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Abstract

Humans can master a new task within a few trials by drawing
upon skills acquired through prior experience. To mimic this
capability, hierarchical models combining primitive policies
learned from prior tasks have been proposed. However, these
methods fall short comparing to the human’s range of trans-
ferability. We propose a method, which leverages the hierar-
chical structure to train the combination function and adapt
the set of diverse primitive polices alternatively, to efficiently
produce a range of complex behaviors on challenging new
tasks. We also design two regularization terms to improve
the diversity and utilization rate of the primitives in the pre-
training phase. We demonstrate that our method outperforms
other recent policy transfer methods by combining and adapt-
ing these reusable primitives in tasks with continuous action
space. The experiment results further show that our approach
provides a broader transferring range. The ablation study also
show the regularization terms are critical for long range pol-
icy transfer. Finally, we show that our method consistently
outperforms other methods when the quality of the primitives
varies.

1 Introduction
Reinforcement learning (RL) has lots of success in various
applications, such as game playing (Brockman et al. 2016;
Silver et al. 2017; Mnih et al. 2015), robotics control (Tassa
et al. 2018), molecule design (You et al. 2018), and com-
puter system optimization (Mao et al. 2019a,b). Typically,
researchers use RL to solve each task independently and
from scratch, which makes RL confronted with low sam-
ple efficiency. However, compared with humans, the trans-
ferability of RL is limited. Especially, humans can learn to
solve complex continuous problems (both state space and
action space are continuous) efficiently by utilizing prior
knowledge. In this work, we want agents to efficiently solve
the complex continuous problem by exploiting prior experi-
ences that provide structured exploration based on effective
representation.

To this end, we formulate transfer learning in RL as fol-
lowing. We train a policy with one of the RL optimiza-
tion strategies on the pre-training task. Then, we intend to
leverage the policy to master the transferring task. However,
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transfer learning in RL may face some fundamental prob-
lems. First, unlike supervised learning, the transitions and
trajectories are sampled during the training phase based on
the interacted policy (Rothfuss et al. 2019). Since the reward
distributions are different between the pre-training task and
the transferring task, directly finetuning the pre-training pol-
icy on transferring tasks may make the agent perform biased
structured exploration and get stuck in many low reward tra-
jectories. Second, dynamics shifts between pre-training and
transferring tasks may induce the pre-training policy to per-
form unstructured exploration (Clavera et al. 2019; Nachum
et al. 2020). Although domain randomization (Tobin et al.
2017; Nachum et al. 2020) in the pre-training phase may
mitigate this problem, we prefer the pre-trained policies to
gradually fit the transferring tasks.

Some methods intend to limit dependency between pre-
training policy and task-specific information (Goyal et al.
2019; Galashov et al. 2019) by using information bottleneck
(Alemi et al. 2017) and variational inference (Kingma and
Welling 2013). That way, that pre-training policy does not
overfit to a specific task and can be transferred to other tasks.
Besides, some methods achieve task transfer by embedding
tasks into a latent distribution (Merel et al. 2019; Haus-
man et al. 2018). However, the latent distribution should be
smooth and contain a diverse set of tasks to perform behav-
ior well. Some works propose a hierarchical policy (Frans
et al. 2018; Bacon, Harb, and Precup 2017; Peng et al. 2019),
which contains a combination function to control how to se-
lect or combine a set of primitives. Those works acquire a
new selection or combination strategy to control the prim-
itives to master the transferring task if we attain a set of
task-agnostic primitives. We find that hierarchical architec-
ture has the potential to enable a better transferring range in
continuous control problems.

We propose a transfer learning method in RL. Our pre-
training method leverages existing hierarchical structure in
the policy consisting of a combination function and a set of
primitive policies. We also design objectives to encourage
the set of primitives to be diverse and more evenly utilized in
pre-training tasks. Notice that we do not use reference data
since we expect our method to be generally applicable to all
tasks. In many cases, such as flying creatures (Won, Park,
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Figure 1: (a) Our motivating example for RL transferring. The green ball represents the target position, which is sampled
from the distribution of the task. The goal direction of the pre-training task and transferring task are quite different. (b) The
hierarchical policy architecture.

and Lee 2018), Laikago robot1 or D’Kitty robot2, reference
data is hard to obtain.

During the transferring phase, we alternatively train the
combination function and the primitive policies. This train-
ing procedure makes the training not only stable but also
flexible in exploration. When training the combination func-
tion and freezing primitives in the transferring phase, it uti-
lizes the benefit of the hierarchical structure that abstracts
the exploration space. When training the primitives and fix-
ing the combination function, the primitives can be adapted
to the transferring task. In our experiments, we demon-
strate that training hierarchical policy with our method sig-
nificantly increases sample efficiency compared to previous
work (Peng et al. 2019). Moreover, our method provides a
better transferring range. We also provide an ablation study
to discuss the effectiveness of our regularization terms. Fi-
nally, we show that with different resource constraints on
training the pre-training policy, our method still outperforms
other methods. The source code is available to the public3.

2 Preliminaries
We consider a multi-task RL framework for transfer learn-
ing, consisting of a set of pre-training tasks and transferring
tasks. An agent is trained from scratch on the pre-training
tasks. Then, it utilizes any skills acquired during pre-training
to the transferring tasks. Our objective is to obtain and lever-
age a set of reusable skills learned from the pre-training
tasks to enable the agent to efficiently explore and be more
effective at the following transferring tasks.

We denote s as a state, a as an action, r as a reward, and
τ as a trajectory consisting of actions and states. Each task
is represented by a dynamics model st+1 ∼ p(st+1|st, at)
and a reward function rt = r(st, at, g), where g is the task-
specific goal such as the target location that an agent intends
to reach and a terrain that an agent needs to pass. In multi-
task RL, goals {g} are sampled from a distribution p(g).

Given a goal g, a trajectory τ = {s0, a0, s1, ..., sT } with
time horizon T is sampled from a policy π(a|s, g). Our ob-
jective is to learn an optimal policy π∗ that maximizes its

1http://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=1
2https://www.trossenrobotics.com/d-kitty.aspx
3https://weichengtseng.github.io/project website/aaai21

expected return J(π) = Eg∼p(g),τ∼pπ(τ |g)[ΣTt=0γ
trt] over

the distribution of goals p(g) and trajectories pπ(τ |g), where
γ ∈ [0, 1] is the discount factor. The probability of the tra-
jectory τ is calculated as follow

pπ(τ |g) = p(s0)

T−1∏
t=0

p(st+1|st, at)π(at|st, g) (1)

where p(s0) is the probability of the initial state s0. In trans-
fer learning, despite the same state and action space, the
goal distributions, reward functions, and dynamics models
in pre-training and transferring tasks are subjected to be dif-
ferent. The difference between the pre-training and transfer-
ring tasks is referred to as the range of transfer. Note that
a successful transfer can’t be expected for totally unrelated
tasks. We consider the scenario where the pre-training tasks
can make the agent to learn relevant information of the fol-
lowing transferring tasks, but may not cover the entire set of
skills which are useful at the transferring tasks.

3 Method
We will first describe a motivating example in Sec. 3.1. Then
we introduce our method in Sec. 3.2. Finally, we show how
to apply our method to the existing hierarchical policy in
Sec. 3.3.

3.1 A Motivating Example
Let’s consider a model-free RL scenario. We have a pre-
training task that an ant needs to achieve a goal position to
get some reward, and the goal position is sampled from a
half-circle in front of the ant. However, we change the sam-
ple distribution of goal positions in the transferring task to
a small arc in the back of the ant that does not overlap with
the goal positions of the pre-training task (see Fig. 1a). Intu-
itively speaking, this is a challenging transferring scenario.

There are two straightforward methods to tackle this prob-
lem. One is directly finetuning the pre-training policy on
the transferring task. However, the pre-trained policy is af-
fected by the goal distribution in the pre-training phase to
move forward, and this conflicts with the goal distribution
in transferring task to move backward. Therefore, directly
finetuning may corrupt the information learned from the pre-
training task, which is known as the catastrophic forgetting.
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The other is to train a new policy from scratch on the trans-
ferring task. Training from scratch can saturate to a good
point, but it may need lots of trails. Our proposed method
aims to address the drawbacks of these two basic methods.

Algorithm 1: Full Algorithm
// pre-training phase ;
initialize θ1:n and φ ;
let JRL(θ1:k, φ) be the objective function of some
specific RL optimization ;

while not converge do
train combination function φ and primitives θ1:n
with Jpre(θ1:k, φ) =
JRL(θ1:k, φ) + α · J(π1:k) + β · J(w1:k)

// transferring phase ;
reinitialize φ ;
while not converge do

Disable the gradient of primitives ;
Enable the gradient of combination function ;
for i = 1 : p do

train combination function φ with
Jtransfer(θ1:k, φ) = JRL(θ1:k, φ)

Disable the gradient of combination function ;
Enable the gradient of primitives ;
for i = 1 : p do

train primitives θ1:n with
Jtransfer(θ1:k, φ) = JRL(θ1:k, φ)

3.2 Our Method
We describe our method in this section. Our pol-
icy architecture contains: 1) A set of primitive poli-
cies πθ1(a|s, g), πθ2(a|s, g), ..., πθn(a|s, g) with parameters
θ1:n, and each primitive is an independent policy that out-
puts action distribution conditioned on s and g. 2) A com-
bination function Cφ(s, g) with parameter φ outputs weight
wi:n, where wi specifies the importance of primitive πφi .
F (π1:n, w1:n) specifies how to combine primitives with
specified weight w1:n. Typically, the larger the weight wi,
the more contributions from primitive πθi .

During the pre-training phase, the hierarchical policy is
end-to-end trained with an off-the-shelf RL optimization
method. Our goal is to learn a set of primitives such that the
combination function can compose them to form a complete
behavior. However, not all primitives learned in pre-training
are equally good for long range transfer. We identify two
issues to be addressed. First, diversity of primitives is es-
sential to improve the transferability. Without encouraging
diversity, some of the primitives may learn similar behavior
which better fits the pre-training tasks but affects the trans-
ferability. Second, when more primitives are introduced to
compose more complex behaviors and improve the transfer-
ability, the utilization rate of each primitive varies more. In
some extreme cases, some primitives may seldom or never
used in the pre-training phase, so these primitives are not
updated by RL optimization. Hence, it is important to en-

courage the utilization rates of primitives to be more evenly
distributed.

To mitigate these two issues, we propose two regular-
ization terms. We introduce the first regularization term
that separates the distributions of the primitives from each
other’s so that the primitives become diverse. The intuitive
idea to measure the difference between two probability dis-
tributions is calculating KL divergence. Therefore, we cal-
culate the average of arbitrary pair of primitives as our regu-
larization term, and we call it Diversity Regularization (DR)

J(πθ1:k) =
1

k(k − 1)

∑
i6=j

DKL(πθi |πθj )

=
2

k(k − 1)

∑
i6=j,i<j

DJS(πθi |πθj )
(2)

Then, we propose another regularization term to encourage
utilization rates of primitives to be more evenly used in the
pre-training task. We try to model the weight of primitives as
categorical distribution and use the entropy of distribution as
our regularization term, and we call it Utility Regularization
(UR).

J(w1:k) = −
∑
i

(
ewi∑
j e
wj

) log
ewi∑
j e
wj (3)

Therefore, the overall objective in the pre-training phase
is shown as below.

Jpre(θ1:k, φ) = JRL(θ1:k, φ)+α·J(π1:k)+β ·J(w1:k) (4)

where α and β are the hyperparameters and JRL(θ1:k, φ)
can be any reinforcement learning optimization method.

During the transferring phase, we reinitialize the weights
of the combination function and leverage the primitive di-
rectly from pre-trained in the pre-training task. We first up-
date the combination function and freeze the primitives. This
views the combination function as the policy that learns to
combine the primitives to master the transferring task. As
illustrated in the motivating example, the range of transfer
between the pre-training and transferring tasks is likely to
limit the performance of only training the combination func-
tion. Therefore, after p iterations, we switch to finetune the
primitives with the combination function fixed. This method
makes the primitives become more applicable to the trans-
ferring task. After p iterations, we freeze primitives and train
combination function again. This is to prevent the skills in
the primitives to be severely forgotten during finetuning. The
strategy is repeated several times until the hierarchical pol-
icy converges (see algorithm 1).

3.3 Applying Our Method to the Policy
Architecture

We leverage the multiplicative combination rule (Peng et al.
2019)

F (πθ1:n , w1:n) =
1

Z(s, g)

k∏
i=1

πθi(a|s)wi (5)

where πθ1:n(a|s) is the primitive policies and w1:n is gen-
erated from combination function Cφ(s, g). Z(s, g) is the

9960



Figure 2: Environments used to evaluate our method. The
first row is the pre-training tasks, and the second row is the
transferring tasks. All the baseline and our method are eval-
uated with the three agents: ant, 2dwalker, halfcheetah.

partition function that ensures the composite distribution is
normalized. F (πθ1:n , w1:n) multiplies the primitive policies
along with their corresponding weights. The weights deter-
mine the importance of each primitive policies to compose
the action distribution at a time step, with a larger weight
representing a larger influence. Note that to make the prim-
itives task-agnostic (i.e., more transferable), we restrict the
primitives πθ1:n(a|s) to only get s. During the pre-training
phase, the combination function and primitive policies are
trained in an end-to-end manner. During the transferring
phase, we train the combination function and primitive poli-
cies alternatively as described in the previous section.

4 Related Works
Learning meaningful and reusable representations that can
be transferred across multiple tasks is a popular research di-
rection in machine learning (Argyriou, Evgeniou, and Pontil
2007). One of the straightforward transfer learning meth-
ods is finetuning. That is, a network is first trained on a
source domain. Then, the learned representation or features
are reused in another domain by finetuning via backpropa-
gation (Hinton and Salakhutdinov 2006; Kemker et al. 2018;
Kirkpatrick et al. 2016). However, backpropagation may de-
stroy previously learned representations or features before
the network leverages them in the target domain.

4.1 Information-Based Methods
Some methods try to learn a policy that doesn’t highly de-
pend on task-specific information during pre-training and
only acquire task-specific information when the policy needs
to make a critical decision to solve the task (Goyal et al.
2019; Galashov et al. 2019; Goyal et al. 2020). These meth-
ods may leverage some concepts like information bottle-
neck (Alemi et al. 2017) and variational inference (Kingma
and Welling 2013) to restrict policy and task-specific in-
formation dependency. Since the policy only gets limited
task-specific information, the policy can potentially be trans-
ferred to other tasks.

4.2 Hierarchical Methods
Some methods intend to use a hierarchical policy that typi-
cally contains a master policy or combination function and

a set of low-level policies (Bacon, Harb, and Precup 2017).
Then, by training the hierarchical policy in the pre-training
task and acquire a set of primitives, we can reschedule or re-
compose these to master transferring tasks. The combination
function in some method only activates one sub-policy at a
time (Liu and Hodgins 2017; Peng et al. 2018; Frans et al.
2018) while the other combination function allows multi-
ple primitive to be executed at the same time (Peng et al.
2019; Qureshi et al. 2020). Another kind of methods lever-
ages some ideas from hierarchical reinforcement learning
(HRL) (Nachum et al. 2018; Levy, Platt, and Saenko 2019).
The policy architecture typically contain a high-level policy
and a low-level policy. The high-level policy outputs a goal
state or condition to the low-level policy, and the low-level
policy intends to achieve the given goal state. Some works
(Li et al. 2019, 2020) propose to finetune policy with HRL
framework to perform transfer learning in RL.

4.3 Latent Space Methods
Some methods specify actions through the latent representa-
tion which is further transformed to the actions of the under-
lying system (Merel et al. 2019; Burgard, Brock, and Stach-
niss 2008; Chandak et al. 2019). Therefore, a common ap-
proach is getting the latent space by pre-training the pol-
icy on the pre-training task, and further transfer the policy
to the downstream task (Haarnoja et al. 2018) . To encour-
age the latent space is diverse enough, one solution is to
leverage reference data 4 to pre-train the latent space (Merel
et al. 2019). Other diversity-driven pre-training methods
have been proposed to help the latent space to form seman-
tically various behaviors (Hausman et al. 2018).

5 Experiments
In this section, we introduce the evaluation tasks in Sec. 5.1
and list the baselines that we intend to compare in Sec. 5.2.
The results of the methods evaluated in our environments
are discussed in Sec. 5.3. Aside from option-critic (Bacon,
Harb, and Precup 2017), all the experiments are trained with
PPO (Schulman et al. 2017) and Generalized Advantage Es-
timation (GAE) (Schulman et al. 2016). The detailed hy-
perparameter settings are shown in supplementary Sec. 4.1.
We further show that our method has a broader transferring
range compared with other baselines in Sec. 5.4. Then, we
demonstrate the effectiveness of the regularization terms in
Sec. 5.5. Finally, we demonstrate that our method can per-
form well even if the primitive policies are not good enough
in Sec. 5.6. Some addition proprieties of our method are fur-
ther discussed in supplementary Sec. 2.

5.1 Tasks
We consider three agents (see Fig. 2): quadruped (ant) with
12 DoF and 8 actuators; 2dwalker with 6 DoF and 6 actua-
tors; halfcheetah with 6 DoF and 6 actuators. All the tasks
are built with PyBullet 5 . The implementation detail of these
tasks will be described in supplementary Sec. 4.2. and we
discuss the tasks in the following sections.

4http://mocap.cs.sfu.ca and http://mocap.cs.cmu.edu
5http://pybullet.org
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Figure 3: Performance of different transferring methods. For better visualization, we use exponential moving average to smooth
the learning curve, and each learning curve is grouped with ten random seeds. The transparent part represents the maximum and
minimum of the learning curves. From these figures, we show that our method achieves better performance than other methods.

Pre-Training Tasks
• AntContinuousGoal: An ant needs to move to the target

position which is the task-specific information g, and the
target direction is sampled from [-0.5π, 0.5π] with radius
5 as we showed in Fig. 1a. Once the ant reaches the goal
position, the goal position will be re-sampled in the same
way.

• WalkerTerrain: A 2d-walker needs to move forward on
terrain, and the slope of the terrain is sampled from a
specific range. The task-specific information g is the ter-
rain in front of the agent. Therefore, the 2d walker needs
to learn how to walk smoothly on planes with different
slopes.

• HalfCheetahWall: A halfcheetah needs to move forward,
and there is a wall every 3 to 5 meters. The height of the
wall is sampled from a specific range. The task-specific
information g is the terrain in front of the agent. There-
fore, the halfcheetah needs to climb or jump over the wall.

Transferring Tasks
• TransAntContinuousGoal: An ant needs to move to the

target position, and the target position is sampled from
[5π/6, 7π/6] with radius 5, as we showed in Fig. 1a.
Note that the target direction doesn’t overlap with that of
the pre-training task. Once the ant reaches the goal po-
sition, the goal position will be re-sampled in the same
way. Therefore, in this case, the difference between pre-
training task and transferring task is goal distribution
p(g).

• WalkerHalfSlope: A 2d walker needs to move forward in
terrain, but there are cliffs between each plane. Therefore,
the 2d walker should be robust to these cliffs. Therefore,
in this case, the differences are goal distribution p(g) and
dynamics p(st+1|st, at).

• HalfCheetahTerrace: A halfcheetah needs to move for-
ward on a terrace that is formed with lots of horizontal
platforms with target speed, so it needs to jump or climb
up to the higher platform and does not fall to the lower
platform. The difference in height between two platforms
is sampled from a specific range. Therefore, in this case,

the differences are goal distribution p(g) and dynamics
p(st+1|st, at).

5.2 Baselines

We define the baselines that will be discussed in the follow-
ing sections, and the implementation detail will be described
in supplementation material Sec. 4.1.

Scratch: We directly train a policy with PPO(Schulman
et al. 2017) on the transferring task, and it is one of the
most straightforward methods to tackle a task. Finetune:
We first train a policy in the pre-training task. Then, we
directly finetune the policy in the transferring task. It is
another the most straightforward method to tackle a task.
MCP (Peng et al. 2019): A multiplicative model that enables
the agent to activate multiple primitives simultaneously is
trained. Each primitive specializes in different behaviors that
can be combined to span a continuous spectrum of skills
on the pre-training task. During the transferring phase, the
primitives are fixed, and only the combination function is
updated. Option-Critic (Bacon, Harb, and Precup 2017):
Both intra-option policies and termination conditions of op-
tions are learned, followed by the policy over options, and
without specifying any additional rewards or subgoals. The
options are assigned to perform sequentially. One option
works for several timesteps until being stopped by the ter-
mination function. The entire network is pre-trained on the
pre-training task. Then, it is directly finetuned to the trans-
ferring task. MLSH (Frans et al. 2018): A hierarchical pol-
icy where the master policy switches between a set of sub-
policies is learned. The master policy chooses a sub-policy
every N timesteps, and the selected sub-policy is then exe-
cuted by the agent for N timesteps to interact with the envi-
ronment to constitute a high-level action. Both master policy
and sub-policies are optimized on the pre-training task. Dur-
ing the transferring phase, we freeze the sub-policies and
only train the master policy, which makes the master policy
learn how to utilize the fixed primitives.

Aside from the baselines mentioned above, some addi-
tional baselines are discussed in supplementary Sec. 1.
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Figure 4: Performance of different transferring methods. From these figures, we show that our method achieves better perfor-
mance than other methods. (a): the experiment is based on the ant agent. (b): the goal position sampling range for each task.
From task 1 to task 4, the task difference between transferring task and pre-training task becomes larger. (c): the result of
each method on different transferring tasks. (d): the trajectories of our method and MCP under different numbers of training
iterations. It is clear that our method was not affected by the pre-training task compared with MCP.

Figure 5: Normalized performance with different period p.
The performance is normalized by the best average return
achieved in each task so that we can plot the result of all the
tasks in a single plot. We find that the performance is not
affected much by the period p.

5.3 Comparisons with Baseline
We run our method and other baselines in the three continu-
ous problems described in the previous section. The network
architecture, hyperparameter setting, and other implementa-
tion detail will be described in supplementary Sec. 4.1. For
Fig. 3, we find that our method outperforms other meth-
ods in the transferring phase. MCP tends to perform well
at the beginning of training, and this phenomenon may be
caused by hierarchical abstraction. However, freezing prim-
itive policies may restrict the transferring range of MCP,
which induces that MCP cannot converge to a better result.
Since our method acquires a set of distinct and even utiliza-
tion rate primitives and allows the primitives to adapt to the
transferring task, it achieves significantly better reward the
fastest among all the baseline algorithms. With the knowl-
edge learned from the pretraining tasks, finetuning performs
better than training from scratch. This is because training
from scratch is required to learn everything, including task
distribution and dynamics. However, our method signifi-
cantly outperforms finetuning by striking a better trade-off
between combining the primitives to efficiently exploring

the new task and gradually adapting the primitive to the new
task. MLSH and option-critic do not perform well in our
transfer task since they chooses the primitives serially, which
makes the primitives not decomposed well. When the task
distribution and dynamics change in the transferring phase,
They are no longer able to provide suitable behavior.

One concern about our method is that it introduces a hy-
perparameter p, which controls the period of the number of
the gradient steps before switching between primitives and
combination function. To this end, we show the performance
of our method with different period p in Fig. 5. We find that
our method is not sensitive to period p, so there is not much
effort to tune this hyperparameter.

5.4 Transferring Range
The transferring range is critical in transfer learning. To
demonstrate the transferring range of each method, we re-
design the goal position of AntContinuousGoalEnv (see Fig.
4 (a, b)). The goal position pre-training task is sampled from
an arc where the center angle is [−π/4, π/4] and radius 5
meters. As for transferring tasks, we design four transfer-
ring tasks, and the goal position of these four transferring
tasks are sampled from [−π/6, π/6], [π/6, 3π/6], [3π/6,
5π/6] and [5π/6, 7π/6], respectively. In other words, the
four transferring tasks are ordered by the scale of the task
difference between the pre-training task and the transferring
task.

In Fig. 4 (c), We find that our method has a larger trans-
ferring range compared with other methods. Note that we
report the performance at 1 million environment steps. All
the other transferring methods get worse as exploration di-
rection becomes different. As the exploration direction dif-
ference increases, MCP may perform worse than finetuning.
It may be caused by fixing the primitive policies, which may
limit the ability to adapt to the transferring task. Besides, if
we plot the trajectory of the ant in the transferring task 3
(see Fig. 4 (d)) with a fixed goal position, we find MCP is
biased by the pre-training task. Though the ant mitigates this
bias by more training iteration, it tends to move forward and
turn to the goal direction. In contrast, since our method al-
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Figure 6: We evaluate the effectiveness of the pre-trained policy by using different checkpoints with different performance. We
find that our method outperforms other methods given different pre-training performances.

Figure 7: Ablation study on our method. (a) Trajectories
that generate with ramdom sample w1:k. (b) We evaluate the
our method with and without the regularization terms in the
walker scenario.

lows the primitive policy to adapt to transferring task, the ant
tends to act in goal direction directly. The experiment result
implies that our method has a better transferring range than
other methods.

5.5 Ablation Study
To evaluate whether the regularization terms (DR and UR)
are effective, we conduct the ablation study on the ant
and walker scenario. For the ant scenario, we pre-train the
primitives with and without the regularization terms. Then,
we plot the trajectories with random sampled combination
weights w1:k in Fig. 7. We can find that primitives trained
with both DR and UR help the agent move in a different
direction with longer distance. To be more specific, the tra-
jectories with only DR tend to be short but diverse in the
moving direction. It is because DR makes the primitive dif-
ference between each other. However, since DR does not en-
hance the utilization rate of primitives, some primitives be-
come redundant and affect the entire policy’s performance
(i.e., shorter trajectories). On the other hand, the trajectories
with only UR tend to be long but lack of diversity in the
moving direction. Note that the long trajectories are gener-
ated even with random weights in the combination function.
This is because, with UR, RL optimization more evenly up-
dates all the primitives during pre-training. With both DR
and UR, long and diverse trajectories enables structure ex-
ploration which helps the combination function to be effi-

ciently retrained during the transferring phase.
We further conduct pre-training and transferring experi-

ments in walker scenario. From Fig. 7 (b), we can find that
both diversity regularization and utility regularization can
the policy achieve better performance with better sample ef-
ficiency. Our method with all regularization terms outper-
form other versions. More ablation study are provide in sup-
plementary Sec. 1.

5.6 Quality of the Primitives
We further study how the quality of the primitives on the
pre-training task will affect policy transfer performance. A
stable policy transfer method should still perform reason-
ably well even when the quality of the primitives varies.
To be more specific, we train the primitives with different
training iteration in pre-training. From Fig. 6, we observe
that our method achieves better performance in the transfer-
ring phase compared to other baselines. The performance of
MCP is significantly affected by the quality of the primitives
as the primitives are fixed. We also observed that, in the sec-
ond and third tasks, the better the primitives, the better the
our method performance in the transferring task. However,
in the first task where the goal distributions are the opposite
between the pre-training and transferring tasks, the better the
primitives do not imply the better the our method perfor-
mance in the transferring task. Although we found that we
prefer the different quality of the primitives depending on
the range of transfer, our method is the most stable method
outperforming all baseline methods consistently.

6 Conclusion
We propose a method that leverages hierarchical structures
by training over different function combinations with two
novel regularization terms and adapting primitive policies
alternatively. The experiments show that our approach out-
performs previous policy transfer methods under the long
range transferring scenario for continuous action spaces. We
also empirically show that our method provides a larger
transferring range as well as an effective adaptation by vary-
ing the scale of the task difference between the pre-training
task and transferring task. The ablation study also provides
evidence of the effectiveness of our regularization terms. Fi-
nally, our method achieves more stable performance than
other methods do when the quality of the primitive varies.
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