors {f1,i}i∈V1

and {f2,j}j∈V2
(Titouan et al.

2019). In this work, we apply those two methods as two dif-
ferentiable modules to build and learn an end-to-end match-
ing network. Details are illustrated in the next section.

Proxy Graph Matching Network
In this section, we introduce our proxy graph matching net-
work. We consider the setting of supervised geometric fea-
ture matching with synthetic training data and real-world
test dataset. This setting is the same as previous works
(Zhang and Lee 2019; Fey et al. 2020), and is particularly
useful in many practical situations, where content-features
(SIFT/CNN-feature) may not be available, and only geomet-
ric information is provided, e.g. 3D/2D point cloud, online-
handwriting analysis. Specifically, we focus on the 2D ge-
ometric graph matching problem that only uses the graph
structure and the keypoints’ coordinate information as input
for matching.
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In particular, we consider the input is a pair of graphs em-
bedded on a 2D surface. Each node i of the graph is associ-
ated with a 2D vector containing the node coordinate infor-
mation. Instead of learning data from labeled training data,
we synthesize the training graph pairs with known node cor-
respondence. At the inference stage, given a pair of graphs
from a real-word dataset, e.g. Willow, or Pascal PF (see de-
tails in the Experiments section), the proxy graph matching
network is going to infer the node correspondence according
to their topology of the graphs and coordinates information.

The whole learnable network consists of three modules:
a local feature extractor, a proximal method based global
node-wise matching module, and a global rotation calibra-
tion module. In what follows, we will introduce the three
parts one by one.

High-order Local Feature Extractor The first module
aims to extract higher-order features from low-dimensional
vectors that only contain 2-D coordinate information. We
implement this module with the same multi-layer graph
neural network (GNN) from the work (Zhang and Lee
2019). Formally, the GNN module takes a graph G =
(V,E, {ci}i∈V1) as input, where ci is the coordinate infor-
mation of the node i. The GNN outputs a higher dimensional
vector fi associated with each node i

{fi}i∈V = GNN(G; θGNN),

where θGNN represents the learnable parameters in this GNN
module. In addition, one can use also other local GNNs as
the backbone, for example, PointNet (Qi et al. 2017), or
DGCNN (Wang et al. 2018).

Differentiable Proximal Graph Matching (DPGM)
The second module seeks node-wise correspondence based
on the proximal optimization introduced in the previous sec-
tion.

We use the higher-order feature vectors {fi} outputted
by the GNN module to construct the affinity matrix M .
The concrete construction is introduced in (2) and (3). Then,
DPGM take the input of an affinity matrix M , and output a
continuous version of an assignment matrix z. Note that the
proximal graph matching algorithm described in the previ-
ous section can be considered as a differentiable map from
the affinity matrix M to the node assignment probability
vector z,

z = DPGM(G1,G2), (14)

where G` = (V`, E`, {f`,i}i∈V`
), ` = 1, 2, and the node fea-

ture vectors {f`,i}i∈V`
is the output of the previous higher-

order feature extractor. It is straightforward to check that the
map (14) is differentiable function with respect to the input
feature vectors {f`,i}, because both of (9) and (10) are dif-
ferentiable with respective to its input iterand as well as u
and P . Therefore, DPGM can be treated as a differentiable
module, which is integrated into the whole learnable match-
ing network.

Global Rotational Calibration Module (GRCM) As
shown in Figure 1, most learning-based methods suffer per-
formance degradation by a random rotation transform. To

tackle this issue, we proposed a calibration module to alle-
viate this rotational ambiguity.

We proposed an attention-based proxy matching mod-
ule to learn and calibrate the rotation angle. Specifically,
we first sample L angles η`, ` = 1, 2, . . . , L evenly dis-
tributed in the range [−π, π). Then, we generate L candi-
date graphs G(`)1 by rotating G1 to η` degree. In particular,
G(`)1 = (V1, E1, {f (`)

1,i }i∈V1) is the graph that have the same
topology structure as G1 with rotated feature vectors

{f (`)
1,i }i∈V1

= GNN({c(`)i }i∈V1
,G1; θGNN),

where c
(`)
i is the node coordinate vector rotated by η` de-

gree. We then calculate the global matching score of each
candidate pair (G(`)1 ,G1), in which G(`)1 is acted as a proxy
graph of G∞ to matching G∈. The score is computed by solv-
ing the optimization problem (11)

α̃(`) = −NodeMatchingLoss({f (`)
1,i }i∈V1

, {f2,i}i∈V2
),
(15)

where MatchingLoss is the minimized loss got from
(12).The estimation of this global matching score does not
take the graph structure as input to boost the inference speed.
We also tried a more involved module, e.g. using DPGM loss
as a matching score. The overall improvement is marginal.

The matching scores of all pairs are then normalized by a
softmax function

α(`) =
exp(γα̃(`))∑L
`=1 exp(γα̃

(`))
, (16)

where γ is a hyper-parameter acting as an inverse tempera-
ture to control the softness of the softmax function.

Meanwhile, for each rotated candidate, we compute the
node-wise matching estimation by DPGM

z(`) = DPGM(G(`)1 ,G2).

The overall node-wise matching score is a weighted average
of {z(`)}

z =
L∑
`=1

α(`)z(`).

In the training phase, we use the soft-attention, i.e., a finite
γ, so that all direction pairs can be used for training. In the
inference phase, we use the hard-attention i.e., γ =∞. Only
the pair with the greatest global matching score is the pass to
the next module to compute node-wise matching. The hard-
attention drastically decreases the inference time by only run
DPGM once. The experiments show that in a relatively wide
range [0.1, 5], our model is insensitive to γ. Therefore, we
choose the default temperature γ = 1.0 in the training stage
of all experiments.

Loss and Prediction
The output of the proximal graph matching module [z]ij can
be interpreted as the probability that node i in G1 matches
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node j in G2. Thus, it is reasonable to use cross-entropy to
model the training loss (Wang, Yan, and Yang 2019)

loss(z, z∗) = −
∑

i∈V1,j∈V2

[
[z]∗ij log[z]ij+

(1− [z∗]ij) log(1− [z]ij)
] (17)

where z∗ is the true assignment vector with [z∗]ij being 1
if node i in G1 matches node j in G2, and [z∗]ij being 0
otherwise.

Combining the above three modules, we get a trainable
graph matching model, where the input is a pair of two
graphs with each node assigned a 2D coordinate vector, and
the true assignment vector z∗. The trainable parameters of
the whole model are optimized via the stochastic gradient
descent where the gradients are automatically computed by
a deep learning library (Paszke, Gross, and et al 2017).

Convergence Analysis
In this section, we show that under a mild assumption, the
proposed DPGM method converges to a stationary point
within a reasonable number of iterations. The main tech-
nique in this analysis follows (Emtiyaz et al. 2015), which
studied a general variational inference problem using the
proximal-gradient method.

Before presenting the main proposition, we first show two
technical lemmas. The details of all proof are in the supple-
mentary materials.
Lemma 1. There exist a constant α > 0 such that for all
zt+1, zt generated by Eq.(7), we have

(zt+1 − zt)
>∇zt+1

D(zt+1, zt) ≥ α‖zt+1 − zt‖2, (18)

where D is the KL-divergence defined in (8).
We remark that the largest valid α satisfying (18) is 1

2 .
Lemma 2. For any real valued vector g which has the same
dimension of z, and for any β > 0, considering the problem

zt+1 =argmin
Cz=1

: {z>g + h(z) +
1

β
D(z, zt)}, (19)

where h(z) = z>log(z) and D is the KL-divergence, then
the following inequality holds

g>(zt − zt+1) ≥
α

β
||zt − zt+1||2 + [h(zt+1)− h(zt)].

Based on the above two lemmas, we show the main result
of our convergence analysis.
Proposition 1. Let L be the Lipschitz constant of the gra-
dient function ∇g(z), where g(x) is defined in (7), and let
α be the constant used in Lemma 1. If we choose a constant
step-size βt = β < 2α/L for all t ∈ {0, 1, . . . , T}, then

Et∼uniform{0,1,...,T}‖zt+1 − zt‖2 ≤
C0

T (α− Lβ/2)
,

(20)
whereC0 = |L∗−L(z0)| is the objective gap of (6) between
the initial guess L(z0) and the optimal one L∗.

On the Lipschitz constant L, if we construct M by
Koopman-Beckmann’s form, then L = 4|E1| · |E2|, where
|E1| and |E2| are the numbers of edges of the graphs G1 and
G2 respectively. This is due to the fact that

‖∇f(z)−∇f(y)‖ = ‖M(z − y)‖ ≤ ‖M‖‖(z − y)‖,

where L = ‖M‖ = ‖A1‖F · ‖A2‖F = |E1| · |E2|.
Proposition 1 guarantees that DPGM converges to a sta-

tionary point within a reasonable number of iterations. In
particular, the average difference ‖zt+1−zt‖2 of the iterand
converges at a rate O(1/T ).

Experiments
In this section, we conducted a series of experiments to study
the performance of our approach. We introduce two cate-
gories of peer methods: traditional matching algorithms and
GNN-based matching models. For those traditional match-
ing methods, we list several existing widely used meth-
ods as baselines in the experiments: graduated assignment
graph matching (GAGM)(Gold and Rangarajan 1996), re-
weighted random walk matching (RRWM) (Minsu, Jung-
min, and Mu 2010), probabilistic spectral matching (PSM)
(Egozi, Keller, and Guterman 2013), spectral matching
(SM), integer projected fixed point method (IPFP) (Marius,
Martial, and Sukthankar 2009), factorized graph matching
method (FGM) (Zhou and la Torre 2016).

We also compare several deep learning matching ap-
proaches. The work DGFL (Zhang and Lee 2019) learns
the node-wise feature and the structure information by em-
ploying a graph convolutional network. The work DGMC
(Fey et al. 2020) proposed a two-stage matching strategy to
generate robust matching. We also compare several works
that intend to process 3D point cloud for example DCP (Yue
and M. 2019), Pointnet (Qi et al. 2017), Pointnet++ (R et al.
2017), DGCNN (Wang et al. 2018). Following the protocol
in (Zhang and Lee 2019), we remove the depth input chan-
nel from the model and make them suitable for 2D feature
points. We further remove the rest except for their feature
extraction part and transform them into the Siamese network
structure introduced as (Zhang and Lee 2019).

Training and Testing Protocol
For model training, we first generate the reference graph G1
with 30–60 inliers. The node coordinate vector is uniformly
drawn from [−1, 1]2. Each node is set to be connected with
its top k-nearest neighbors (k = 8). The query graph G2
is generated by adding Gaussian noise from N(0, 0.05) to
these nodes from G1. Furthermore, we add 0–20 outliers to
each graph, where the outliers are randomly distributed in
[−1, 1]. Following the training protocol in (Zhang and Lee
2019), the input keypoint features are normalized by sub-
tracting the statistic mean and divided by its statistic vari-
ance. We keep the maximum iteration of DPGM to be 5 for
both training and testing stages. By following (Zheng et al.
2015), we consider the proximal operator coefficient β as an
additional learnable parameter besides the parameters θGNN
in the first local GNN module. Finally, all methods are im-
plemented in the deep learning package PyTorch (Paszke,
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Figure 2: Matching accuracy (%) on PASCAL-PF dataset.
Results of Bab is taken from (Zhang and Lee 2019).

Gross, and et al 2017). The computing platform is Intel CPU
E5-2650 v4, 256G RAM with 8 Titian X 12GB GPUs. Only
a single GPU is used when we run experiments.

Willow-Object
First, we use the Willow-Object dataset (Cho, Alahari, and
Ponce. 2013) to study the performance of those matching
approaches. This dataset contains 5 categories (face, duck,
and wine-bottle collected from Caltech-256, car, and motor-
bike from Pascal VOC 2007) and 256 images in total. Each
image consists of exactly 10 key points. The goal is to match
those key-points with only the keypoint coordinate infor-
mation. It should be noted that this dataset is often used to
test the performance of deep visual matching methods (Zan-
fir and Sminchisescu 2018; Wang, Yan, and Yang 2019; Yu
et al. 2020) which use additional visual keypoint features ex-
tracted with a VGG model (Simonyan and Zisserman 2015).
Following (Zhang and Lee 2019), we introduce two different
experimental settings: (1). directly using the original coordi-
nate as input; (2). applying a random rotation to the keypoint
coordinate and use the rotated coordinate as input. The ex-
periment results are shown in Figure 1. We put the detailed
quantitive results in the appendix. The results highlight the
good performance and generalization ability of our method.

Pascal PF Dataset
We further study the performance on another real-life
PASCAL-PF dataset (Cho, Alahari, and Ponce. 2013). The
PASCAL-PF dataset consists of 1351 image pairs within
a total of 20 classes. There are 6-18 manually annotated
ground-truth correspondences in each image pair. Same as
the previous experiment, we also introduce two experimen-
tal settings: (1) matching with the original keypoint coordi-
nate; (2) matching with the rotated coordinate. We report the
overall accuracy in Figure 2 and put the quantitive detailed
results in the appendix. The results in Figure 2 demonstrate
the leading performance of our approach in the rotated set-

Figure 3: The matching accuracy, robustness on CMU
House dataset.

ting. In the standard unrotated setting, our method falls be-
hind the state-of-art method DGMC (90.6 vs. 95.7), but in
the rotated setting, our method surpasses DGMC by a large
margin (90.2 vs. 24.5). As a comparison, the second-best
method DGFL gets 69.9% matching accuracy.

CMU House Sequence
The widely used CMU House Sequence dataset contains 111
images of a house. Each image has 30 labeled landmarks.
For all traditional matching algorithm, we build graphs by
using these landmarks as nodes and adopting Delaunay tri-
angulation to generate edges. For all deep learning matching
approaches, we normalize the keypoint coordinates by sub-
tracting the statistic mean and dividing by its statistic vari-
ance. We report the final average matching accuracy in Fig-
ure 3 under the frame gap setting of 10:10:100 frames. The
results show that our method can keep a relatively good per-
formance even when the number of inliers is small, and the
frame gap is large.

Speed Test
We establish an experiment to test the inference time cost.
The computational complexity of our model mainly depends
on two aspects. First, the DPGM need to solve a quadratic
assignment with the complexity of O(|V1|2|V2|2). Second,
the angle calibration module need to calculate the similarity
between the reference graph and a set of candidate graphs.
This step requires a time cost of O(C|V1||V2|), where C
is the number of those candidates. In our experiment, we
set C = 10. As a comparison, the neural network method
only with the local GNN module has the complexity of
O(|V1||V2|)). In practice, our overall time consumption is
still at an acceptable level. Details are shown in Figure 4.

Ablation Study
In this section, we conduct several groups of ablation exper-
iments to study the effect of design choices on the PASCAL-
PF dataset. The results from Table.1 suggest that the DPGM
could promote the matching performance under the original
experimental setting and the GRCM significantly improves
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Figure 4: The inference time consumption under graph
scales.

GNN DPGM GRCM Ori-Acc Rot-Acc

DGFL × × 88.5 69.9

DGFL X × 93.5 ↑ 70.6 ↑
DGFL × X 80.7 ↓ 80.6 ↑
DGFL X X 90.6 ↑ 90.0 ↑

Table 1: Ablation study (%) on PASCAl-PF dataset.

the robustness to random rotations. However, the GRCM has
some negative effects on the accuracy of the system for the
unrotated data.

The GRCM The previous ablation study indicates that the
GRCM module does not always improve performance. This
may due to two possible reasons. The first reason is the in-
sufficient amount of the candidate graphs, and the second
reason is interference from other candidate graphs to the
truly aligned graph. To verify this assumption, we establish
an experiment by increase the number of candidates C. We
also run an oracle model, where the model also chooses the
closest aligned graph from the candidate set with C = 1000.
We find that as the number of candidates C increases, the
negative effect from the GRCM module could be compen-
sated at a cost to further increase time complexity. However,
we also notice that there is a small performance gap from
the oracle-candidate model. This is due to an inaccurate es-
timation of the candidate graph.

Differentiability matters The proposed model consists
of three modules. Only the first backbone network (Local-
GNN) for the local feature extractor contains lots of param-
eters that need to learn. One can either train this model in-
dependently as DGFL did in their work or jointly train the
whole model by combining the other two modules. We con-
duct experiments on the PASCAL-PF dataset to show the
advantage of the joint training. In the right figure of Fig.5,
the results suggest that jointly training improves the match-
ing performance of the backbone+DPGM system in a large
margin and further promotes the robustness. This experi-
ment shows that designing a better differentiable matching
module and jointly train the whole network can learn a better
backbone network, which further benefits the overall perfor-
mance.

Figure 5: Left: by increasing the number of candidates, the
performance of GRCM could get closer to the Oracle bound.
Right: The effect of jointly training (JT).

Conclusion
This paper presented a novel end-to-end approach for robust
geometric points matching. Our method is designed to be
rotational invariant. The proposed model consists of three
parts: a graph neural network to generate a high-level lo-
cal feature, an attention-based module to normalize the ro-
tational transform, and a global feature matching module
based on proximal optimization. In the rotation calibration
model, we use a proxy graph to replace the original graph,
which is aligned with the target graph’s rotation. Thus, the
proposed method can significantly enhance the robustness
of the matching results. Besides, we deploy a differentiable
proximal module for node-wise matching with theoretical
convergence analysis. Extensive experimental results show
the satisfactory performance and robustness of our approach.
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