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Abstract

In this paper, we study fundamental problems of maximiz-
ing DR-submodular continuous functions that have real-world
applications in the domain of machine learning, economics,
operations research and communication systems. It captures a
subclass of non-convex optimization that provides both theo-
retical and practical guarantees. Here, we focus on minimizing
regret for online arriving non-monotone DR-submodular func-
tions over down-closed and general convex sets.
First, we present an online algorithm that achieves a 1/e-
approximation ratio with the regret of O(T 3/4) for maximiz-
ing DR-submodular functions over any down-closed convex
set. Note that, the approximation ratio of 1/e matches the best-
known guarantee for the offline version of the problem. Next,
we give an online algorithm that achieves an approximation
guarantee (depending on the search space) for the problem of
maximizing non-monotone continuous DR-submodular func-
tions over a general convex set (not necessarily down-closed).
To best of our knowledge, no prior algorithm with approxima-
tion guarantee was known for non-monotone DR-submodular
maximization in the online setting. Finally we run experiments
to verify the performance of our algorithms on problems aris-
ing in machine learning domain with the real-world datasets.

Introduction
Continuous DR-submodular optimization is a subclass of
non-convex optimization that is an upcoming frontier in
machine learning. Roughly speaking, a differentiable non-
negative bounded function F : [0, 1]n → [0, 1] is DR-
submodular if∇F (x) ≥ ∇F (y) for all x,y ∈ [0, 1]n where
xi ≤ yi for every 1 ≤ i ≤ n. (Note that, w.l.o.g. after nor-
malization, assume that F has values in [0, 1].) Intuitively,
continuous DR-submodular functions represent the diminish-
ing returns property or the economy of scale in continuous
domains. DR-submodularity has been of great interest (Bian,
Buhmann, and Krause 2019; Bian et al. 2017a; Chen, Has-
sani, and Karbasi 2018; Hassani, Soltanolkotabi, and Karbasi
2017; Niazadeh, Roughgarden, and Wang 2018; Staib and
Jegelka 2017). Many problems arising in machine learn-
ing and statistics, such as Non-definite Quadratic Program-
ming (Ito and Fujimaki 2016), Determinantal Point Processes
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(Kulesza, Taskar et al. 2012), log-submodular models (Djo-
longa and Krause 2014), to name a few, have been modelled
using the notion of continuous DR-submodular functions.

In the past decade, online computational framework has
been quite successful for tackling a wide variety of challeng-
ing problems and capturing many real-world problems with
uncertainty. In this computational framework, we focus on
the model of online learning. In online learning, at any time
step, given a history of actions and a set of associated reward
functions, online algorithm first chooses an action from a set
of feasible actions; then, an adversary subsequently selects
a reward function. The objective is to perform as good as
the best fixed action in hindsight. This setting have been ex-
tensively explored in the literature, especially in context of
convex functions (Hazan 2016).

In fact, several algorithms with theoretical approximation
guarantees are known for maximizing (offline and online)
DR-submodular functions. However, these guarantees hold
under the assumptions that are based on the monotonicity
of functions coupled with the structure of convex sets such
as unconstrained hypercube and down-closed. Though, a
majority of real-world problems can be formulated as non-
monotone DR-submodular functions over convex sets that
might not be necessarily down-closed. For example, the prob-
lems of Determinantal Point Processes, log-submodular mod-
els, etc can be viewed as non-monotone DR-submodular max-
imization problems. Although several algorithms for non-
monotone (set) submodular maximization are known and they
are built on maximizing the corresponding multilinear exten-
sions (a particular class of DR-submodular functions), they
do not extend to general DR-submodular functions since the
optimal solutions of the former are integer points while the
ones of the latter are not. Besides, general convex sets include
conic convex sets, up-closed convex sets, mixture of covering
and packing linear constraints, etc. which appear in many
applications. Among others, conic convex sets play a cru-
cial role in convex optimization. Conic programming (Boyd
and Vandenberghe 2004) — an important subfield of convex
optimization — consists of optimizing an objective func-
tion over a conic convex set. Conic programming reduces to
linear programming and semi-definite programming when
the objective function is linear and the convex cones are
the positive orthant Rn+ and positive semidefinite matrices
Sn+, respectively. Optimizing non-monotone DR-submodular
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functions over a (bounded) conic convex set (not necessarily
downward-closed) is an interesting and important problem
both in theory and in practice. To best of our knowledge, no
prior work has been done on maximizing DR-submodular
functions over conic sets in online setting. The limit of current
theory (Bian, Buhmann, and Krause 2019; Bian et al. 2017a;
Chen, Hassani, and Karbasi 2018; Hassani, Soltanolkotabi,
and Karbasi 2017; Niazadeh, Roughgarden, and Wang 2018;
Zhang et al. 2019) motivates us to develop online algorithms
for non-monotone functions.

In this work, we explore the online problem of maximizing
non-monotone DR-submodular functions over a hypercube
and down-closed1 and over a general convex sets. Formally,
we consider the following setting for DR-submodular max-
imization: given a convex domain K ⊆ [0, 1]n in advance,
at each time step t = 1, 2, . . . , T , the online algorithm first
selects a vector xt ∈ K. Subsequently, the adversary reveals
a non-monotone continuous DR-submodular function F t and
the algorithm receives a reward of F t(xt). The objective is
also to maximize the total reward. We say that an algorithm
achieves a (r,R(T ))-regret if

T∑
t=1

F t(xt) ≥ r ·max
x∈K

T∑
t=1

F t(x)−R(T )

In other words, r is the approximation ratio that measures
the quality of the online algorithm compared to the best fixed
solution in hindsight and R(T ) represents the regret in the
classic terms. Equivalently, we say that the algorithm has
r-regret at most R(T ). Our goal is to design online algo-
rithms with (r,R(T ))-regret where 0 < r ≤ 1 is as large as
possible, and R(T ) is sub-linear in T , i.e., R(T ) = o(T ).

Our Contributions and Techniques
In this paper, we provide algorithms with performance guar-
antees for the problem over down-closed and general convex
sets. Our contributions and techniques are summarized as
follows (also see Table 1, the entries in the red correspond to
our contribution).

Maximizing Online Non-monotone DR-submodular
Functions Over Down-closed Convex Sets The natures
of online DR-submodular maximization for monotone
and non-monotone functions are quite different. In the
setting of monotone functions, the best approximation
guarantee is (1 − 1/e) (Chen, Hassani, and Karbasi 2018)
but one can prove that the natural gradient descent algorithm
attains 1/2-approximation (Chen, Hassani, and Karbasi
2018). However, for online non-monotone DR-submodular
maximization, no constant guarantee is known and it is
likely that natural algorithms such as gradient descent,
mirror descent, etc do not guarantee to achieve any constant
approximation, even small one. An illustrative example of
poor local optima (for coordinate ascent algorithm) can be
found in (Bian, Buhmann, and Krause 2019, Appendix A).

The main result of our paper is the first online algorithm
that achieves a constant approximation ratio with the regret

1K is down-closed if for every z ∈ K and y ≤ z then y ∈ K

of O(T 3/4) for maximizing non-monotone DR-submodular
functions over any down-closed convex set where T is num-
ber of time steps. Moreover, the approximation is 1/e which
matches to the best guarantee in the offline setting.

Our algorithm is built on the Meta-Frank-Wolfe algorithm
introduced by (Chen, Hassani, and Karbasi 2018) for mono-
tone DR-submodular maximization. Their meta Frank-Wolfe
algorithm combines the framework of meta-actions proposed
in (Streeter and Golovin 2009) with a variant of the Frank-
Wolfe proposed in (Bian et al. 2017b) for maximizing mono-
tone DR-submodular functions. Informally, at every time t,
our algorithm starts from the origin 0 (0 ∈ K since K is
down-closed) and executes L steps of the Frank-Wolfe al-
gorithm where every update vector at iteration 1 ≤ ` ≤ L
is constructed by combining the output of an optimization
oracle E` and the current vector so that we can exploit the
concavity property in positive directions of DR-submodular
functions. The solution xt is produced at the end of the L-th
step. Subsequently, after observing the function F t, the algo-
rithm subtly defines a vector dt` and feedbacks 〈·,dt`〉 as the
reward function at time t to the oracle E` for 1 ≤ ` ≤ L. The
most important distinguishing point of our algorithm com-
pared to that in (Chen, Hassani, and Karbasi 2018) relies on
the oracles. In their algorithm, they used linear oracles which
are appropriate for maximizing monotone DR-submodular
functions. However, it is not clear whether linear or even
convex oracles are strong enough to achieve a constant ap-
proximation for non-monotone functions.

While aiming for a 1/e-approximation — the best known
approximation in the offline setting — we consider the fol-
lowing online non-convex problem, referred throughout this
paper as online vee learning problem. At each time t, the
online algorithm knows ct ∈ K in advance and selects a
vector xt ∈ K. Subsequently, the adversary reveals a vector
at ∈ Rn and the algorithm receives a reward 〈at, ct ∨ xt〉.
Given two vectors x and y, the vector x∨y has the ith coor-
dinate (x ∨ y)i = max{x(i), y(i)}. The goal is to maximize
the total reward over a time horizon T .

In order to bypass the non-convexity of the online vee
learning problem, we propose the following methodology.
Unlike dimension reduction techniques that aim at reducing
the dimension of the search space, we lift the search space and
the functions to a higher dimension so as to benefit from their
properties in this new space. Concretely, at a high level, given
a convex set K, we define a “sufficiently dense” lattice L in
[0, 1]n such that every point in K can be approximated by a
point in the lattice. The term “sufficiently dense” corresponds
to the fact that the values of any Lipschitz function can be
approximated by the function values at lattice points. As the
next step, we lift all lattice points in K to a high dimension
space so that they form a subset of vertices (corners points)
K̃ of the unit hypercube in the newly defined space. Interest-
ingly, the reward function 〈at, ct ∨ xt〉 can be transformed
to a linear function in the new space. Hence, our algorithm
for the online vee problem consists of updating at every time
step a solution in the high-dimension space using a linear
oracle and projecting the solution back to the original space.

Once the solution is projected back to original space, we
construct appropriate update vectors for the original DR-
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-approx
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(Niazadeh, Roughgarden, and Wang 2018)
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(
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e

)
-approx

(Bian et al. 2017b)
(
1
e

)
-approx (Bian et al. 2017a)
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(
1− 1

e

)
-approx

(Mokhtari, Hassani, and Karbasi 2018)

(
1−minx∈K‖x‖∞

3
√
3

)
-approx

(Dürr et al. 2020)

O
nl

in
e hypercube

(
1/2, O(

√
T )

)
down-closed

(
1
e
, O(T 3/4)

)
general

(
1− 1

e
, O(
√
T )

)
(Chen, Hassani, and Karbasi 2018)

(
1−minx∈K‖x‖∞

3
√
3

, O( T
lnT

)
)

Table 1: Summary of results on DR-submodular maximization. The entries represent the best-known (r,R(T ))-regret; our results
are shown in red. The entry in blue is not explicitly stated in literature but can be deduced from (Ene and Nguyen 2016) or from
our technique. The guarantees in blank cells can be deduced from a more general one.

submodular maximization and feedback rewards for the on-
line vee oracle. Exploiting the underlying properties of DR-
submodularity, we show that our algorithm achieves the regret
bound of (1/e,O(T 3/4)). A useful feature of our algorithm
is that it is projection-free if using appropriate projection-free
oracles.

Over The Hypercube. Restricting on the DR-submodular
maximization problem over the hypercube [0, 1]n, a partic-
ular down-closed convex set that has been widely studied,
our approach leads to an 1/2-approximation algorithm with
regret bound ofO(

√
T log T ). Note that this result can be de-

duced from (Ene and Nguyen 2016) but as it is not explicitly
stated in literature, for completeness, we present the proof in
the appendix of the full version.

Maximizing Online Non-monotone DR-submodular
Functions over General Convex Sets We go beyond
the down-closed structure by considering general con-
vex sets. Building upon our salient ideas from previous
algorithm, we prove that for general convex sets, the
Meta-Frank-Wolfe algorithm with adapted step-sizes
guarantees

(
1−minx∈K‖x‖∞

3
√
3

, O( T
lnT )

)
-regret in expectation.

Notably, if the set K contains 0 (for example, K is the
intersection of the semi-definite positive matrix cone and
the hypercube [0, 1]n) then the algorithm guarantees in
expectation a ( 1

3
√
3
, O( T

log T ))-regret. To the best of our
knowledge, this is the first constant-approximation algorithm
for the problem of online non-monotone DR-submodular
maximization over a non-trivial convex set that goes beyond
down-closed sets. Note that, any algorithm for the problem
over a non-down-closed convex set (in particular arbitrary
convex set containing the origin) that guarantees a constant
approximation must require in general exponentially many
value queries to the function (Vondrák 2013). Remark that
the quality of the solution, specifically the approximation

ratio, depends on the initial solution x0. This confirms an
observation in various contexts that initialization plays an
important role in non-convex optimization.

Related Work
In this section, we give a summary on best-known results on
DR-submodular maximization. The domain has been investi-
gated more extensively in recent years due to its numerous
applications in the field of statistics and machine learning,
for example active learning (Golovin and Krause 2011), viral
makerting (Kempe, Kleinberg, and Tardos 2003), network
monitoring (Gomez Rodriguez, Leskovec, and Krause 2010),
document summarization (Lin and Bilmes 2011), crowd
teaching (Singla et al. 2014), feature selection (Elenberg
et al. 2018), deep neural networks (Elenberg et al. 2017),
diversity models (Djolonga, Tschiatschek, and Krause 2016)
and recommender systems (Guillory and Bilmes 2011).

Offline Setting (Bian et al. 2017b) considered the problem
of maximizing monotone DR-functions subject to a down-
closed convex set and showed that the greedy method pro-
posed by (Calinescu et al. 2011), a variant of well-known
Frank-Wolfe algorithm in convex optimization, guarantees
a (1 − 1/e)-approximation. However, it has been observed
by (Hassani, Soltanolkotabi, and Karbasi 2017) that the
greedy method is not robust in stochastic settings (where
only unbiased estimates of gradients are available). Subse-
quently, (Mokhtari, Hassani, and Karbasi 2018) proposed a
(1 − 1/e)-approximation algorithm for maximizing mono-
tone DR-submodular functions over general convex sets in
stochastic settings by a new variance reduction technique.

The problem of maximizing non-monotone DR-
submodular functions is much harder. (Bian, Buhmann,
and Krause 2019) and (Niazadeh, Roughgarden, and
Wang 2018) have independently presented algorithms
with the same approximation guarantee of (1/2) for the
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problem of non-monotone DR-submodular maximization
over the hypercube (K = [0, 1]n). These algorithms are
inspired by the bi-greedy algorithms in (Buchbinder et al.
2015; Buchbinder and Feldman 2018). (Bian et al. 2017a)
made a further step by providing a (1/e)-approximation
algorithm where the convex sets are down-closed. (Mokhtari,
Hassani, and Karbasi 2018) also presented an algorithm
that achieve (1/e) for non-monotone continuous DR-
submodular function over a down-closed convex domain
that uses only stochastic gradient estimates. Remark that
when aiming for approximation algorithms (in polyno-
mial time), the restriction to down-closed polytopes is
unavoidable. Specifically, (Vondrák 2013) proved that any
algorithm for the problem over a non-down-closed set
that guarantees a constant approximation must require in
general exponentially many value queries to the function.
Recently, (Dürr et al. 2020) presented an algorithm that
achieves ((1 − minx∈K‖x‖∞)/3

√
3)-approximation for

non-monotone DR-submodular function over general convex
sets that are not necessarily down-closed.

Online Setting The results for online DR-submodular
maximization are known only for monotone functions. (Chen,
Hassani, and Karbasi 2018) considered the online prob-
lem of maximizing monotone DR-submodular functions
over general convex sets and provided an algorithm that
achieves a (1− 1/e,O(

√
T ))-regret. Subsequently, (Zhang

et al. 2019) presented an algorithm that reduces the number
of per-function gradient evaluations from T 3/2 in (Chen,
Hassani, and Karbasi 2018) to 1 and achieves the same
approximation ratio of (1 − 1/e). Leveraging the idea of
one gradient per iteration, they presented a bandit algorithm
for maximizing monotone DR-submodular function over a
general convex set that achieves in expectation (1 − 1/e)
approximation ratio with regret O(T 8/9). Note that in the
discrete setting, (Roughgarden and Wang 2018) studied
the non-monotone (discrete) submodular maximization over
the hypercube and gave an algorithm which guarantees
the tight (1/2)-approximation and O(

√
T ) regret. Recently

and independently, (Niazadeh et al. 2020) have provided
an (1/2, O(

√
T log T ))-regret algorithm for DR-submodular

maximization over the hypercube. Their algorithm is built
on an interesting framework that transform offline greedy
algorithms to online ones using Blackwell approachability.
Our approach, based on the lifting procedure, is completely
different to theirs.

Preliminaries and Notations
Throughout the paper, we use bold face letters, e.g., x,y to
represent vectors. For every S ⊆ {1, 2, . . . , n}, vector 1S is
the n-dim vector whose ith coordinate equals to 1 if i ∈ S
and 0 otherwise. Given two n-dimensional vectors x,y, we
say that x ≤ y iff xi ≤ yi for all 1 ≤ i ≤ n. Additionally,
we denote by x ∨ y, their coordinate-wise maximum vector
such that (x ∨ y)i = max{xi, yi}. Moreover, the symbol ◦
represents the element-wise multiplication that is, given two
vectors x,y, vector x ◦ y is the such that the i-th coordinate

(x ◦ y)i = xiyi. The scalar product 〈x,y〉 =
∑
i xiyi and

the norm ‖x‖= 〈x,x〉1/2. In the paper, we assume that K ⊆
[0, 1]n. We say that K is the hypercube if K = [0, 1]n; K is
down-closed if for every z ∈ K and y ≤ z then y ∈ K; and
K is general if K is a convex subset of [0, 1]n without any
special property.

Definition 1. A function F : [0, 1]n → R+ ∪ {0} is
diminishing-return (DR) submodular if for all vector x ≥
y ∈ [0, 1]n, any basis vector ei = (0, . . . , 0, 1, 0, . . . , 0)
and any constant α > 0 such that x + αei ∈ [0, 1]n,
y + αei ∈ [0, 1]n, it holds that F (x + αei) − F (x) ≤
F (y +αei)−F (y). Note that if function F is differentiable
then the diminishing-return (DR) inequality is equivalent
to ∇F (x) ≤ ∇F (y) ∀x ≥ y ∈ [0, 1]n. Moreover, if F
is twice-differentiable then the DR property is equivalent
to all of the entries of its Hessian being non-positive, i.e.,
∂2F

∂xi∂xj
≤ 0 for all 1 ≤ i, j ≤ n.

Besides, a differentiable function F : K ⊆ [0, 1]n →
R+ ∪ {0} is said to be β-smooth if for any x,y ∈ K,
the following holds, F (y) ≤ F (x) + 〈∇F (x),y − x〉 +
β
2 ‖y − x‖2; or equivalently, the gradient is β-Lipschitz, i.e.,∥∥∇F (x)−∇F (y)

∥∥ ≤ β‖x− y‖ .

Online DR-Submodular Maximization over
Down-Closed Convex Sets

Online Vee Learning
In this section, we give an algorithm for an online problem
that will be the main building block in the design of algo-
rithms for online DR-submodular maximization over down-
closed convex sets. In the online vee learning problem, given
a down-closed convex set K, at every time t, the online al-
gorithm receives ct ∈ K at the beginning of the step and
needs to choose a vector xt ∈ K. Subsequently, the adver-
sary reveals a vector at ∈ Rn and the algorithm receives a
reward 〈at, ct∨xt〉. The goal is to maximize the total reward∑T
t=1〈at, ct ∨ xt〉 over a time horizon T .
The main issue in the online vee problem is that the reward

functions are non-concave. In order to overcome this obstacle,
we consider a novel approach that consists of discretizing and
lifting the corresponding functons to a higher dimensional
space.

Discretization and Lifting Let L be a lattice such that
L = {0, 1

M , 2
M , . . . , `M , . . . , 1}n where 0 ≤ ` ≤ M for

some parameter M (to be defined later). Note that each
xi = `

M for 0 ≤ ` ≤ M can be uniquely represented by
a vector yi ∈ {0, 1}M+1 such that yi0 = . . . = yi` = 1 and
yi,`+1 = . . . = yi,M = 0. Based on this observation, we lift
the discrete setK∩L to the (n×(M+1))-dim space. Specif-
ically, define a lifting map m : K ∩ L → {0, 1}n×(M+1)

such that each point (x1, . . . , xn) ∈ K ∩ L is mapped
to an unique point (y10, . . . , y1M , . . . , yn0, . . . , ynM ) ∈
{0, 1}n×M where yi0 = . . . = yi` = 1 and yi,`+1 = . . . =

yi,M = 0 iff xi = `
M for 0 ≤ ` ≤ M . Define K̃ be the

set {1X ∈ {0, 1}n×(M+1) : 1X = m(x) for some x ∈
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Algorithm 1 Online algorithm for vee learning
Input: A convex set K, a time horizon T .

1: Let L be a lattice in [0, 1]n and denote the polytope
C := conv(K̃).

2: Initialize arbitrarily x1 ∈ K ∩ L and y1 = 1X1 =

m(x1) ∈ K̃.
3: for t = 1 to T do
4: Observe ct, compute 1Ct = m(ct).
5: Play xt.
6: Observe at (so compute ãt) and receive the reward

〈at, ct ∨ xt〉.
7: Set yt+1 ← updateC(y

t; ãt
′ ◦ (1− 1Ct′ ) : t′ ≤ t)

where ◦ denotes the element-wise multiplication.
8: Round: 1Xt+1 ← round(yt+1).
9: Compute xt+1 = m−1(1Xt+1).

10: end for

K ∩ L}. Observe that K̃ is a subset of discrete points in
{0, 1}n×(M+1). Let C := conv(K̃) be the convex hull of K̃.

Algorithm Description In our algorithm, at every time t,
we will output xt ∈ L∩K. In fact, we will reduce the online
vee problem to a online linear optimization problem in the
(n × (M + 1))-dim space. Given ct ∈ K, we round every
coordinate cti for 1 ≤ i ≤ n to the largest multiple of 1

M

which is smaller than cti. In other words, the rounded vector
ct has the ith-coordinate c̄ti = `

M where `
M ≤ cti <

`+1
M .

Vector ct ∈ L and also ct ∈ K (since ct ≤ ct and K
is down-closed). Denote 1Ct = m(ct). Besides, for each
vector at ∈ Rn, define its correspondence ãt ∈ Rn×(M+1)

such that ãti,j = 1
M ati for all 1 ≤ i ≤ n and 0 ≤ j ≤ M .

Observe that 〈at, ct〉 = 〈ãt,1Ct〉 (where the second scalar
product is taken in the space of dimension n× (M + 1)).

The formal description is given in Algorithm 1. In the al-
gorithm, we use a procedure update. This procedure takes
arguments as the polytope C, the current vector yt, the gradi-
ents of previous time steps ãt◦(1−1Ct) and outputs the next
vector yt+1. One can use different update strategies, in par-
ticular the gradient descent or the follow-the-perturbed-leader
algorithm (if aiming for a projection-free algorithm).

yt+1 ← ProjC
(
yt − η · ãt ◦ (1− 1Ct)

)
(Gradient Descent)

yt+1 ← arg min
C

{
η

t∑
t′=1

〈ãt
′
◦ (1− 1Ct′ ),y〉+ nT · y

}
(Follow-the-perturbed-leader)

Besides, in the algorithm, we use additionally a procedure
round in order to transform a solution yt in the polytope C
of dimension n× (M + 1) to an integer point in K̃. Specifi-
cally, given yt ∈ conv(K̃), we round yt to 1Xt ∈ K̃ using
an efficient polynomial-time algorithm given in (Mirrokni
et al. 2017) for the approximate Carathéodory’s theorem

w.r.t the `2-norm. Specifically, given yt ∈ C and an arbi-
trary ε > 0, the algorithm in (Mirrokni et al. 2017) returns
a set of k = O(1/ε2) integer points 1Xt

1
, . . . ,1Xt

k
∈ K̃

in O(1/ε2)-time such that ‖yt − 1
k

∑k
j=1 1Xt

j
‖≤ ε. Hence,

given 1Xt
1
, . . . ,1Xt

k
which have been computed, the pro-

cedure round simply consists of rounding yt to 1Xt
j

with
probability 1/k. Finally, the solution xt in the original space
is computed as m−1(1Xt+1).

Lemma 1. Assume that ‖at‖≤ G for all 1 ≤ t ≤ T and the
update scheme is chosen either as the gradient ascent update
or other procedure with regret of O(

√
T ). Then, using the

lattice L with parameter M = (T/n)1/4 and ε = 1/
√
T (in

the round procedure), Algorithm 1 achieves a regret bound
of O(G(nT )3/4). The total running time of the algorithm is
O(T 2).

Algorithm for Online Non-monotone
DR-submodular Maximization
In this section, we will provide an algorithm for the prob-
lem of online non-monotone DR-submodular maximiza-
tion. The algorithm maintains L online vee learning oracles
E1, . . . , EL. At each time step t, the algorithm starts from 0
(origin) and executes L steps of the Frank-Wolfe algorithm
where the update vector vt` is constructed by combining the
output ut` of an online vee optimization oracle E` with the
current vector xt`. In particular, vt` is set to be xt` ∨ ut` − xt`.
Then, the solution xt is produced at the end of the L-th
step. Subsequently, after observing the DR-submodular func-
tion F t, the algorithm defines a vector dt` and feedbacks
〈dt`,xt` ∨ut`〉 as the reward function at time t to the oracle E`
for 1 ≤ ` ≤ L. The pseudocode in presented in Algorithm 2.

Theorem 1. Let K ⊆ [0, 1]n be a down-closed convex set
with diameterD. Assume that functions F t’s areG-Lipschitz,
β-smooth and E

[∥∥g̃t` −∇F t(xt`)∥∥2] ≤ σ2 for every t and

`. Then, choose L = T 3/4 and the step-sizes η` = 1/L and
ρ` = 2/(`+ 3)2/3 for all 1 ≤ ` ≤ L , Algorithm 2 achieves
the following guarantee:

T∑
t=1

E[F t(xt)] ≥

(
1

e
−O

(
1

L

))
max
x∈K

T∑
t=1

F t(x)

−O(βD + n3/4G+ σ)DT 3/4

Maximizing Non-Monotone DR-Submodular
Functions over a General Convex Domain

In this section, we consider the problem of maximizing non-
monotone continuous DR-submodular functions over a gen-
eral convex domain. We show that beyond down-closed con-
vex domain, the Meta-Frank-Wolfe algorithm, introduced
by (Chen, Hassani, and Karbasi 2018) for monotone DR-
submodular functions, provides indeed meaningful guaran-
tees for the problem of online non-monotone DR-submodular
maximization over a general convex set. Note that no algo-
rithm with performance guarantee was known in the online
setting.
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Algorithm 2 Online algorithm for down-closed convex sets
Input: A convex set K, a time horizon T , online vee
optimization oracles E1, . . . , EL, step sizes ρ` ∈ (0, 1), and
η` = 1/L for all ` ∈ [L]

1: Initialize vee optimizing oracle E` for all ` ∈ {1, . . . L}.
2: Initialize xt1 ← 0 and dt0 ← 0 for every 1 ≤ t ≤ T .
3: for t = 1 to T do
4: Compute ut` ← output of oracle E` in round t for all

` ∈ {1, . . . , L}.
5: for 1 ≤ ` ≤ L do
6: Set vt` ← xt` ∨ ut` − xt`
7: Set xt`+1 ← xt` + η`v

t
`.

8: end for
9: Set xt ← xtL+1.

10: Play xt, observe the function F t and get the reward of
F t(xt).

11: Compute a gradient estimate gt` such that E[gt`|xt`] =
∇F t(xt`) for all ` ∈ {1, 2, . . . , L}.

12: Compute dt` = (1 − ρ`)dt`−1 + ρ`g
t
`, for every ` ∈

{1, . . . , L}
13: Feedback 〈dt`,xt` ∨ ut`〉 to oracle E` for all ` ∈

{1, 2, . . . , L},
14: end for

Online Linear Optimization Oracles In our algorithms,
we use multiple online linear optimization oracles to estimate
the gradient of online arriving functions. This idea was orig-
inally developed for maximizing monotone DR-submodular
functions (Chen et al. 2018). Before presenting algorithms,
we recall the online linear optimization problems and corre-
sponding oracles. In the online linear optimization problem,
at every time 1 ≤ t ≤ T , the oracle selects ut ∈ K. Sub-
sequently, the adversary reveals a vector dt and feedbacks
the function 〈·,dt〉 (and a reward 〈ut,dt〉) to the oracle. The
objective is to minimize the regret. There exists several ora-
cles that guarantee sublinear regret, for example the gradient
descent algorithm has the regret ofO(n

√
T ) (see for example

(Hazan 2016)).

Algorithm Description At a high level, at every time t,
our algorithm produces a solution xt by running L steps of
the Frank-Wolfe algorithm that uses the outputs of L linear
optimization oracles as update vectors. After the algorithm
plays xt, it observes stochastic gradient estimates at L points
in the convex domain. Subsequently, these estimates are av-
eraged with the estimates from the previous round and are
fed to the reward functions of L online linear oracles. The
pseudocode is presented in the Algorithm 3.

Theorem 2. Let K ⊆ [0, 1]n be a general convex domain
with the diameter D. Assume that for every 1 ≤ t ≤ T ,

1. F t is β-smooth DR-submodular function and the norm
of the gradient ∇F t is bounded by G, i.e.,

∥∥∇F (x
∥∥ ≤

G, ∀x ∈ K,
2. the variance of the unbiased stochastic gradients is

bounded by σ2, i.e., E
[∥∥gt` −∇F t(xt`)∥∥2] ≤ σ2 for ev-

ery 1 ≤ ` ≤ L; and

Algorithm 3 Meta-Frank-Wolfe for general convex domains
Input: A convex set K, a time horizon T , online linear
optimization oracles E1, . . . , EL, step sizes ρ` ∈ (0, 1), and
η` ∈ (0, 1)

1: Initialize online linear optimization oracle E` for all ` ∈
{1, . . . L}.

2: Initialize xt1 ← x0 for some x0 ∈ K and dt0 ← 0 for
every 1 ≤ t ≤ T . Let x0 ← arg minx∈K‖x‖∞.

3: for t = 1 to T do
4: Set vt` ← output of oracle E` in round t − 1 for all

` ∈ {1, . . . , L}.
5: Set xt`+1 ← (1− η`)xt` + η`v

t
`.

6: Play xt = xtL+1.
7: Observe gt` such that E

[
gt`|xt`

]
= ∇F t(xt`).

8: Set dt` ← (1−ρ`) ·dt`−1 +ρ` ·gt` for ` = {1, . . . , L}.
9: Feedback the reward 〈vt`,dt`〉 to E` for ` =

{1, . . . , L}.
10: end for

Then setting L = O(T ), κ = ln 3
2 , ρ` = 2

(`+3)2/3
and η` =

κ
`HL

for 1 ≤ ` ≤ L and HL is the Lth harmonic number, the
following inequality holds true for Algorithm 3:
T∑
t=1

E
[
F t(xt)

]
≥
(

1

3
√

3

)
(1− ‖x0‖∞) max

x∗∈K

T∑
t=1

F t(x∗)

−O
(

(βD +G+ σ)DT

lnL

)
−O(

√
T ).

Remarks
• The regret guarantee, in particular the approximation ra-

tio, depends on the initial solution x0. This confirms the
observation that initialization plays an important role in
non-convex optimization. For particular case where K is
the intersection of a cone and the hypercube [0, 1]n (so
0 ∈ K), Algorithm 3 provides vanishing 1/(3

√
3)-regret.

Note that this is the first constant approximation for non-
monotone DR-submodular maximization over a non-trivial
convex domain beyond the class of down-closed convex
domains.

• Assume that 0 ∈ K and F t’s are identical, i.e., F t =
F, ∀t , the algorithm guarantees a convergence rate of
O
(
1/log T

)
. It means that to be ε-close to a solution

which is 1/(3
√

3)-approximation to the optimal solution
of F , the algorithm requires T = O(21/ε) iterations. Note
that the exponential complexity is unavoidable as any con-
tant approximation algorithm for the multilinear extension
of a submodular function (so DR-submodular) over a non-
down-closed convex set requires necessarily an exponential
number of value queries (Vondrák 2013).

Experiments
In this section, we validate our online algorithms on a set of
real-world dataset. We show the performance of our algo-
rithms over a down-closed polytope and over a general convex
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Figure 1: Online revenue maximization over (a) a down-closed polytope; and (b) a general polytope. (Iterations correspond to
timesteps t ∈ [T ].)

polytope. All experiments are performed in MATLAB using
CPLEX optimization tool on MAC OS version 10.15.

In the revenue maximization problem, the goal of a com-
pany is to offer for free or advertise a product to users so that
the revenue increases through their “word-of-mouth" effect
on others. Here, we are given an undirected social network
graph G = (V,W ), where wij ∈ W represents the weight
of the edge between vertex i and vertex j. If the company
invests xi unit of cost on an user i ∈ V then user i becomes
an advocate of the product with probability 1 − (1 − p)xi

where p ∈ (0, 1) is a parameter. Intuitively, this signifies that
for investing a unit cost to i, we have an extra chance that
the user i becomes an advocate with probability p (Soma and
Yoshida 2017).

Let S ⊂ V be a random set of users who advocate
for the product. Then the revenue with respect to S is
defined as

∑
i∈S
∑
j∈V \S wij . Let F : [0, 1]|E| → R

be the expected revenue obtained in this model, that is
F (x) = ES [

∑
i∈S
∑
j∈V \S wij ] =

∑
i

∑
j:i6=j wij(1 −

(1 − p)xi)(1 − p)xj . It has been shown that F is a non-
monotone DR-submodular function (Soma and Yoshida
2017).

In our setting, we consider the online variant of the rev-
enue maximization on a social network where at time t the
weight of an edge is given wtij ∈ {0, 1}. The experiments are
performed on the Facebook dataset that contains 20K users
(vertices) and 1M relationships (edges). We choose the num-
ber of time steps to be T = 1000. At each time t ∈ 1, . . . , T ,
we randomly uniformly select 2000 vertices V t ⊂ V , inde-
pendently of V 1, . . . , V t−1, and construct a batch Bt with
edge-weights wtij = 1 if and only if i, j ∈ V t and edge (i, j)
exists in the Facebook dataset. In case if i or j do not belong
to V t, wtij = 0. We set p = 0.0001. In the first experiment,
we impose a maximum investment constraint on the problem
such that

∑
i∈V xi ≤ 1. This, in addition to xi ≥ 0, ∀i ∈ V

constitutes a down-closed feasible convex set. For the general
convex set, we impose an additional minimum investment
constraint on the problem such that

∑
i∈V xi ≥ 0.1.

For comparison purposes, we consider (offline) Frank-

Wolfe variants as the benchmark. Variants of Frank-Wolfe al-
gorithm are shown to be competitive for maximizing (offline)
non-monotone DR-submodular functions over down-closed
convex sets (Bian et al. 2017a) and over general convex sets
(Dürr et al. 2020). Moreover, as observed in (Bian et al.
2017a; Dürr et al. 2020), variants of Frank-Wolfe algorithm
behave well in practice with approximation ratio better than
0.9 in several experiment settings. For these reasons, we adopt
Frank-Wolfe variants as our benchmark.

In Figure 1 we show the ratio of between the objec-
tive value achieved by the online algorithm and that of the
benchmark over the down-closed convex set (Figure 1(a))
and the general convex set (Figure 1(b)). More specifically,
the offline Frank-Wolfe variant performs almost as well
as the optimum solution (approximation ratio larger than
0.92) and our online algorithms attain a ratio larger than
0.44 compared with the offline benchmark. Hence, the ap-
proximation ratios of the online algorithms is larger than
0.43 ∗ 0.92 > 0.39 > 1/e.)

Conclusion

In this paper, we study the regret minimization for maxi-
mization online non-monotone DR-submodular functions.
We presented the first 1/e-approximation online algorithm
with the regret of O(T 3/4) over down-closed convex sets.
Moreover, we presented an online algorithm that achieves an
approximation guarantee (depending the search space) for the
problem of maximizing non-monotone DR-submodular func-
tions over a general convex set. Finally, we run experiments
to verify the performance of our algorithms on a social rev-
enue maximization problem on a Facebook user-relationship
dataset. The design of an (1/e,O(

√
T ))-regret algorithm

would be challenging as at each time step, one has to “guess"
the right update vector to obtain the approximation ratio of
1/e while maintaining a low regret without being trapped
into a poor local minima.
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