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Abstract

Analysing and computing with Gaussian processes arising
from infinitely wide neural networks has recently seen a
resurgence in popularity. Despite this, many explicit covari-
ance functions of networks with activation functions used in
modern networks remain unknown. Furthermore, while the
kernels of deep networks can be computed iteratively, theo-
retical understanding of deep kernels is lacking, particularly
with respect to fixed-point dynamics. Firstly, we derive the
covariance functions of multi-layer perceptrons (MLPs) with
exponential linear units (ELU) and Gaussian error linear units
(GELU) and evaluate the performance of the limiting Gaus-
sian processes on some benchmarks. Secondly, and more gen-
erally, we analyse the fixed-point dynamics of iterated ker-
nels corresponding to a broad range of activation functions.
We find that unlike some previously studied neural network
kernels, these new kernels exhibit non-trivial fixed-point dy-
namics which are mirrored in finite-width neural networks.
The fixed point behaviour present in some networks explains
a mechanism for implicit regularisation in overparameterised
deep models. Our results relate to both the static iid param-
eter conjugate kernel and the dynamic neural tangent kernel
constructions1.

1 Background — Infinitely Wide Neural
Networks as Gaussian Processes

Infinitely wide neural networks (NNs) and Gaussian pro-
cesses (GPs) share an interesting connection (Neal 1995;
Jacot, Gabriel, and Hongler 2018) which has only par-
tially been explored. We begin by reviewing this connection.
Readers familiar with this connection may skip to § 2. Con-
sider a one-hidden layer network with independent param-
eters. Suppose each ith row of weights Wi together with
the corresponding bias Bi in the hidden layer has distri-
bution (W>

i , Bi)
> = W̃i ∼ N

(
µ,Σ), with Σ � 0 be-

ing a diagonal matrix having a unique “square root” Σ(1/2).
Further, suppose the output layer parameter vector V =
1√
n
U satisfies U ∼ N (0, σ2

wI), where n is the number
of neurons in the hidden layer and the output bias satis-
fies Vb ∼ N (0, σ2

b ). The output evaluated at input x1 is
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1Software at github.com/RussellTsuchida/ELU GELU kernels

f(x1) = 1√
n

∑
i=1 Uiψ(W̃>

i x̃1)+Vb, where ψ is an activa-
tion function and x̃1 = (x>1 , 1)>. The covariance between
any two outputs is

k(1)(x1,x2)

= E
[ n∑
i=1

Viψ(W̃>
i x̃1)

n∑
j=1

Vjψ(W̃>
j x̃2)

]
+σ2

b

= σ2
wE
[
ψ(W̃>

1 x̃1)ψ(W̃>
1 x̃2)

]
+ σ2

b .

The expectation over d + 1 random variables reduces
to an expectation over 2 random variables, W̃>

1 x̃1 and
W̃>

1 x̃2. The joint distribution of these two random vari-
ables is a bivariate Gaussian. The mean of each com-
ponent is zero, and the variance is ‖Σ(1/2)x̃i‖2, where
‖ · ‖ denotes the Euclidean norm. The covariance is
‖Σ(1/2)x̃1‖‖Σ(1/2)x̃2‖ cos θ, where θ is the angle between
Σ(1/2)x̃1 and Σ(1/2)x̃2. Therefore, the expectation in terms
of Z ∼ N (0, S) is

k(1)(x1,x2) = σ2
wE
[
ψ
(
s1Z1 + µ̃1

)
ψ
(
s2Z2 + µ̃2

)]
+ σ2

b ,

(1)

where S has diagonals 1 and off-diagonals cos θ, si =
‖Σ(1/2)x̃i‖ and µ̃i = µ>x̃i.

Definition 1. We call (1) the kernel. We call cos θ(1) =
k(1)(x1,x2)√

k(1)(x1,x1)k(1)(x2,x2)
the normalised kernel.

The above NN converges to a GP as n → ∞ under
mild conditions on the input and activation function ψ (Neal
1995). Since f(x1) is a sum of independent random vari-
ables scaling as n−1/2, it converges to a Gaussian random
variable with zero mean as n → ∞. More generally, any
fixed collection of N evaluations of f , {f(xi)}Ni=1 con-
verges to an N -dimensional 0-mean Gaussian as n→∞.

Analytical and closed-form covariance functions (1) are
available for specific choices of ψ (Le Roux and Bengio
2007; Tsuchida, Roosta, and Gallagher 2018, 2019a; Pearce
et al. 2019; Tsuchida, Roosta, and Gallagher 2019b), al-
though some of these require µ = 0. Most notably, the
kernel is known for historically relevant activation func-
tions ψ(z) = erf(z), RBF networks (Williams 1997) and
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for the more modern ReLU activation, ψ(z) = max(0, z)
(Cho and Saul 2009). More recently Meronen, Irwanto, and
Solin (2020) solved the inverse problem, finding ψ that re-
covers the Matérn class of covariance functions. Once the
form of (1) is known, the kernel of deep networks can
be evaluated in the case where Σ = diag(σ2

w, ..., σ
2
w, σ

2
b )

and µ = 0 (Matthews et al. 2018; Lee et al. 2018; Yang
2019b,a). The case where µ 6= 0 can also be han-
dled (Tsuchida, Roosta, and Gallagher 2019b), but we focus
on µ = 0 in this work. The kernel in layer l+1 can be found
iteratively as a function of the kernel in layer l,

k(l+1)(x1,x2) = σ2
wE
[
ψ
(
s
(l)
1 Z

(l)
1

)
ψ
(
s
(l)
2 Z

(l)
2

)]
+ σ2

b ,[
Z

(l)
1

Z
(l)
2

]
∼ N

(
0,

[
1 cos θ(l)

cos θ(l) 1

])
, (2)

where cos θ(l) is the normalised kernel in layer l, and s(l)i =√
k(l)(xi,xi).

Definition 2. We call k(l) in (2) the kernel in layer l. We
call cos θ(l) = k(l)(x1,x2)√

k(l)(x1,x1)k(l)(x2,x2)
the normalised kernel

in layer l.

A generalisation of iid weight priors to partially ex-
changeable weight priors is also available (Tsuchida,
Roosta, and Gallagher 2019b), resulting in a GP with an
additional layer of inference over the hyperparameters µ
and Σ. Convergence to GPs also occurs for other NN ar-
chitectures such as convolutional architectures (Garriga-
Alonso, Rasmussen, and Aitchison 2018; Novak et al. 2019)
and general compositions of recurrent, graph convolution,
pooling, skip connection, attention and normalisation lay-
ers (Yang 2019b,a)2. When an MLP is trained under a
continuous-time analogue of gradient descent, the limiting
output is still a GP (Jacot, Gabriel, and Hongler 2018). The
dynamics and associated covariance of the GP depends on
the neural tangent kernel (NTK) T (l), which in addition to
the iterations (2), is given by

T (1)(x1,x2) = k(1)(x1,x2)

k̇(l+1)(x1,x2) = σ2
wE
[
ψ′(s1Z

(l)
1 )ψ′(s2Z

(l)
2 )
]
,

T (l+1)(x1,x2) = T (l)(x1,x2)k̇(l+1)(x1,x2)

+ k(l+1)(x1,x2). (3)

2 Contributions and Motivation
This paper contains two main contributions. We:

1. Derive kernels for GELU and ELU activations (defined
below) and verify our results numerically. We implement
GPs with different NN kernels on some benchmarks.

2. Study the fixed point dynamics of the kernel when ψ is
bounded by the absolute value of a polynomial. We find

2As detailed in these works, knowledge of (1) is often suffi-
cient to describe these kernel, so our new kernels apply to more
complicated networks.

Figure 1: Illustration of simplicity bias due to kernel fixed
points. Training data x ∈ R2 is uniformly sampled on the
unit disc at heading γ. Curves show the posterior mean of a
GP regression model on y = sin(γ)+ε with known additive
noise variance. σw is chosen according to Figure 3. Colours
move from purple to yellow as depth increases from 1 to
64. (Left) GELU without unique kernel fixed point leading
to overfitting (Right) ReLU with unique kernel fixed point
leading to underfitting. More examples in Appendix M.

sufficient conditions for the existence of a unique kernel
fixed point. We show theoretically and empirically that
unlike the kernel corresponding to ReLU ψ, the new ker-
nels are able to avoid unique fixed points. These condi-
tions apply to both the iid prior (Neal 1995) and dynamic
NTK (Jacot, Gabriel, and Hongler 2018) cases. This fixed
point behaviour can be used to explain a simplicity bias
in deep NN. More surprisingly, we find theoretically that
the NTK dynamic which approximates gradient descent
preserves this simplicity bias.

2.1 Motivation for Studying Fixed Points
Viewing NNs through the arguably idealised lens of GPs has
some surprisingly non-intuitive practical implications. One
important open problem is in explaining the empirical obser-
vation that some overparameterised NNs do not overfit, even
when trained without explicit regularisation (Zhang et al.
2017). Tsuchida, Roosta, and Gallagher (2019b) show em-
pirically that samples from the limiting prior of deep MLPs
with zero-mean parameters and LReLU activations are ap-
proximately constant on the unit hypersphere. Valle-Pérez,
Camargo, and Louis (2019) argue that deep NNs with ReLU
activations exhibit a “simplicity bias”, in that randomly ini-
tialised NNs implementing Boolean functions are likely to
be simple. Yang and Salman (2019) explain this simplicity
bias through a spectral decomposition of the limiting kenel,
showing that most of its mass is concentrated around the
constant eigenfunction, even when accounting for training
using gradient descent under the NTK (Jacot, Gabriel, and
Hongler 2018). Yang and Salman (2019) are clear to sepa-
rate the case of ReLU activations, which do result in ker-
nels having peaked spectral mass and exhibiting a simplicity
bias, from ERF activations which do not.

Our motivation for studying fixed points is in a similar
spirit to the work above. For LReLU networks, we observe
a so called kernel fixed point. An infinitely deep LReLU
network is degenerate, and therefore over-regularised, in
that all functions in the prior are constant over inputs on
any hypersphere. Therefore, increasingly deep kernels rep-
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k(x1,x2) =

σ2
b + σ2

w

(
s1s2
4

cos θ +
s21s

2
2

2π

[
1
2
(cos(2θ) + 3) + s21 + s22 + s21s

2
2 sin

2 θ

(1 + s21)(1 + s22)
√

1 + s21 + s22 + s21s
2
2 sin

2 θ
+

cos θ

s1s2
tan−1

(
cos θs1s2√

1 + s21 + s22 + s21s
2
2 sin

2 θ

)])

Figure 2: The GELU kernel. Plots show the normalised kernels in layer l as a function of the angle θ(0) between the inputs for
MLPs of increasing depth when Σ = diag(σ2

w, ..., σ
2
w, 0) and ‖xi‖ is constant for all i. Values of σw are chosen to preserve the

expected square norm ‖x‖2 (see § 4.1). Solid curve shows infinitely wide limit, and dots show samples from a network with 2
inputs and 3000 neurons in each layer. Each dot corresponds to an x1 and x2 generated through a random rotation of (1, 0)>

and (cos θ(0), sin θ(0))>. The random rotation is found through a QR decomposition of a matrix containing entries sampled
independently from U [0, 1]. (Left) ‖x‖ = 0.5, σw = 1.59 (Middle) ‖x‖ = 1, σw = 1.47. (Right) ‖x‖ = 5, σw = 1.42.

resent a strict and potentially undesirable prior. On the other
hand, kernels corresponding to GELU and ELU activation
functions do not exhibit unique fixed points, and are there-
fore less biased towards simple functions. Just as tradi-
tional regularisation frameworks allow practitioners to con-
trol the bias-variance trade-off, in our framework, the acti-
vation function represents a similar choice. A deep ReLU
network contains a higher degree of implicit regularisation
than a deep GELU network. An illustration of this effect is
shown in Figure 1. Even more surprisingly, our analysis ex-
tends to the NTK.

2.2 Recently Introduced Activation Functions
The increased volume of gradient-based deep learning re-
search has seen the introduction of new popular activa-
tion functions. Notably these include the exponential linear
unit (ELU) (Clevert, Unterthiner, and Hochreiter 2016), the
Gaussian error linear unit (GELU) (Hendrycks and Gimpel
2016) and the Swish (Ramachandran, Zoph, and Le 2017;
Elfwing, Uchibe, and Doya 2018). The GELU and ELU are

ψ(z) = zΦ(z) and ψ(z) = Θ(z)z + Θ(−z)(ez − 1),

respectively, where Φ denotes the CDF of the standard Gaus-
sian and Θ denotes the Heaviside step function.

Many state-of-the-art models use GELU (Radford et al.
2018; Devlin et al. 2019) or swish activations (Chua et al.
2018). However, even when critically evaluating empirical
evidence, it is difficult to determine whether certain activa-
tion functions are a better choice for a given problem, let
alone separate the activation function expressivity from the
ability of optimisers to find good solutions. Analysing acti-
vation functions through the lens of GPs allows one to vi-
sualise the function space in isolation of the ability of the

optimiser to find good solutions, and reveals interesting im-
plicit regularisation structure in the infinitely wide setting.

2.3 Model Selection
The choice of activation function in an NN can be framed
as a model selection problem, and as such shares similari-
ties with choosing other model hyperparameters. Take the
case of choosing the L2 ridge-regularisation parameter as an
example. One could apply n-fold cross-validation, with an
implicit understanding that this parameter penalises model
complexity as measured through the norm in an RKHS.
Alternatively, a Bayesian might interpret the L2 weight-
ing as the precision of a Gaussian prior, and optimise the
marginal likelihood with respect to this weighting. A more
pure Bayesian might put a prior over the regularisation (or
precision) parameter and marginalise over these models.
Common to all these approaches is (a) an intuition based
on theory of what the parameter does and (b) a practical
methodology for dealing with the parameter. In this paper
we provide (a), and leave it to the practitioner to decide on
(b) based on their philosophy and/or apparatus. Our work
shows that GELU and ELU activations can avoid a regu-
larisation mechanism that grows with depth that is always
implicit in ReLU activations.

We stress that the new kernels and the fixed point mech-
anisms are neither “good” nor “bad” in isolation. The new
models should be evaluated according to model selection
criteria in their given application, and the fixed point mech-
anisms describe a regularisation implicit in some kernels.

3 New Kernels
Proposition 3. When ψ is the GELU and µ = 0, the ker-
nel (1) is given by the equation in Figure 2.
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Figure 3: As in Figure 2, but with ELU ψ. (Left-Right) (‖x‖, σw) = (5, 1.40), (1, 1.26), (0.5, 1.17).

The derivation is in the same spirit as Williams (1997);
we introduce dummy parameters β1 and β2 in the argu-
ment of Φ, differentiate with respect to β1 and β2 to ob-
tain a PDE, then solve the PDE and evaluate the solution at
β1 = β2 = 1. Complete working is given in Appendix A. It
is plausible that our method of derivation extends to the case
µ 6= 0, although the calculations and resulting expression
become more complicated. Even with µ = 0, this kernel has
some interesting properties that we discuss in § 4. Interest-
ingly, unlike the ELU kernel with µ = 0, the GELU ker-
nel does not contain any hard-to-compute special functions,
only some (inverse) trigonometric functions.

Our expression for the ELU kernel is lengthy and we do
not assemble it in the main text, but provide a visualisation
in the form of Figure 3.

Proposition 4. When ψ is the ELU, the kernel (1) has an
analytical expression implemented in software1 in terms of
the univariate and bivariate normal CDFs.

Complete working is given in Appendix B. Unfortunately,
the ELU kernel involves exponentiating arguments involv-
ing s1 and s2. This can lead to numerical instability in GP
regression when many data points are involved. Despite this,
having an analytical expression still allows us to gain in-
sights into finite width networks, as we shall see in § 4.

The scaled exponential linear unit (SELU) (Klambauer
et al. 2017) is a slightly modified version of the ELU which
introduces two scaling parameters: one applied over the en-
tire domain and one over the negative domain. Our analy-
sis for the ELU also handles the SELU (see Appendix B).
Klambauer et al. (2017) motivates the SELU by showing that
it is able avoid the exploding and vanishing gradient prob-
lem by carefully selecting the value of the scaling parame-
ters. An entirely distinct problem is to analyse the correla-
tions between signals in the network. Fixed points in signal
norms are desirable to maintain the scale of signals as they
propagate through the network. Fixed points in signal cor-
relations can be undesirable as they force unrelated inputs
to have similar feature representations in deep layers of the
network. While Klambauer et al. (2017) is concerned with
obtaining fixed points of signal norms (i.e. our § 4.1), it does
not relate to fixed points of signal correlations (i.e. our § 4.2).

4 Fixed Point Analysis
In this section, we first analyse the conditions under which
the expected squared norm of the signals in each layer are
preserved as the signal propagates through the network for a
different choices of the activation function (§ 4.1). In such a
situation, the expected squared norm remains at a fixed point
as it passes through the network. Then, more generally, we
analyse conditions under which the expected squared norm
of any two signals and the cosine angle between them ap-
proaches a constant as depth increases (i.e., when the kernel
has a fixed point). We are especially interested in the case
where the cosine angle between the signals converges to a
unique fixed point (§ 4.2). Finally, we relate the existence of
a unique fixed point to a degenerate, underfitting property of
very deep infinitely wide MLPs (§ 4.3).

For § 4, 5 and 6, we suppose all the weights have the same
variance, and so do all the biases; the first d diagonals of the
diagonal matrix Σ are σ2

w, and the last diagonal is σ2
b .

4.1 Warm-Up — Norm Preservation
A useful application of the kernel in finite-width iid-
initialised networks is to track the expected squared norm
of the signals in each layer as the depth of the network in-
creases. This is used in initialisation to avoid exploding or
vanishing signals when using gradient optimisers.

The expected norm squared of the signal in the first hid-
den layer is (k(1)(x1,x1) − σ2

b )/σ2
w. For the squared norm

of the signal in the hidden layer to be the same as the squared
norm of the input, we set ‖x̃1‖2 = (k(1)(x1,x1)− σ2

b )/σ2
w.

We may then solve this condition to find the hyperparame-
ter values that preserve input norms. For example, using the
kernel corresponding to ReLU (Cho and Saul 2009), one ob-
tains He initialisation (He et al. 2015), that σw =

√
2, where

Σ1/2 = diag(σw, ..., σw, 0)>.
The analogue for GELU is more involved since no single

σw preserves the expected square norms of all inputs. Set-
ting σb = 0, k(x,x)/σ2

w = ‖x‖2 and s1 = s2 = σw‖x‖ in
the equation in Figure 2, we find a root σ∗(‖x‖) of

g‖x‖(σ) =
σ4‖x‖2

π(σ2‖x‖2 + 1)
√

2σ2‖x‖2 + 1
+

σ2

4

(
1 +

2

π
sin−1

σ2‖x‖2

1 + σ2‖x‖2
)
− 1,
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numerically. Figure 4 shows a plot of σ∗(‖x‖) as ‖x‖ varies.
The root of the limit of g‖x‖(σ) as ‖x‖ → ∞ is

√
2, which

recovers He initialisation. This implies that when data has
large norms (such as images or audio files), He initialisation
is suitable. The same procedure can be carried out for the
ELU kernel as shown in Figure 4. This procedure may be
viewed as a warm-up handling the special case of x1 = x2

for our general fixed point analysis.

4.2 General Fixed Point Analysis
Let S ⊆ [0,∞) × [0,∞) × [−1, 1]. In the infinitely
wide limit, we may view each layer as updating a state
(s21, s

2
2, cos θ) ∈ S containing the expected square norms

and the cosine angle between the signals in the hidden layers
through a function g : S → S . Let (G1, G2)> ∼ N (0, I).
We study the fixed-point dynamics of the iterated map g hav-
ing components

g1(s21, s
2
2, ρ) = σ2

wE
[
ψ2(s1G1)

]
+ σ2

b ,

g2(s21, s
2
2, ρ) = σ2

wE
[
ψ2(s2G2)

]
+ σ2

b

g3(s21, s
2
2, ρ) =

E
[
σ2
wψ(s1G1)ψ

(
s2(G1ρ+G2

√
1− ρ2)

)
+ σ2

b

]
√
g1(s21, s

2
2, ρ)g2(s21, s

2
2, ρ)

, (4)

which track the expected square norms (after a linear trans-
formation involving σ2

w and σ2
b ) and normalised kernel as the

signals propogate through the layers3. By inspection, g3 (but
not necessarily g) always has an uncountable set of fixed
points at ρ = 1 along s1 = s2. Banach’s fixed point theorem
says that if g is a contraction mapping on a closed set, then g
has a unique fixed point on that set (Agarwal, Meehan, and
O’regan 2001). In a slightly different setting, Hasselblatt and
Katok (2003, Theorem 2.2.16) allows some open sets.
Theorem 5. Let Dg denote the Jacobian of g and d′ denote
the metric induced by a norm with induced matrix norm ‖·‖′.
If C ⊂ Rm is an open strictly convex set, C is its closure,
g : C → C differentiable on C and continuous on C with
‖Dg‖′ ≤ λ < 1 on C, then g has a unique fixed point
c0 ∈ C and d′

(
gL(c), c0

)
≤ λLd′(c, c0) for every c ∈ C.

We therefore consider the eigenvalues of the Jacobian,
proving the following in Appendix C.
Theorem 6. Let g be as in (4), and suppose the absolute
value of ψ is bounded by a polynomial. Let (Z1, Z2) ∼
N (0, S) with covariance ρ = cos θ and unit variances.
Then for ρ ∈ (−1, 1) 0 < s1, s2, the (unordered) eigen-
values of the Jacobian of g are

λ1 :=
∂g1
∂s21

= σ2
wE
[(
Z2
1 − 1

)
ψ2(s1Z1)

]
/(2s21),

λ2 :=
∂g2
∂s22

= σ2
wE
[(
Z2
2 − 1

)
ψ2(s2Z2)

]
/(2s22), and

λ3 :=
∂g3
∂ρ

=
σ2
ws1s2√
g1g2

E
[
ψ′(s1Z1)ψ′(s2Z2)

]
,

3We expressed the kernel (1) in terms of iid Gaussians G in-
stead of dependent Gaussians Z.

provided the right hand terms are finite, where ψ′ is the dis-
tributional derivative of ψ.

Our result does not include ρ ∈ {−1, 1}. With the addi-
tional assumption that ψ is continuous almost everywhere,
the expression for λ3 is valid on the closed interval ρ ∈
[−1, 1], as shown in Appendix F. We would now like to com-
bine Theorem 5 and Theorem 6 in order to comment on the
existence of unique fixed points in some special cases. We
consider two general cases in Corollaries 7 and 8 below.

Corollary 7 (Unique fixed point under absolute homogene-
ity). Suppose σ2

b = 0 (as is common when initialising neu-
ral networks) and ψ is absolutely homogeneous, that is,
ψ(|a|z) = |a|ψ(z) for any a ∈ R. Then

∂g3
∂ρ

= λ3 =
E
[
ψ′(Z1)ψ′(Z2)

]
E[ψ2(Z1)]

.

Furthermore, if

• maxi=1,2,3 |λi| < 1 then g admits a unique fixed point at(
s2s2, 1

)
for some s2.

• λ3 < 1 and g1(·, s22, ρ) admits a fixed point s2 for any
s22, ρ, then g3(s2, s2, ·) admits a unique fixed point at 1.

Proof. Absolute homogeneity implies that

g3(s21, s
2
2, ρ)

=
E
[
σ2
wψ(s1G1)ψ

(
s2(G1ρ+G2

√
1− ρ2)

)]√
E
[
σ2
wψ

2(s1G1)
)]√

E
[
σ2
wψ

2(s2G2)
)]

=
E
[
ψ(G1)ψ

(
G1ρ+G2

√
1− ρ2

)]√
E
[
ψ2(G1)

)]√
E
[
ψ2(G2)

)]
= 0 =

∂g3
∂s21

=
∂g3
∂s22

.

Absolute homogeneity also implies that for all a ∈ R,
ψ′(|a|z) = ψ′(z). Then by Theorem 6,

λ3 =
σ2
ws1s2√
g1g2

E
[
ψ′(s1Z1)ψ′(s2Z2)

]
=

σ2
ws1s2

σ2
ws1s2E

[
ψ2(G1)

]E[ψ′(Z1)ψ′(Z2)
]

=
E
[
ψ′(Z1)ψ′(Z2)

]
E
[
ψ2(G1)

] .

Note that the Jacobian
∂g1
∂s21

∂g1
∂s22

∂g1
∂ρ

∂g2
∂s21

∂g2
∂s22

∂g2
∂ρ

∂g3
∂s21

∂g3
∂s22

∂g3
∂ρ

 =

(
λ1 0 0
0 λ2 0
0 0 λ3

)

is diagonal, and therefore the induced matrix norm (corre-
sponding to a Euclidean vector norm) of the Jacobian, the
largest singular value of the Jacobian, is simply the largest
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Figure 4: (Left) Values σ∗ that preserve the layer-wise expected square norm of ‖x‖ in MLPs with GELU, ELU and ReLU
activations. (Middle) lower bound of λ3 for GELU (Right) λ3 for ELU. If λ3 ≤ 1 on θ ∈ (0, π), a unique fixed point exists.

absolute value of the diagonal elements. Thus by Theorem 5,
if maxi=1,2,3 |λi| < 1 then g has a unique fixed point.

Alternatively, suppose λ3 < 1 and g1(·, s22, ρ) admits a
fixed point at s2 for any s22, ρ. Then g3

(
s2, s2, ·

)
admits a

unique fixed point by applying Theorem 5 to the 1D system
g3 with induced matrix norm |λ3|.

Intuitively but informally, the absolute homogeneity con-
dition in Corollary 7 leads to independent updates, so that g
may be thought of as three functions g1, g2, g3 whose inputs
and outputs do not interact between iterations. When abso-
lute homogeneity is removed, g1 and g2’s inputs and outputs
are not affected by g3, but g3’s inputs are affected by the
outputs of g1 and g2. This makes it more difficult to analyse
exactly the same situation as in Corollary 7. However, if we
fix the output of g1 and g2 at some fixed point (which are
guaranteed to exist in the cases handled in § 4.1), then we
can neglect interactions between the outputs of g1, g2 and
the inputs of g3 and analyse the iterates of g3 as a univariate
function. We proceed with this strategy in Corollary 8.
Corollary 8 (Unique fixed point of normalised kernel). If
a fixed point s2 of the system only involving g1(·, s22, ρ) :
[0,∞)→ [0,∞) exists when σw = σ∗, we have

∂g3
∂ρ

= λ3 = (σ∗)2E
[
ψ′(sZ1)ψ′(sZ2)

]
at the fixed point of g1(·, s22, ρ) and g2(s21, ·, ρ). Further-
more, if |λ3| < 1, then g3(s2, s2, ·) : [−1, 1] → [−1, 1]
admits a unique fixed point at ρ = 1.

Proof. By Theorem 6, we have

λ3 =
σ2
ws1s2√
g1g2

E
[
ψ′(s1Z1)ψ′(s2Z2)

]
= (σ∗)2E

[
ψ′(sZ1)ψ′(sZ2)

]
.

g3(s2, s2, ·) admits a unique fixed point by taking C =
(−1, 1) and d as the the Euclidean metric in Theorem 5.

4.3 Degenerate Priors and Posteriors
Having established conditions under which unique fixed
points exist, we now examine what a unique fixed point im-
plies for the limiting prior and posterior. The prior and poste-
riors are degenerate in the sense that they are almost surely

constant over subsets of the input space. We first consider
the limiting prior as the depth goes to infinity.

Proposition 9. Let {f (L)(x)}x∈X be a Gaussian pro-
cess with mean zero and covariance function k(L). Sup-
pose that lim

L→∞
k(L)(x1,x2) = lim

L→∞
k(L)(x1,x1) =

lim
L→∞

k(L)(x2,x2) <∞ for every x1, x2 ∈ X∗. Then

lim
L→∞

f (L)(x1)− f (L)(x2) = 0

almost surely. That is, all draws from the limiting prior are
almost surely a constant function.

The proof is given in Appendix H. Suppose we take a pri-
ori the Gaussian process in Proposition 9 before the limit is
taken, update our belief after observing some data to obtain
the posterior and then take the limit. An interesting question
is whether the limit commutes with the Bayesian update.

Proposition 10. Let {f (L)(x)}x∈X be a Gaussian process
prior with mean zero and covariance function k(L). Fix some
X∗ ⊆ X such that for every x1, x2 ∈ X∗ ⊆ X and x3,x4 ∈
X ,

• lim
L→∞

k(L)(x1,x2) = lim
L→∞

k(L)(x1,x1) =

lim
L→∞

k(L)(x2,x2) = C <∞,

• lim
L→∞

k(L)(x1,x3) = lim
L→∞

k(L)(x2,x3) = D(x3), and

• lim
L→∞

k(L)(x3,x4) <∞ exists

where C ∈ R and D : X → R may depend on X∗. Fix some
dataset X,Y, where each row Xi of X is in X .

Then under Bayesian Gaussian process regression with
Gaussian likelihood and strictly positive noise variance
σ2
n > 0, all draws from the limiting posterior predictive dis-

tribution given observations X,Y over X∗ as L → ∞ are
almost surely a constant function.

The proof is given in Appendix H. We are now ready to
relate the existence of unique fixed points to degenerate pri-
ors and posteriors for some specific examples.

Example, LReLU Taking X∗ to be any (subset of a) hy-
persphere in Propositions 9 and 10, we have the following
result, the proof of which is given in Appendix H.
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Corollary 11. Let X∗ be any hypersphere. Define a Gaus-
sian process prior with a covariance function corresponding
to an infinitely wide MLP with LReLU activations, µ = 0,
σ2
w = 2 and depth L. Then as L→∞, draws from the prior

and posterior predictive distributions are almost surely con-
stant over X∗.
Examples, GELU and ELU In contrast with LReLU ac-
tivations, such a degeneracy guarantee does not exist for
GELU and ELU activations. For both the GELU and ELU,
we consider the dynamics on a ball of constant ‖x‖, where
σw is chosen such that g1 = ‖x‖. In Figure 4, for different
values of ‖x‖ in the context of Corollary 8, we evaluate a
lower bound for λ3 in the case of GELU and λ3 exactly in
the case of ELU. Full working is given in Appendices G.1
and G.2. We observe that each exceeds 1 at some point on
the (but not over the whole) interval, and is therefore not
a contraction mapping and hence not guaranteed to have a
unique fixed point. This is consistent with Figures 2 and 3,
where fixed points are shown by intersecting curves.

5 Extension of Theoretical Results to NTK
We may also study kernel fixed points of infinitely wide neu-
ral networks trained under gradient flow. This amounts to
studying the fixed point properties of the neural tangent ker-
nel (NTK). If such a unique fixed point exists, this implies
that the functions obtained by applying gradient flow to an
infinitely wide, infinitely deep MLP are also degenerate. In
this section, we briefly sketch how such a result may be ob-
tained. We leave the presentation of formal results and em-
pirical evaluations for future work.

Informally, the value of the eigenvalue λ3 can still predict
the fixed point behaviour of the NTK. Formally, the result
is slightly more involved, see Appendix I. Consider a state
space S ⊂ R4 containing states (s21, s

2
2, k, T ) consisting of

squared norms for both inputs, the kernel, and the NTK. We
update the states through h : S → S:

hi(s
2
1, s

2
2, k, T ) = σ2

wE
[
ψ2(siZi)

]
+ σ2

b , i = i, 2

h3(s21, s
2
2, k, T ) = σ2

wE
[
ψ(s1Z1)ψ(s2Z2)

]
+ σ2

b ,

h4(s21, s
2
2, k, T ) = Tσ2

wE
[
ψ′(s1Z1)ψ′(s2Z2)

]
+

σ2
wE
[
ψ(s1Z1)ψ(s2Z2)

]
+ σ2

b ,

where Cov(Z1, Z2) = k/(s1s2), E[Z1] = E[Z2] = 0. As in
Corollary 8, if a fixed point of the system only involving s1
and h1 exists at a value σw = σ∗ and s1 = s2 = s, then the
system reduces to a 2 dimensional update involving only h3
and h4 along s1 = s2 = s. The Jacobian is diagonal,

J =

(
∂h3

∂k
∂h3

∂T
∂h4

∂k
∂h4

∂T

)
=

(
∂h3

∂k 0
∂h4

∂k
∂h4

∂T

)
,

so the eigenvalues are ∂h3

∂k and ∂h4

∂T . By Theorem 6,

∂h3
∂k

=
∂h3
∂ρ

(∂k
∂ρ

)−1
=
∂g3
∂ρ

√
h1h2(s1s2)−1

= (σ∗)2E
[
ψ′(s1Z1)ψ′(s2Z2)

]
=
∂h4
∂T

= λ3.

Figure 5: Posterior predictive ±2 standard deviations.

6 Gaussian Process Experiments
We perform two sets of experiments. In the first, we inves-
tigate the performance of GPs with various neural network
kernels. In the second, we observe the degree of implicit reg-
ularisation that is obtained using GPs of finite depth.

6.1 Benchmarking
We provide a software implementation of our new ker-
nels. To demonstrate usage of our covariance functions, first
we compare the performance of GP regression models us-
ing ReLU, LReLU, ERF and GELU kernels on a popular
Bayesian deep learning benchmark (Hernández-Lobato and
Adams 2015). The purpose of these experiments is not to
showcase the superiority of one prior over another, but rather
to provide a sample implementation. This implementation
has already been ported over to another framework in con-
current work by others (Novak et al. 2020). The ELU kernel
was not included in our experiments (see § 3). We perform
separate experiments on shallow models having 1 hidden
layer and deep models having up to 32 hidden layers. All
data was standardised to have mean 0 and variance 1.

Shallow models. Do differences in priors induced by the
various activation functions affect empirical performance?
Using the limiting GP allows us to remove the interaction
between ψ and optimisation, and purely consider the effect
of ψ on the functional prior. Figure 5 shows the predictive
distribution of GPs with GELU, ReLU, LReLU and ERF
kernels on a toy regression task. ERF has different extrapola-
tion properties due to being a bounded activation, whilst the
others appear qualitatively similar, though with extrapola-
tion variance decreasing in the order GELU/ReLU/LReLU.

Figure 6 shows benchmark results for single-hidden-layer
GPs using a 90%/10% training/test split. See Appendix J.1
for more details and plots. All kernels perform comparably;
gains can be made by selecting a kernel suited to the dataset.
Results are most different for ERF — either negatively
(Concrete, Energy) or positively (Boston, Protein, Wine).
Differences are observed between GELU/ReLU/LReLU.
For example, GELU offers an advantage in Naval and Yacht,
and LReLU performs poorly on Protein.

None of the kernels consistently outperform the others.
This is expected behaviour, similar to how a Matern kernel
might outperform a squared exponential kernel only some of
the time on real-world datasets. The purpose of the experi-
ment was to evaluate whether different ψ result in a strong
enough difference in priors that empirical performance dif-
ferences can be observed. Having answered in the positive,
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Figure 6: RMSE for equivalent single-hidden-layer GPs.
Mean ±2 standard errors (over 20 runs).

we posit that for finite-width networks, the difference in per-
formance found by varying ψ may partially derive from dif-
ferences in the induced prior. This is in contrast to previously
cited reasons such as bias shift and its relation to natural gra-
dient (Clevert, Unterthiner, and Hochreiter 2016).

Deep models. How does the performance of models vary
with depth? We randomly shuffled the data into an 80/20%
train/test split 5 times. For each split, we ran GP regression
with an additive iid Gaussian noise model having variance
fixed at 0.1. We varied the depth ` ∈ [1, 32] in steps of 1
and the weight and bias variances (which were constrained
to be equal in each layer) σ2

w ∈ [0.1, 5] in steps of 0.1. For
each setting, we measured the RMSE between the mean of
the GP prediction and the true regression targets. Figure 7
shows the average RMSE on the Wine dataset over 5 shuf-

Figure 7: RMSE against σ2
w for equivalent l layer GPs,

Wine dataset. Shaded region shows ±1 standard deviation.
(Clockwise from top left) ReLU, GELU, LReLU, ERF.

fles. Other datasets are given in Appendix J.2. We make two
qualitative observations. Firstly, ` > 1 models out-perform
` = 1 models. Secondly, the RMSE changes smoothly in
both depth and σ2

w. The visual smoothness is not due to av-
eraging over 5 trials; smoothness is also observed when we
plot results from only 1 random shuffling. Table 1 shows the
best models obtained over the grid search for each kernel.

6.2 Overfitting and Underfitting
We empirically investigate the relationship between depth
and training/testing error. When the covariance function has
a unique fixed point, we expect to see underfitting at large
depth, since large depth will push the kernel towards the
unique fixed point, that is, a constant normalised kernel. On
the other hand, when the covariance function does not have
a unique fixed point, we might expect to see overfitting as
model complexity may increase with depth.

We build predictor variables of a training dataset by uni-
formly sampling x ∈ R2 on the unit disc at heading γ.
We then sample training targets through the mapping y =
f(γ) + ε for a number of different choices of f , where ε is
additive Gaussian noise with variance fixed at 0.1. We find
the posterior predictive mean of a Gaussian process with it-
erated GELU and ReLU covariance functions of depth L
between 1 and 100 with a choice of σw according to Fig-
ure 4. We repeat this process with a new random training set
10 times. Each repetition, we find the mean-squared error
(MSE) between the posterior mean of the Gaussian process
over the training set and a test set built from a (deterministic)
uniform grid of size 100. Figure 8 shows the resulting train
and test errors on one choice of f , and Appendix L shows
other choices of f . Figure 1 shows a more direct illustration
of the function fit on one of the random data samples, with
other choices of f shown in Appendix L.

9974



ReLU GELU LReLU ERF
RMSE σ2

w ` RMSE σ2
w ` RMSE σ2

w ` RMSE σ2
w `

Boston 2.85± 0.64 1.90 7 2.86± 0.65 1.80 6 2.60± 1.07 2.00 32 2.69± 0.95 5.00 2
Concrete 5.22± 0.55 5.00 2 5.21± 0.56 5.00 2 5.23± 0.44 3.30 3 5.63± 0.46 5.00 2
Energy 0.89± 0.11 5.00 2 0.92± 0.12 5.00 2 2.77± 0.31 0.10 1 2.79± 0.23 0.10 1
Wine 1.15± 0.13 5.00 4 1.17± 0.14 5.00 4 1.04± 0.12 5.00 5 3.96± 0.75 5.00 1
Yacht 0.58± 0.01 4.80 32 0.58± 0.01 2.30 32 0.60± 0.02 1.80 29 0.57± 0.02 5.00 8

Table 1: Best performing models for each kernel over the grid search.

Figure 8: Training and testing errors for GPs with covariance
functions corresponding to infinitely wide MLPs of increas-
ing depth L using the same example as in Figure 1. Solid
curve shows the mean over 10 training data samples, and
the shaded region shows ± two standard deviations. By ex-
amining whether the training and testing error increases or
decreases with depth, we observe that the GELU and ReLU
respectively overfit and underfit with depth. See Appendix L
for more error curves. (Left) GELU (Right) ReLU.

7 Discussion and Conclusion
We introduced two new positive semi-definite kernels aris-
ing from the infinite-width limit of Bayesian GELU or ELU
NNs. We provided visualisations of these kernels for varying
depths. We introduced a general framework for understand-
ing the fixed-point dynamics of such kernels and their NTK
counterparts. Using this framework, we showed that unlike
the ReLU, the GELU and ELU kernels are able to avoid
unique fixed points. We empirically verified that finite-width
NNs are able to avoid unique kernel fixed points in Figures 2
and 3. We applied our kernels in the setting of shallow and
deep GP regression, finding that for some problems specific
kernels are more appropriate, and that the GELU kernel is
competitive with the ReLU kernel.

Investigations into implicit regularisation consider the
role of one or all of (a) the architecture, (b) the learning
algorithm and (c) the data sampling process. Neyshabur,
Tomioka, and Srebro (2015) argue that (b) leads implicitly
to low-norm solutions, explaining the generalisation ability
of deep NNs. On the other hand, Dereziński, Liang, and Ma-
honey (2019) construct a data sampling distribution (c) that
explains double descent and implicit regularisation in linear
models. Similar to our work but not considering the NTK,
the signal propagation literature (Schoenholz et al. 2017;
Poole et al. 2016) explains simplicity biases in randomly ini-
tialised networks (a). They develop objects similar to ∂g3

∂ρ ,
but require bounded activations, and seem to also require
some notion of differentiability. Our analysis considers (a)

and (b) but not (c). We have recently been made aware of the
concurrent work of (Huang et al. 2020), who also study the
degeneracy of processes induced through ReLU activations.
Their focus is on both (a) and (b), arguing that the NTK for
residual architectures does not suffer from this degeneracy.

Knowing the gradient of the kernel with respect to (σ
(l)
w )2

and (σ
(l)
b )2 is useful for both empirical Bayesian methodolo-

gies (e.g. optimising the marginal likelihood using LBFGS)
and hierarchical models (e.g. using HMC to integrate out the
hyperprior). As we detail in Appendix K, our results may
be used to find this gradient. Theorem 6 provides 7 of the
9 elements of the Jacobian. The other 2 can only easily be
evaluated in special cases (e.g. LReLU results in a diago-
nal Jacobian). In future work, it may be interesting to extend
Theorem 6 to cover the remaining elements of the Jacobian.

While Lee et al. (2019) found close agreement be-
tween NNs and their corresponding limiting GPs, several
authors (Neal 1995; MacKay 2003; Der and Lee 2006;
Matthews et al. 2018; Chizat, Oyallon, and Bach 2019;
Tsuchida, Roosta, and Gallagher 2019b; Allen-Zhu, Li, and
Liang 2019; Peluchetti, Favaro, and Fortini 2020; Aitchison
2020) have argued against the use of GP models as a means
to understand the success of deep learning. If deep learning’s
performance can be explained using GPs, why do NN mod-
els outperform their limiting GP counterparts? Arora et al.
(2019) attain 77% test accuracy on CIFAR10 using a limit-
ing GP arising from a trained CNN, while a ResNet is able
to achieve 96% (Springenberg et al. 2015). On the other
hand, Arora et al. (2020) find that GP models are compet-
itive on small datasets. It remains to determine if this differ-
ence in performance is due to the tricks for which equiva-
lence in the GP setting have not yet been fully explored, or
if it is the result of some deeper property of GPs. Lee et al.
(2020) empirically explore some of these questions includ-
ing the effects of finite width, architectures, weight decay
and the performance difference between infinite Bayesian
and NTK models. While we acknowledge the limitations of
the infinitely wide approach, we believe it warrants further
exploration, if not to understand the power of deep learning,
at least to investigate its generalisation abilities. The purpose
of our study was not to optimise any architecture for perfor-
mance on a particular problem, but rather to develop results
under the GP framework that contribute to our understand-
ing of generalisation in the overparameterised setting.
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